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We investigate the dynamics of two miscible superfluids experiencing fast counterflow in a narrow
channel. The superfluids are formed by two distinguishable components of a trapped dilute-gas Bose-
Einstein condensate (BEC). The onset of counterflow-induced modulational instability throughout
the cloud is observed and shown to lead to the proliferation of dark-dark vector solitons. These
solitons, which we observe for the first time in a BEC, do not exist in single-component systems,
exhibit intriguing beating dynamics and can experience a transverse instability leading to vortex
line structures. Experimental results and multi-dimensional numerical simulations are presented.
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Superfluids are a robust model system for the inves-
tigation of nonlinear fluid flow. Governed by an un-
derlying macroscopic wavefunction, superfluids can dis-
play a large variety of nonlinear wave phenomena in the
context of matterwaves. In Bose-Einstein condensates
(BECs), nonlinear structures including solitons, vortices
and vortex rings have been the focus of intense research
efforts [1, 2]. In this work, we investigate the regime
of fast counterflow between two distinguishable superflu-
ids in a narrow channel and observe dynamics leading
to novel structures. Modulational instability (MI), in
which small perturbations to a carrier wave, reinforced
by nonlinearity, experience rapid growth [3], plays a key
role in the dynamics. In many nonlinear systems, MI
leads to the breakup of periodic wavetrains, as in suffi-
ciently deep water [4], as well as the formation of localized
structures in optics [5] and BECs [6]. In our case, MI-
induced regular density modulations, formed throughout
the BEC, lead to the emergence of a large number of
beating dark-dark solitons. These solitons–which exhibit
periodic energy exchange between the two condensate
components [7]–are a generalization of static dark-dark
solitons [8]. They are distinctly different from all pre-
viously observed solitons in BECs, including dark-bright
solitons which were generated in a two-component mix-
ture by marginally critical counterflow-induced MI near
a density edge [9]. We perform three-dimensional (3D)
numerical simulations to corroborate this interpretation
and furthermore identify a subsequent transverse insta-
bility resulting in multi-dimensional structures such as
vortex lines (see [10] for the scalar counterpart).

We study superfluid counterflow with an experimen-
tal system consisting of BECs with typically 8 × 105

atoms of 87Rb. The BECs are confined in a cigar shaped,
far-detuned optical dipole trap with measured trap fre-
quencies of 2π×{1.5, 140, 178} Hz with a horizontal
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weakly confined axis. By starting with all atoms in the
|F,mF 〉 = |1,−1〉 hyperfine state and transferring about
50% of the atoms to the |2,−2〉 state via a 1 ms long
microwave sweep, a perfectly overlapped two-component
mixture is created. The predicted scattering lengths for
these states [11] imply that this mixture is miscible [12],
which is also supported by our experimental observation
of no phase separation for an unperturbed mixture of
these states. To induce relative motion between the com-
ponents, an external magnetic gradient is applied along
the elongated (axial) direction. The gradient pulls atoms
in the |2,−2〉 state to the left and those in the |1,−1〉
state to the right. The atoms are imaged using a free
expansion imaging procedure. Each experimental image
shows an upper cloud consisting of the |2,−2〉 atoms af-
ter 7 ms of free expansion and a lower cloud consisting
of the |1,−1〉 atoms after 8 ms of free expansion. Both
clouds are imaged during the same experimental run.

Experimental data showcasing the formation of a very
dense counterflow-induced MI pattern are presented in
Fig. 1. In the presence of a 10.4 mG/cm axial gradient,
gradual pattern formation starts after 70 ms of smooth
evolution (Fig. 1(a, b)). We first observe pattern for-
mation in non-central regions where the two condensates
have differing densities (Fig. 1(b)). This is due to the de-
pendence of the critical velocities for counterflow-induced
MI on the two component density ratio, being largest
when the densities are equal [9, 13]. After about 25 ms,
a very dense and regular MI pattern fully develops, filling
the entire BEC (Fig. 1(c)). The modulations in the two
components are offset in the axial direction in a staggered
way such that one component fills the depressions in the
other. Under the continued influence of the axial gra-
dient, the regular pattern of Fig. 1(c) quickly becomes
uneven and irregular. Alternatively, if the gradient is
switched off after the MI pattern has fully developed,
we frequently observe the formation of black dots such
as those marked by the arrows in Fig. 1(d) which might
indicate the generation of vorticity. We note recent theo-
retical work suggesting that counterflow-induced MI may
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FIG. 1: Counterflow induced MI in the presence of a strong
magnetic gradient of 10.4 mG/cm. Evolution times (a) 10 ms,
(b) 70 ms, (c) 95 ms. (d) After MI onset, the axial gradient
is turned off, followed by a trapped evolution time of 20 ms.

be used to generate quantum turbulence [14].

