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The problem of finding the ground state of a frustration-free Hamiltonian carrying only two-body
interactions between qubits is known to be solvable in polynomial time. It is also shown recently
that, for any such Hamiltonian, there is always a ground state that is a product of single- or two-qubit
states. However, it remains unclear whether the whole ground space is of any succinct structure.
Here, we give a complete characterization of the ground space of any two-body frustration-free
Hamiltonian of qubits. Namely, it is a span of tree tensor network states of the same tree structure.
This characterization allows us to show that the problem of determining the ground state degeneracy
is as hard as, but no harder than, its classical analog.

PACS numbers: 03.67.Lx, 03.67.Mn, 75.10.Jm

I. INTRODUCTION

Quantum spin models are simplified physical models
for real materials, but are believed to capture some of
their key physical properties, which lie in the heart of
modern condensed matter theory [1]. Ground states of
strongly correlated spin systems are usually highly en-
tangled, even if the system Hamiltonian carries only local
interactions. So in general, finding the ground state of
such a system is intractable with traditional techniques,
such as mean field theory.

In practical spin systems, different local terms in the
Hamiltonian might also compete with each other, a phe-
nomenon called frustration, which makes the system fur-
ther difficult to analyze [2]. However, frustration is not
a necessary factor to cause ground state entanglement.
Frustration-free Hamiltonians can carry lots of interest-
ing physics, ranging from gapped spin chains [3] to topo-
logical orders [4, 5].

During recently years, the active frontier of quantum
information science brings new tools to study quantum
spin systems. In particular, local Hamiltonian prob-
lems are shown to be in general very hard, i.e., QMA-
complete [6]. It is also realized that the study of k-
local frustration-free Hamiltonians for qubits is closely
related to the quantum k-satisfiability problem (Q-k-
SAT) [7], which is the quantum analogy of the classical
k-satisfiability (k-SAT), a problem that is of fundamental
importance and has been extensively studied in theoret-
ical computer science (see, e.g., [8]).

Spin models with two-body interactions are of the most
physical relevance, as two-body interactions, in particular
of nearest neighbors or next nearest neighbors on certain
types of lattices, are the strongest interaction terms in
the real system Hamiltonian. Because two-level systems
are most common in nature, spin-1/2 (qubit) systems are
of particular importance.

It is realized, however, that certain ground states of a
two-body frustration-free (2BFF) Hamiltonian of qubits
could be pretty trivial with almost no entanglement at
all. Algorithmically, the problem of finding the ground
state of a 2BFF Hamiltonian of qubits is known to be
solvable in polynomial time on a classical computer [7].
It is also shown recently that for any such Hamilto-
nian, there is always a ground state that is a product
of single- or two-qubit states; and if there is a genuine
entangled ground state, the ground space must be de-
generate [9]. There are also similar observations of the
ground states in random or generic instances [10–13], say-
ing that the entire ground space is of a trivial structure,
which is almost always the fully symmetric space, with
ground space degeneracy n+1, where n is the number of
qubits [10, 11, 14, 15].

The main purpose of this work is to characterize the
entire ground space in the most general setting. We im-
prove the understanding of the ground space of 2BFF
Hamiltonians of qubits by showing that it is always a
span of tree tensor network states of the same tree struc-
ture. In other words, these states can be described as “be-
ing generated”, from products of single qubit states, by
applying the same series of isometries (from single qubit
to two qubits). Tree-like networks of isometries appeared
before as a tool of constructing variational ground states
for frustrated systems [16], here we show that it provides
exact ground states for 2BFF Hamiltonians.

As this characterization holds for the most general
case, it implies the problem of determining the ground
state degeneracy is as hard as, but no harder than, its
classical analog. Putting this in a more formal language
of computational complexity theory, our results give a
proof that computing the degeneracy of 2BFF Hamilto-
nian (#Q-2-SAT) is in a complexity class called #P [17].
On the other hand, the classical analog #2-SAT of #Q-
2-SAT is #P-hard, therefore the #Q-2-SAT problem is
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#P-complete. This answered an open question raised
in [11]. Therefore our results further bridge the stud-
ies in both quantum many body physics and computer
science.

