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We calculate the Casimir interaction between two parallel wires and between a wire and a metall
plate. The dielectric properties of the objects are described by the plasma, Drude and perfect
metal models. We find that at asymptotically large separation interactions involving plasma wires
and/or plates are independent of the material properties, but depend on the dc conductivity σ for
Drude wires. Counterintuitively, at intermediate separations the interaction involving Drude wires
can become independent of σ. At smaller separations, we compute the interaction numerically and
observe an approach to the proximity approximation.

Effective interactions between nanowires and nan-
otubes have attracted lots of attention due to their grow-
ing applications in micro- and nanomechanical systems
[1–3]. The knowledge of the interactions between single
walled carbon nanotubes (SWCNT) with different chi-
rality and hence electromagnetic response is important
to separate a polydisperse solution of SWCNT in frac-
tions of equal chirality [4]. Under many circumstances,
van der Waals or Casimir forces are the dominant in-
teraction and hence a precise understanding of them is
needed. Furthermore, cylindrical shapes are important
for precision Casimir force measurements, in comparison
to spheres, because of the larger effective area of interac-
tion [5, 6]. Approximations of the Casimir force between
cylinders and plates [6] have shown that the tempera-
ture dependence varies based on the description of the
material properties. Thus there is a need for exact calcu-
lations of the Casimir force for cylindrical shapes taking
into account realistic material response.

It has been demonstrated that Casimir interactions
strongly depend on the combined effects of shape and
material properties, see, e.g., [7, 8]. The interplay is
particularly strong for quasi one-dimensional conduct-
ing materials due to strongly anisotropic collective charge
fluctuations. Indeed, for two parallel perfectly conduct-
ing wires of distance d the retarded interaction energy
per length is E/L ∼ ~c/d2, apart from a logarithmic fac-
tor [9]. It decays only slowly compared to the retarded
interaction E/L ∼ ~cR4/d6 between insulating cylinders
that do not support collective fluctuations. Most studies
of interactions between one-dimensional systems over a
wide range of separations concentrate on these two situa-
tions. However, low dimensionality in combination with
finite conductivity and plasmon excitations should give
rise to interesting new effects that might be probed ex-
perimentally using, e.g., the coupling to mechanical os-
cillation modes. The often employed technique for these
effects, the proximity force approximation (PFA) cannot
capture the correlations of shape and material response
since it is based on the interaction between planar sur-
faces. There have been attempts to compute the van der
Waals interaction between cylinders (and plates) for par-
ticular frequency dependent permittivities [9–15]. More

specifically, a number of studies have been performed for
short sepration regime with the main focus on the cor-
rections to the Proximity Force Approximation [? ? ?
]. However, the interplay between shape and material ef-
fects is not transparent in these works as they are limited
either to perfect metals or to asymptotic limits.

In this Letter, we employ the scattering approach to
study the interaction between two infinitely long, parallel
metallic wires and a wire and a plate that are described
either by the plasma or the Drude dielectric function.
We model the wires as circular cylinders of radius R and
obtain analytical results for the interactions at distances
much larger than R. We find regimes of different am-
plitude and power-law, depending on the relation of the
radius to the length λσ = 2πc/σ with conductivity σ and
the plasma wave length λp.

Most interestingly, we find that the interaction involv-
ing Drude wires approaches the universal interaction be-
tween perfect metal wires at intermediate separations
and becomes non-universal (material dependent) at dis-
tances d & R2/λσ. This behavior is explained in terms
of the size of collective charge fluctuations in a Drude
metal. For wires that support plasma oscillations, the in-
teraction does show universality at asymptotically large
distances. An estimate of the interaction between two
gold wires based on the asymptotic expressions that we
found with R = 10nm, length L = 100µm, λp = 137nm
and λσ = 5nm at a distance d = 200nm yields a force of
≈ 1pN within the plasma description and ≈ 27pN within
the Drude model. These forces are experimentally de-
tectable and allow a much clearer distinction between
plasma and Drude model predictions as compared to two
plates or a plate and sphere [8]. This is of particular
importance in view of recent experimental findings that
interactions between metals might not be consistent with
the Drude model [16]. In order to confirm the validity
of our large distance expansions and to compare with
the PFA at short distances we have performed numerical
computations of the interaction.