Imparting slow counterflow conditions, implying slow
MI onset in the quasi-uniform background, we previously
generated a dark-bright soliton train emanating locally

from a density edge [9]. In contrast, the fast counter-
flow considered here leads to rapid MI onset and pattern
formation throughout the condensates.

MI theory agrees quantitatively with the experimen-
tally observed patterns as we now explain [Fig. 2]. For
a uniform counterflow, the onset of MI corresponds to
a complex sound speed (see [15]) and exhibits a pre-
ferred wavenumber, kmax, corresponding to the maxi-
mum growth rate gmax, both depending on the counter-
flow speed. Unfortunately, our imaging procedure does
not allow us to determine the counterflow speeds exper-
imentally. However, we can take two independent the-
oretical approaches, described below, to extract the on-
set velocities from our experimental data. The fact that
these two independent approaches lead to consistent re-
sults gives quantitative credence to the theory. First,
we use the analytical theory in [9, 13] to calculate the
counterflow speed vfit whose corresponding kmax equals
the experimentally observed pattern periodicity at the
trap center where the densities are assumed equal (solid,
black curve in Fig. 2). In a second, independent ap-
proach, we assume spatially uniform counterflow whereby
the applied gradient leads to unimpeded acceleration of
each component (calculated from the atomic magnetic
moment and the magnitude of the applied gradient). Us-
ing this simple model, experimentally determined onset
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FIG. 2: (Color online) Consistent predictions of counterflow
speed based on wavelength and onset time measurements of
MI as a function of applied gradient. For details see text.

times for MI are converted to relative speeds at the on-
set of the MI pattern (dashed blue curve in Fig. 2). The
dash-dotted red curve in Fig. 2 uses the same, uniform
counterflow model but shifts the measured MI onset time
by −1/gmax. Subtracting this time accounts for the de-
velopment of the instability and leads to a better ap-
proximation of the true relative speed that sets the pat-
tern periodicity. The resulting curve interpolates the two
models. The lowest, dotted curve is the predicted crit-
ical speed in the condensate center (vcr = 0.16 mm/s)
demonstrating fast counterflow [16]. Despite the approx-
imations made, the curves exhibit agreement for small to
moderate gradients, suggesting that the observed dynam-
ics are theoretically described by counterflow-induced
MI. Discrepancies at large gradients are likely due to the
large accelerations involved and spatial nonuniformity.

We now investigate the dynamics of the MI onset by
using a smaller gradient of 1.4 mG/cm so that kmax is
reduced relative to Fig. 1, enabling better experimental
observation of individual features (Fig. 3). After smooth
counterflow, MI sets in across the BEC leading to a reg-
ular array of dark-dark solitons (Fig. 3(a, b, d, e)). In
accordance with theory and our numerics (see below),
the dark-dark solitons exhibit a dynamic beating as seen
by comparing the integrated cross sections of Fig. 3(d,e),
noting the order of the notch and bump feature in each
component. While our destructive imaging technique
does not allow us to determine the exact beat frequency,
our 3D numerics indicate a timescale of fifteen millisec-
onds per period [15]. The dark-dark solitons we observe
here are new and distinct from the dark-bright solitons
that have been observed previously in BECs [9, 17, 18],
being distinguished by their far field conditions and dy-
namics. To facilitate a comparison, an example dark-
bright soliton train, seeded at the condensate interfaces
and generated by slow, marginally critical counterflow
[9], is shown in Fig. 3(c, f). A dark-bright soliton con-
sists of a dark notch in one component, filled by a local-
ized density bump of the second component. In contrast,
the beating dark-dark soliton asymptotes to nonzero den-
sities in both components and dynamically changes its
shape, with each component possessing a density bump
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FIG. 3: (Color online) (a, b) Dark-dark solitons as a result
of MI after applying a gradient of 1.4 mG/cm for 350 ms and
380 ms, respectively. (c) Formation of dark-bright solitons
when a small magnetic gradient of 0.2 mG/cm is applied. The
gradient is left on for 1000 ms before the start of the expansion
sequence. (d-f): Zoomed-in view of boxed region in (a-c),
respectively. Red solid lines are integrated cross sections of
|2,−2〉 state, black dashed lines of |1,−1〉 state.

adjacent to a notch which alternate their relative posi-
tions in time [see also Fig. 6 below].

The dynamics are well reproduced by 3D numerical
simulations [15] of the vector, mean-field Gross-Pitaevskii
equation with initial conditions and parameters corre-
sponding to the experiments in Figs. 1(a-c) and 3(a,b)
[19]. As with experiment, a smooth, accelerating coun-
terflow develops due to the axial field gradient. Dark-
bright solitons form at the edges of the condensates until
the rapid growth of large scale modulations is observed
(Fig. 4(a,b)). For moderate gradients in Figs. 4(a,c,e),
these modulations rapidly develop into a number of lo-
calized, essentially one-dimensional (1D) beating dark-
dark solitons with initial approximate spacing 2π/kmax.
Continued evolution results in interactions and eventual
solitary wave transverse breakup at about t = 600 ms.