II. TWO-BODY FRUSTRATION-FREE

HAMILTONIAN

Consider a system of n qubits labeled by the set
V = {1, 2, . . . , n}. We will be interested in 2BFF Hamil-
tonians H =

∑

HJ of the system. The Hamiltonian is
called two-body if each term HJ acts non-trivially only
on two qubits. The index J indicates the two qubits on
which HJ acts. The Hamiltonian H is called frustration-
free if its ground state also minimizes the energy of each
term HJ simultaneously. Without loss of generality, we
can assume throughout the paper that the smallest eigen-
value of each term HJ is zero by shifting the energy spec-
trum. In this convention, the frustration-free Hamilto-
nian H itself will have zero ground energy. Specifically,
we have

K(H) =
⋂

(

K(HJ )⊗HJ̄

)

, (1)

where K(H) is the ground space of H and HJ̄ is the
Hilbert space of the qubits not in J . From this equation,
one easily sees that it is the ground space of each term
HJ , not the structure of excited states, that matters for
the ground space of a frustration-free Hamiltonian H .
Denote the projection to the ground space of HJ by ΠJ .
Since the ground space of ΠJ and that of HJ are the
same, it suffices to consider local terms to be projections
ΠJ for our purpose.

Closely related to the analysis of 2BFF qubit Hamil-
tonians is the quantum 2-SAT problem (Q-2-SAT) first
considered by Bravyi [7]. Naturally generalizing classical
2-SAT, the Q-2-SAT problem asks whether, for a given
set of two-qubit projections {ΠJ} of an n-qubit system,
there is a global state |Ψ〉 such that ΠJ |Ψ〉 = 0 for all J .
Apparently, we answer “yes” to the problem if and only if
the Hamiltonian

∑

ΠJ is frustration-free. It was known
that Q-2-SAT is decidable in polynomial time on a clas-
sical computer [7]. The proof of the statement actually
constructs a specific n-qubit state |Ψ〉 in the ground space
of

∑

ΠJ if there is any. Our techniques will be similar to
those used by Bravyi, but we will show a stronger result
that one can not only find one state in the ground space,
but also represent the entire ground space in terms of a
span of special states.

A simple relation between local operations and
frustration-free Hamiltonians turns out to be useful. Let
Lj be a non-singular local operator acting on the j-th
qubit. Note that Lj might not be a physical operation,
which is introduced for the convenience of discussion. De-
fine local operations L =

⊗n

j=1
Lj, LJ =

⊗

j∈J Lj . The

action of L on H =
∑

HJ is defined to be the map from

H =
∑

HJ to

HL =
∑

L†
JHJLJ . (2)

Notice that HL is still a two-body Hamiltonian for
qubits. The relation between the ground space of H and
HL is

L−1K(H) = K(HL). (3)

To see this, first let |Ψ〉 ∈ L−1K(H). This is equivalent
to L|Ψ〉 ∈ K(H) and, by Eq. (1), to HJL|Ψ〉 = 0 for all
J . The last condition holds if and only if |Ψ〉 ∈ K(HL)
by the non-singularity of Lj ’s.

III. THE GROUND SPACE STRUCTURE AND

THE HOMOGENEOUS CASE

Given a 2BFF Hamiltonian H =
∑

HJ , what can we
say about the ground space K(H)? First of all, as ar-
gued previously, we only need to consider Hamiltonians
of the form H =

∑

ΠJ where ΠJ ’s are projections onto
K(HJ )

⊥. We will start our analysis by considering the
rank of the projections ΠJ .

First, if there is a ΠJ of rank 3, the only possible state
for the two qubits in J is I − ΠJ of rank 1, and this
reduces to a problem on qubits in V \ J .

If there is a ΠJ of rank 2, the state of qubits in J
is restricted to a two-dimensional subspace. Let |ψ0〉a,b
and |ψ1〉a,b be two orthogonal states that span the sub-
space, where a, b are the two qubits in J . One can en-
code qubits a and b by a single qubit d. For this pur-
pose, we define an isometry U in the following form
U : |0〉d 7→ |ψ0〉a,b, |1〉d 7→ |ψ1〉a,b. One concern of this
encoding is what will happen to other terms of the Hamil-
tonian that represent interactions between a qubit in J
and one outside J . Consider, for example, a local term
Πa,c between qubits a and c. In this case, one can view
Πa,c as a term acting on a, b, c and, after the encoding,
it is again an interaction of two qubits, namely c and
d. More formally, for terms like Πa,c, one can replace it
with U †

(

Πa,c ⊗ Ib
)

U . This procedure produces a set of
constraints on n − 1 qubits. It is easy to verify that a
state |Ψ〉 is in the ground space of the reduced problem
if and only if U |Ψ〉 is in the ground space of the original
problem [7, 9].