To investigate the Casimir interaction between a cylin-
der parallel to a plate or another cylinder, we employ
the scattering approach, which allows us to calculate the
energy over a large range of separations between the ob-
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jects. Because of the translational symmetry along the
cylinder axis, the Casimir interaction can be written as
[17]

E =
~cL
4π2

∫ ∞
0

dκ

∫ ∞
−∞

dkz ln det(1− N) , (1)

with L the length of the cylinder, κ the Wick rotated
frequency, kz the wave number along the cylinder axis,
and 1 the identity matrix. The matrix N factorizes into
the object’s scattering amplitudes (T-matrices) that en-
code the material dependence and distance dependent
translation matrices that described the coupling between
multipoles on distinct objects.

Parallel wires – For two infinitely long parallel cylin-
ders with radii R, aligned along the z-axis, the elements
of the matrix N for polarizations α, β = E, M and partial
waves m, m′ are

Nαβmm′ =
∑

γ=E,M

Tαγm

∞∑
n=−∞

U12
mn T

γβ
n U21

nm′ , (2)

with T the T-matrix of the cylinder (see below). The
translation matrix, U12, relates the regulare vector waves
Mreg

kzn
= (κ2 + k2z)−1/2∇× [In(pρ)ei(nθ+kzz)] and Nreg

kzn
=

κ−1∇ ×Mreg
kzn

with p =
√
κ2 + k2z in the cylindrical co-

ordinates (ρ, θ, z) of one cylinder to the outgoing vector
waves of the other cylinder that are given through re-
placing the Bessel functions In by the Bessel functions of
second kind, Kn. The elements are given by

U12
nn′ = (−1)n

′
Kn−n′ (p d) U21

nn′ = (−1)n−n
′
U12
nn′ , (3)

where d is the distance between the centers of cylinders.
Note that the translation matrix conserves polarization
and thus is independent of the polarization index. The T-
matrix for a cylinder with dielectric function ε(icκ) and
magnetic permeability µ(icκ) is diagonal in the partial
wave number n but couples polarizations. Its elements
are [17]

TEEn = − In(pR)

Kn(pR)

∆2,n∆3,n + P 2
n

∆1,n∆2,n + P 2
n

, (4)

TEMn = − Pn√
εµ(pR)2K2

n(pR)

1

∆1,n∆2,n + P 2
n

, (5)

with Pn = (nkz/(
√
εµR2κ))

(
1/p′2 − 1/p2

)
, p′ =√

εµκ2 + k2z and

∆1,n =
I ′n(p′R)

p′RIn(p′R)
− 1

ε

K ′n(pR)

pRKn(pR)
. (6)

∆2,n is obtained from Eq. (6) by interchanging ε with µ,
and ∆3,n follows from Eq. (6) by replacing K ′n with I ′n
and Kn with In. The elements TMM

n are given by TEEn
after interchanging ε with µ. Finally, antisymmetry in
polarization yields TME

n = −TEMn .
In order to investigate the impact of the material prop-

erties on the Casimir interaction, we consider plasma,

Drude and perfect metal cylinders with the magnetic per-
meability µ = 1. The Drude dielectric function is

ε(icκ) = 1 +
(2π)2

(λpκ)2 + λσκ/2
, (7)

and reproduces the plasma model for λσ → 0. Using
Eq. (7), the asymptotic behavior of the T-matrix element
of Eq. (4) for n = 0 at small frequencies (κ � 1, kz/κ
fixed) is given by

TEE0 ≈ − p2R2

C(κ)− p2R2 ln(pR/2)
, (8)

where C(κ) depends on the dielectric function. For the
plasma model one has C(κ) ≈ λp

2κ2 /(2π2) if the plas-
mon oscillations cannot build up transverse to the wire
axis since the diameter is too small, i.e., R� λp. For the
Drude model, C(κ) = λσκ/(4π

2) if κ � λσ/λ
2
p, 1/λσ.

The first of the two conditions implies that Drude be-
havior dominates over plasma behavior, i.e., the second
term in the denominator of Eq. (7) is larger than the
first term. The second condition ensures that the Drude
dielectric function is large compared to one, i.e., metal-
lic behavior is pronounced. For a perfect metal one has
C(κ) = 0. At small frequencies κ but fixed kz/κ, one has
for Drude cylinders TEE0 ∼ κ, while for plasma and per-
fect metal cylinders one has TEE0 ∼ 1. Since TMM

0 ∼ κ2,
TEM0 = TME

0 = 0 and higher order elements associated
with n 6= 0 scale as κ2|n|, it is sufficient for the large
distance interaction to consider only the element TEE0 .