For the strong gradient case, our numerics show the
development of axial modulations by about t = 125 ms
with an initial 1D structure. In contrast to the moderate
gradient regime, these structures rapidly undergo decay
due to transverse modulations which leads to the forma-
tion of columnar 2D vortex lines, Fig. 4(b,d), exhibiting a
2π phase winding around their core, Fig. 4(f), and a uni-
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FIG. 4: (Color online) Integrated densities from 3D numerical
simulations. (a,c,e) correspond to Fig. 3(a,b) at t = 421 ms
with zoom in (c) and line plot (e) of dark-dark solitons. (b,d,f)
correspond to Fig. 1(a-c) at t = 133 ms with zoom in (d)
and a phase plot along the vertical z = 0 plane (f) showing
two vortex lines with oppositely oriented 2π phase winding.
The vertical axes of (a-d) span 16.7 microns incorporating a
vertical offset of 8 microns between the clouds.

form structure along the direction of view. The numerics
also show vortex lines oriented along the orthogonal, hor-
izontal radial axis. In analogy to the scalar case [10], we
interpret this behavior as a transverse instability that de-
pends on the relative speeds of the two components, their
densities, and the transverse confinement strength.

Dark-dark solitons can also be observed in other set-
tings, e.g. during the mixing of two initially phase sepa-
rated components. An experimental result is showcased
in Fig. 5. We start from the phase separated situation
in Fig. 5(a,c) which forms after initially overlapped com-
ponents experience an axial gradient for 10 sec. When
the axial gradient is suddenly switched off, the two com-
ponents interpenetrate, first forming a smooth and ex-
tended overlapped region. After some evolution time, in-
dividual dark-dark solitons appear (Fig. 5(b, d)) exhibit-
ing approximately constant total density (upper, blue
curve). This behavior is reminiscent of dark soliton for-
mation in colliding single-component BECs [20]. Beat-
ing dark-dark solitons are also theoretically predicted to
develop when a repulsive beam is swept through a two-
component miscible BEC with an appropriate speed [21].

The beating solitons can be understood through the
following simplified model: assuming that all scattering
lengths are equal to a22, the mean field equation is the
repulsive, vector Nonlinear Schrödinger (NLS) equation.
Its most general known soliton solution is the six pa-
rameter dark-dark soliton [7] (e.g. two background densi-
ties n1,2, two background flow speeds c1,2, soliton speed
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FIG. 5: (Color online) Dark-dark solitons as a result of two
component mixing. (a) Phase separated mixture in presence
of axial gradient. (b) Dark-dark soliton formed 1 sec after
sudden turn-off of gradient. (c, d) Integrated cross sections
with thin red (thick black) curve showing the |2,−2〉 (|1,−1〉)
component. Blue (upper) curve in (d) shows total density.

v, and beating frequency ω) of which the well-studied
five parameter static dark-dark soliton [8] is a special
case. Even though analytical expressions for these soli-
tons were derived [7], their form is quite complicated and
basic properties such as the beating frequency as a func-
tion of soliton parameters are unknown.
An example of a beating dark-dark soliton can be con-

structed by leveraging the SU(2) invariance of the vector
NLS equation [15]. Applying a rotation matrix to the
two components of a four parameter dark-bright soliton
[8], we obtain a five parameter beating dark-dark soli-
ton where the background flow speeds are equal to c. Its
evolution over half a beating period is shown in Fig. 6
(compare with Figs. 3(d,e) and 4(e)). The beating angu-
lar frequency ω = m

2~
(c− v)2 sec2(φ/2) satisfies [15]

m(c− v)2/(2~) < ω < π~a22(n1 + n2)/m. (1)

The soliton half-width is l = ~/
√

2mω~−m2(c− v)2,
where φ is the soliton phase jump and m is the particle
mass. As ω approaches the lower (upper) bound in (1),
the beating soliton degenerates to a plane wave (static
dark-dark soliton). The beating soliton strongly resem-
bles features observed in experiment and numerical sim-
ulations. The predicted minimum oscillation period of
5 ms for our experimental parameters is consistent with
the numerically observed periods of about 15 ms.
In conclusion we have presented the first experimental

observation of a beating dark-dark soliton. These solitons
naturally arise from a fast counterflow-induced modula-
tional instability and can emerge during the mixing of
two superfluids. Our work opens the door to a range
of new studies of vector soliton dynamics, with conse-
quences for a diversity of nonlinear, dispersive systems.
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ing dark-dark soliton assuming equal scattering lengths.
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