When there is no projection of rank larger than 1,
we are dealing with the homogeneous case [7]. It turns
out that the homogeneous case is the hardest and we
will discuss it in two separate sections. As we will see,
the ground space of the homogeneous Hamiltonian (more
precisely, the simplified homogeneous Hamiltonian de-
fined later) is spanned by single-qubit product states.
The above case analysis gives an explicit representation
of the ground space of a general 2BFF qubit Hamiltonian,
which is given by the following

Main Observation. The ground space is always a

span of tree tensor network states of the same tree struc-

ture.
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We illustrate this observation in Fig. 1. In this figure,
every blue triangle is an isometry operation, where the
input (the qubit on the left of the triangle) encodes the
output(the two qubits on the right of the triangle). By
these isometries, the ground space of the original Hamil-
tonian can be outputted when the input of the whole
forest is the ground space of the simplified homogenous
hamiltonian, which is spanned by a set of product states.
In the language of tensor network states [18, 19], one can
also represent these states in terms of tree tensor net-
works after combining the input product states and the
roots of trees in the forest.

Input: a set of product s-
tates that spans the ground
space of the simplified ho-
mogenous Hamiltonian.

FIG. 1: The general structure of the ground space

Consider the Hamiltonian H =
∑

ΠJ where ΠJ ’s are
rank-1 projections. One can visualize the interactions in
H by a graph G. The graph has n vertices corresponding
to the qubits and two vertices are connected when there is
a non-trivial interaction ΠJ acting on them. We will also
distinguish two types of edges in the interaction graph.
Let Π = |φ〉〈φ| be a projection. We will use a solid edge
in the graph when |φ〉 is entangled and a dashed edge
when |φ〉 is a product state.

Given a general homogeneous Hamiltonian, the inter-
action graph will consist of both solid and dashed edges.
The main technique is to simplify the interaction graph
in hand without changing the ground space. Two slid-
ing operations as shown in Figs. 2a and 2b will be used
in the simplification. The Type-I sliding says that if we
have entangled interactions between 1, 2 and 1, 3, we can
change it to two entangled interactions between 1, 2 and
2, 3 without affecting the ground space. The Type-II

sliding is of a similar spirit, but involves both entangled
and product interactions. We will only prove the validity
of the Type-I sliding as a similar argument holds for the
Type-II sliding operation.

=

1

2 3

1

2 3

(a) Type-I Sliding

=

1

2 3

1

2 3

(b) Type-II Sliding

(c) An example of
simplified interaction

graph

FIG. 2: Simplification of the interaction graph

Let Π12 = |φ〉〈φ| and Π13 = |ψ〉〈ψ| be the two rank-1
operators acting on qubit 1, 2 and 1, 3. We will find a

local interaction Π23 acting on 2, 3 such that Π12 + Π23

has the same ground space as Π12 + Π13. As |φ〉 and
|ψ〉 are entangled states, one can find local operations L2

and L3 acting on qubit 2 and 3 respectively such that
|φ〉 = I1 ⊗ L2|Y 〉 and |ψ〉 = I1 ⊗ L3|Y 〉 where |Y 〉 is

the singlet state (|01〉 − |10〉)/
√
2. The ground space of

Π12 +Π13 is therefore

K(I ⊗ L2|Y 〉〈Y |12I ⊗ L†
2
+ I ⊗ L3|Y 〉〈Y |13I ⊗ L†

3
)

= (L†)−1K(|Y 〉〈Y |12 + |Y 〉〈Y |13)
= (L†)−1K(|Y 〉〈Y |12 + |Y 〉〈Y |23)
= K(Π12 + L2 ⊗ L3|Y 〉〈Y |23L†

2
⊗ L†

3
),

where the first equation uses Eq. (3), the second one
is obtained by a direct calculation establishing that
K(|Y 〉〈Y |12+ |Y 〉〈Y |13) is the symmetric subspace of the
three qubits, and the last step employs Eq. (3) again.
This validates the Type-I sliding operation.