The Casimir interaction between metallic wires is in
general complicated and no simple analytical expres-
sion that applies to all length scales can be obtained.
However, using Eqs. (1) and (2) along with TEE0 given
in Eq. (8), the asymptotic interaction at large sepa-
rations, d � R, can be calculated in various limiting
cases. For metals with diverging response at zero fre-
quency, one usually observes universal behavior for the
interaction at large separations. Indeed, that is what
we obtain for the interaction between plasma wires (or
plasma and perfect metal wires) which then becomes
E = −~cL/(8πd2 ln2(d/R)) [9, 13]. This universal form is
only applicable beyond an exponentially large crossover
length d ∼ R exp(λ2p/R

2). Below this scale the inter-
action becomes material dependent. For two plasma
wires or a plasma wire and a perfect metal wire, with

λp/R � 1, the energy scales as −R/(λpd2 ln3/2(d/R)).
For numerical coefficients, see Fig. 1(a).

For configurations involving at least one Drude cylin-
der we find a rather distinct behavior that deviates from
naive expectations for universality. For large distances
d � R, λσ we obtain two different scaling regimes that
are separated, up to logarithmic corrections, by the curve
d/R ∼

√
d/λσ, see Fig. 1(b). The unexpected feature

is that the interaction is universal in the regime where
d � R2/λσ. If the distance is increased beyond this
crossover scale (with all other length scales kept fixed,
see arrow (1) in Fig. 1(b)), the interaction becomes ma-
terial dependent and up to logarithmic corrections, scales
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as −R2/(λσd
3) for a Drude wire interacting with another

Drude wire or a plasma or perfect metal wire. For de-
tailed forms of the interactions in this limit, see Fig. 1(b).
If, however, the radii of the wires are increased in the
same way as their distance (d/R fixed, see arrow (2)
in Fig. 1(b)), finite conductivity becomes unimportant
at large distances and the interaction assumes the per-
fect metal form. An intuitive explanation of this non-
universal large distance behavior is given below. Note
that the decay of interactions between insulating wires
for d� R scales as ~cLR4/d6 with a material dependent
coefficient.

Wire parallel to a plane – Now we consider a wire that
is parallel to a plate. We assume that the plate is in the
y − z plane and its distance from the cylinder (z) axis is
d. Then the matrix N in Eq. (1) can be written as

Nαβmm′ =
∑

γ,γ′=E,M

Tαγm

∫ ∞
−∞

dky
e−2d
√

k2
⊥+κ2

2
√
k2
⊥ + κ2

×Dmkzγ,k⊥γ′ T γ
′

k⊥
D†k⊥γ′,m′kzβ

(1− 2δγ′,β) ,

(9)

where ky is y-component of the wave vector, k⊥ ≡
(ky, kz), and the matrix Dmkzγ,k⊥γ′ converts between
plane and cylindrical waves [17]. Further, T γk⊥

are the
T -matrix elements for the plate which are given by the
usual Fresnel coefficients [17]. For perfect metal plates
TEk⊥

= TMk⊥
= 1 and for small κ at fixed k⊥/κ one has

for the plasma model TEk⊥
= TMk⊥

= 1 + O(λpκ) and for

the Drude model TEk⊥
= TMk⊥

= 1 +O(λσκ). Due to this
identical behavior of the plate’s T-matrix at small κ, the
interaction at asymptotically large distances is indepen-
dent of the model that describes the metal plate.

We calculate the Casimir energy between a wire and
a plate at large separations (d/R � 1), using Eqs. (1),
(8) and (9). We again find two different scaling regimes
that are separated by curves that are given by the same
expressions that we found for two wires, see Fig. 1. In
the universal regime (perfect metal), the interaction is
E = −~cL/(16πd2 ln2(d/R)) [9, 13] for a plasma wire
at asymptotically large d � R and for a Drude wire at
intermediate distances with λσ, λ

2
p/λσ � d � R2/λσ,

see Fig. 1(b). In the other regime the interaction is non-
universal with the energies up to logarithmic accuracy
scaling as E ∼ ~cLR/(λpd2) for a plasma wire and E ∼
~cLR2/(λσd

3) for a Drude wire. For the precise form see
Fig. 1(b). This can be compared to the faster decay that
is observed for an insulating wire interacting with a plane
which has E ∼ ~cLR2/d4 [17].