Repeated applications of the two types of sliding oper-
ations can modify an arbitrary graph (a homogeneous
Hamiltonian) with solid and dashed edges to the so-
called simplified interaction graph (simplified homoge-
neous Hamiltonian). The simplified graph (denoted by
S) has a backbone (denoted by B) of only dashed edges
and several solid-edge tails attached to the backbone. An
example of such a graph is shown in Fig. 2c. This simpli-
fication can be done in two steps by first changing each
connected component of solid edges into a tail, and then
sliding all dashed edges connected to a tail to one end of
the tail. During the process of the sliding operations, it
may happen that there is more than one edge between
two vertices. If these multiple edges represent different
constraints, one will essentially have a high rank con-
straint and can deal with it using the isometry technique
discussed in the previous section.

IV. THE SIMPLIFIED HOMOGENEOUS CASE

We now study the simplified homogenous case. The
interaction graph has a simple structure which intuitively
suggests what the corresponding ground space may look
like. We start from analyzing the backbone, where all
the edges are dashed lines. We observe the following

Observation 1. For the interaction graph with dotted

edges only, the ground space is spanned by orthogonal

single-qubit product states.
To understand this observation, note for an interaction

graph with only dotted edges, it contains only product
state constrains Πij = |ψ〉〈ψ| with |ψ〉 = |αi〉 ⊗ |αj〉.
Note if we consider the corresponding classical problem
in this setting, all the constraints are product states of
computational basis states |0〉 and |1〉. In this case the
solution space is obviously spanned by product states in
the computational basis. In the quantum case, however,
a general product state constraint |αi〉 ⊗ |αj〉 may not
have |αi〉 and |αj〉 be the computational basis states.
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However, given a single product state constraint |αi〉⊗
|αj〉, one can always transform both |αi〉, |αj〉 to some
computational basis states by a local operation L = Li⊗
Lj. Note according to Eqs.(2,3), this local operation does
not change the ground space dimension and the product
state structure. Further more, if an n-vertex interaction
graph with only dotted edges is one dimensional (1D) in
geometry, (a straight line or a ring), then one can always
find a local operation L =

⊗n

i=1
Li which transforms

all the constraints simultaneously to product states of
computational basis states. So a 1D backbone is essential
‘classical’.

It turns out this simple 1D analysis is enough to re-
duce the n-particle problem to an n − 1 particle prob-
lem, which leads to a proof by induction that the ground
space of a Hamiltonian (denoted by HB) corresponding
to an interaction graph with only dotted edges (the back-
bone), can be spanned by product states. Indeed, by
properly choosing the invertible operators Li’s, we can
further show that the ground space can be spanned by
orthogonal product states, with the intuitive idea that
invertible operators can transform non-orthogonal states
to orthogonal states.

Concretely, firstly let us first examine several simple
examples. The first example considers a chain of inter-
actions as in Fig. 3b. Let |αj〉 ⊗ |βj〉 be the constraint
on the j-th edge. We will call it an alternating chain if
|βj−1〉 and |αj〉 are linearly independent for all j. It is
easy to see that the solution space is k + 1-dimensional
for an alternating chain of k qubits. The second exam-
ple shown in Fig. 3c is called the alternating loop. As
its name suggests, it is a loop where the two constraints
on any vertex are linearly independent. Any alternat-
ing loop has solution space of dimension 2, namely the
span of |00 . . . 0〉 and |11 . . .1〉 up to the local operation
L =

⊗

j Lj that maps |αj〉 and |βj−1〉 to |0〉 and |1〉. The
final example we consider is called the quasi-alternating
loop. It is almost the same as the alternating loop ex-
cept that there is one special vertex on the loop having
the same constraint on the two edges adjacent to it. Fig-
ure 3d gives such an example where the top vertex is
special. It is easy to see that the constraint on the spe-
cial vertex of a quasi-alternating loop must be satisfied.
In particular, for the loop in Fig. 3d, the top vertex must
be |1〉 as otherwise it will be impossible to satisfy all five
constraints on the loop.

We now start the proof of Observation 1 by induc-
tion on n, the number of qubits. For n = 1, 2, the ob-
servation is trivial. If there is a vertex a on which the
constraints are the same up to global phases, let the con-
straints be |0〉a and, more concretely, let the constraints
on an edge connects to a be of the form |0〉a|α〉b for some
qubit b. We can write any state in the ground space as
|Φ〉 = |0〉a|Φ0〉 + |1〉a|Φ1〉. Obviously, |Φ0〉 and |Φ1〉 are
both in the ground space of the constraints not acting on
a. Moreover, |Φ0〉 also needs to be orthogonal to |α〉b’s.
By the induction hypothesis, both |Φ0〉 and |Φ1〉 are in a
product span. Therefore, |Φ〉 is also in a product span.

(a) An illustration of
a dashed interaction

graph

|β〉j|β〉j−1 6= |α〉j

(b) Alt-chain

0 1

0

1

0
1 0

1

0

1

(c) Alt-loop

0

1

0
1 0

1

0

1

0 0

(d)
Quasi-loop

FIG. 3: Dashed interaction graph and three examples

On the other hand, if one cannot find any vertex whose
constraints are the same, we can find either an alternat-
ing loop or a quasi-alternating loop in the graph. If a
quasi-alternating loop is found, we know the state for
the special vertex of the loop and can use the induction
hypothesis on the remaining system. Otherwise, if an
alternating loop is found, we can write any state in the
ground space as

|Φ〉 = |00 · · · 0〉|Ψ0〉+ |11 · · · 1〉|Ψ1〉, (4)

up to local operations on the loop. If a constraint acts on
two qubits on the loop, it can only restricts the loop to
be exactly |00 · · · 0〉 or |11 · · · 1〉. The analysis is similar
to the first case when a constraint |α〉a|β〉b acts on one
qubit a on the loop and another qubit b outside of the
loop. This completes the proof. Notice that the local op-
erations chosen here are determined by the constraints of
alternating loops, and that one will never have two alter-
nating loops giving different local operations for a single
qubit, the orthogonality of the states up to local opera-
tions follows. We note that the orthogonality property
only holds for the product constraints. The symmetric
subspace, for example, is not a span of orthogonal prod-
uct states up to local operations although it is the span
of |00〉, |11〉, |++〉 where |+〉 = (|0〉+ |1〉)/

√
2.

We now move to discuss the entire simplified homoge-
nous case, with a interaction graph with both backbone
and solid edge tails attached to the backbone. Based on
Observation 1, we further have

Observation 2. For the simplified interaction graph,

the ground space is spanned by single-qubit product states.
To understand this observation, denote the homoge-

nous Hamiltonian corresponding to a simplified interac-
tion graph by HS . Note that given the orthogonal prod-
uct states that span the solution space of HB, ground
states of HS can be obtained in the following way. Re-
call that the ground space corresponds to each solid edge
tail is essentially a symmetric space. Therefore, for any

product state
⊗|B|

i=1
|αi〉 on the backbone, and the i-th

qubit connected to the solid tail Γi, the state
⊗|B|

i=1
|Γi〉

is a ground state of HS , where |Γi〉 = |αi〉⊗|Γi|. This is
very straightforward as the symmetric space associated
with each solid edge tail simply enforces “copying” the
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state of the qubit in the backbone to the qubits on the
attached tail.

More specifically, let B be the ground space of the
dashed constraints in the backbone B, and T be the
symmetric subspace confined by the tail of qubit set T ,
where B ∩ T has exactly one qubit a, through which
the tail is attached to the backbone. We prove that
S = T ⊗ HB\{a} ∩ B ⊗ HT\{a} is again a product span.
Write B as the direct sum

(B0 ⊗Ha)⊕





d
⊕

j=1

Bj ⊗ |α⊥
j 〉a



 ,

where |αj〉a’s are different dashed constraints on vertex
a and d is number of such |αj〉a’s. For the basis of B0,
all the constraints in the backbone are already satisfied,
and therefore, the qubit a can be any state. We say that
qubit a is free in this case. For the basis of Bj, qubit a
has to be |α⊥

j 〉 in order to satisfy all the constraints in the
backbone. In this case, the state can only be extended
to the tail by copying. In summary, S contains the space

(B0 ⊗ T )⊕





d
⊕

j=1

Bj ⊗ |α⊥
j 〉⊗|T |



 . (5)

We will need to show that this is actually everything in
S.