Numerical results - It is interesting to compare the
asymptotic results with exact numerical calculations to
identify the regions in which the asymptotics are correct.
We calculate numerically the integrals and determinant
in Eq. (1). The infinite matrix N given by Eq. (2) is
truncated at a finite number n = nmax of partial waves.
nmax depends on the separation between the objects and
is chosen such that the energy varies by less than 0.01%
upon increasing nmax by 10. As the separation becomes

1 ~

1

~

universal

(wire - wire)

(wire - plate)

(P-wire - P-wire)

(P-wire - PM-wire)

(P-wire - plate)

(a)

1 ~

1

~

universal

(wire - wire)

(wire - plate)

(D-wire - D-wire)

(D-wire - P- or PM-wire)

(D-wire - plate)

(b)

(2)

(1)

FIG. 1. Summary of the different forms of interaction between
two wires and a wire and a plate. Shown are the rescaled
interaction energies per cylinder length, E/(~cL). (a) Inter-
action involving a plasma (P) wire with another plasma wire,
a perfect metal (PM) wire or a plate. The asymptotic re-
sults apply sufficiently far away from the separating curve
ln(d/R) ∼ (λp/R)2 and for d/R, λp/R � 1. (b) Interaction
involving a Drude (D) wire with another Drude wire, a plasma
wire, a perfect metal wire or a plate. The separating curve is
given, up to logarithmic corrections, by d/R ∼

√
d/λσ. The

shown expressions hold for d/R, d/λσ � 1 and d � λ2
p/λσ.

Depending on the relative size of length scales, different
regimes can be reached: Dashed arrow (1) corresponds to
an increasing distance d which ultimately leads to a non-
universal interaction. Dashed arrow (2) indicates an overall
increase of the geometry (i.e., d/R fixed) with constant con-
ductivity leading to a universal interaction.

shorter, nmax increases. While for d/R = 10, nmax = 9
is sufficient, we need to use nmax = 91 for d/R = 2.1.

Figure 2 shows the ratio of the numerically computed
force between two Drude wires and the corresponding
asymptotic results (universal and non-universal regimes,
see Fig. 1(b)) versus ln(2d/R). The material parame-
ters are chosen as λp/R = 0.5 and λσ = λp/27.4 which
correspond to gold with λp = 137 nm and λσ ≈ 5 nm.
At intermediate separations, the force normalized to the
universal result approaches unity whereas at asymptoti-
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FIG. 2. Ratio of the numerically computed force and the
universal (squares) and non-universal (circles) asymptotic re-
sults of Fig. 1 for two Drude wires with λp/R = 0.5 and
λσ = λp/27.4. The inset shows the ratio of the numerical
force to the proximity force approximation (PFA) for Drude
cylinders with λp/R = 0.5 (diamonds) and λp/R = 0.05 (tri-
angles).

cally large separations the force normalized to the non-
universal result tends to unity. This confirms the validity
of the crossover shown in Fig. 1(b). We also compare our
numerical results for the force at short separations with
those obtained from the proximity force approximation
(PFA) which is based on the Lifshitz formula for parallel
plates made of the same material as the wires. The in-
set in Fig. (2) shows the ratio of our numerical result for
the force and the PFA result versus d/R for Drude wires
with λp/R = 0.5 and λp/R = 0.05. Our data support the
validity of the PFA in the limit of vanishing separations.

In summary, we have calculated the Casimir force be-
tween two metallic cylinders and a metallic cylinder par-
allel to a plate. We find that a significant feature of
the interaction between a Drude Cylinder with another

Drude cylinder or a plate is that upon increasing the sep-
aration, the interaction can move from a universal regime
to a non-universal one. This behavior can be under-
stood from the wave equation for the electric field inside a
Drude cylinder. For imaginary frequencies ω = icκ, the
Helmholtz operator ∇2 + ε(ω)(ω/c)2 for a good Drude
conductor becomes ∇2 − 8π2κ/λσ. We are interested in
the maximal scale of the field and hence charge fluctu-
ations for a given κ. With the smallest transverse wave
vector kx, ky ∼ 2π/R we find the dispersion relation

|kz| ∼ R−1
√
κ/κc − 1 , κc = λσ/R

2 . (10)

Hence, collective charge fluctuations on arbitrarily large
scales exist only for κ > κc which is a consequence
of dimensionality that does not appear in the absence
of transverse constraints (R → ∞). For κ < κc
charge fluctuations break up into clusters of typical size
∼ R/

√
1− κ/κc due to finite conductivity. The spec-

tral contribution to the interaction between cylinders at
distance d is peaked around κ ∼ 1/d. If d . 1/κc
(d/R .

√
d/λσ, see Fig. 1(b)), collective charge fluc-

tuations contribute strongly to the interaction and ren-
der it universal as for perfect metal cylinders for which
κc ∼ 1/σ → 0. In the asymptotic regime with d & 1/κc
(d/R &

√
d/λσ, see Fig. 1(b)), finite conductivity pre-

vents fluctuations on arbitrarily large scales and hence
the interaction is proportional to σ, i.e., non-universal.
It is important to note that as R goes to zero, κc be-
comes larger, and in consequence the finite conductivity
of cylinder becomes more important.
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