We first claim that the product basis for Bj’s all to-
gether form a linearly independent set. By orthogonal-
ity (up to local operations), Bj and Bk are orthogonal
if |αj〉 and |αk〉 are not. On the other hand, if |αj〉
and |αk〉 are orthogonal, the basis for Bj and Bk are
linearly independent. Otherwise, we will find a state
|ψ〉 in both Bj and Bk, meaning that |ψ〉 should be in
B0, a contradiction. Now, for any state |Ψ〉 in S, we
can write it as |Ψ〉 =

∑

j |Ψj〉|Φj〉 where |Ψj〉’s are lin-

early independent product states spanning B. Let |Ψ̂j〉
be the state on B \ {a} when the state on B is |Ψj〉. One
can also collect terms according to the state on B \ {a},
that is, |Ψ〉 =

∑

k |Ψ̂k〉
∑

l |Ψ〉ak,l|Φk,l〉. As shown pre-

viously, |Ψ̂k〉’s are linearly independent, and we know
∑

l |Ψ〉ak,l|Φk,l〉 is in T for each k. That is, the state |ψ〉
is indeed in the space of Eq. (5). As the symmetric sub-
space can always be spanned by product states, we have
finished the proof for the case of one tail. For multiple
tails, the proof is essentially the same by an induction on
the number of tails.

V. APPLICATION

One important application of our results it to analyze
the computational complexity of the problem of counting
the ground degeneracy of two-body frustration-free qubit
Hamiltonians. Previously, this problem was considered
to be hard due to the possible entanglement structure in

the ground space [11]. Our complete characterization of
the ground space shows that the ground space does have
simple structure where entanglement plays no essential
role. Therefore, determining the ground state degeneracy
is as hard as, but no harder than, its classical analog.
In a more formal language of computational complexity
theory, our results can lead to a proof that computing
the degeneracy of 2BFF Hamiltonian (#Q-2-SAT) is in
a complexity class called #P [17]. The class #P contains
functions f if there is a polynomial time algorithm A such
that

f(x) = |{y,A(x, y) accepts.}|,

where |S| means the cardinality of set S, and y is usually
called a proof to the verifier A.

In order to count the ground state degeneracy of 2BFF
Hamiltonian, we should note the following two facts.
Firstly, as indicated by the ground space structure in
Fig. 1, the isometries will not change the dimension, so we
only need to consider the simplified homogeneous case.
Secondly, actually if one replaces the solid edges of the
tails to be dashed edges forming alternating chains, the
dimension of the ground space does not change either,
as long as we choose the constraint of the tail on the
vertex connecting to the backbone to be different from
all other constraints |αj〉 of that vertex. To understand
this, we need to review the extension of the product span
with intersection of symmetric subspaces. If the vertex
in the intersection is free, we will have the whole sym-
metric subspace on the tail which is of dimension k + 1
where k the number of qubits in the tail. This coincides
with the dimension of the alternating chain. If the ver-
tex in the intersection is not free, we will have a unique
extension in the tail, which again coincides with the case
of alternating chain.

It therefore suffices to count the dimension of any
dashed graph. To show that it is in #P, one can choose
the proof to the verifier to be the non-deterministic 0, 1
choices in the cases of (1) all-the-same-constraint vertex
and (2) alternating loop.

On the other hand, the classical analog #2-SAT of
#Q-2-SAT is #P-hard, therefore the #Q-2-SAT is #P-
complete.

VI. SUMMARY

In this paper, we give a complete characterization
of the ground space of two-body frustration-free qubit
Hamiltonians. The entire ground space is shown to be a
span of tree tensor network states. This proof contains
two major steps. First, we reduce the problem to the
homogenous case by isometries. Second, we reduce the
homogenous case to the simplified homogenous case by
two types of sliding operations which do not change the
ground space, giving a much more intuitive picture to
analyze the problem.
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Our results sharpen the understanding of quantum
spin-1/2 systems, and hopefully, provide ideas for the
further research of quantum many-body systems, as well
as further bridges between the studies in quantum many
body physics and computer science.
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