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The (nonrelativistic) Abraham-Lorentz equation of motion for a point electron, while suffering
from runaway solutions and an acausal response to external forces, is compatible with the optical
theorem. We show that a non-relativistic theory of radiative reaction that allows for a finite charge
distribution is not only causal and free of runaway solutions, but is also consistent with the optical
theorem and the standard formulas for the Rayleigh and Thomson scattering cross sections.
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The nonrelativistic theory of radiative reaction lead-
ing to the Abraham-Lorentz (AL) equation [1], while ex-
hibiting such notorious features as runaway solutions and
preacceleration, is nevertheless consistent with the op-
tical theorem and the Rayleigh scattering cross section.
One approach to the resolution of the problems besetting
that theory is based on the quantum Langevin equation
describing dissipative quantum systems [2], together with
the assumption that the electron is not a point particle
but is described by a form factor with a very high cutoff
frequency [3, 4]. The classical, nonrelativistic equation of
motion for an electron in this theory is free of preaccel-
eration and runaway difficulties [5], and we show in this
Brief Report that it is also consistent with the optical
theorem and the Rayleigh and Thomson cross sections.

We first recall some basic aspects of the linear response
of an electron, described as a rigid spherically symmetric
charge distribution ρ(r) centered at R(t), to an applied,
sufficiently small electric field

E(r, t) = E0e
i(k0·r−ωt) (|k0| = k = ω/c). (1)

The force exerted on the electron by this field is

F(t) =

∫
d3rρ(r−R(t))E(r, t)

=

∫
d3rρ(r)E(r + R(t), t)

∼=
∫
d3rρ(r)eik0·rE0e

−iωt

= ef(k0)E0e
−iωt, (2)

where e and f(k0) are the electron charge and form fac-
tor, respectively. We have made the dipole approxima-
tion k0 ·R(t) � 1: this is equivalent to saying that the
size of the dipole associated with the electron displace-
ment is small with respect to the wavelength of the inci-
dent radiation. This, however, does not impose any limi-
tation on the size of the charge distribution and therefore
on f(k). Although the exact form of f(k) is not known,
on physical grounds it can be assumed that it is unity up
to some large cutoff value (|k| . Ω/c) roughly given by
the inverse of the charge distribution size, after which it
falls rapidly to zero. The dominant contribution to the
interaction comes therefore from wavelengths larger than
the electron radius, consistent with our nonrelativistic
treatment and the dipole approximation.

In terms of the Fourier transforms R̃(ω) and F̃(ω) of
the electron displacement and the applied force, respec-
tively, the linear response of the electron to the applied
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field is expressed as

R̃(ω) = α(ω)F̃(ω) = ef(k0)α(ω)E0. (3)

The function α(ω) is determined by the equation of mo-
tion for the electron in the presence of the applied field
and any additional forces acting upon it. Its calculation
with radiative reaction can be far from trivial [6], but it
is well known that, with or without radiative reaction, it
must satisfy certain basic conditions:

α(ω) = α∗(−ω), (4)

and, as a function of complex frequency ζ,

α(ζ) is analytic for Im ζ > 0. (5)

The first condition, the “crossing relation,” is simply the
requirement that the induced dipole moment is real. The
second is a direct consequence of causality and implies the
familiar Kramers-Kronig relations between the real and
imaginary parts of the polarizability [1].

Scattering theory provides a further constraint in
terms of the optical theorem [7] relating the total scatter-
ing cross section and the forward scattering amplitude:

σt =
4π

k
Im[ê∗0 · f(k0,k0)]. (6)

This is just the requirement of energy conservation, or,
in quantum theory, the conservation of probability. In
our case, to calculate f(k0,k0) it is sufficient to consider
the electric field emitted by the electron in the radiation
zone [7]: for a confined current density j(r, ω) the field is

E(r, ω) = k2[p(ks, ω)− (r̂ · p(ks, ω))r̂]
eikr

r
, (7a)

p(ks, ω) =
i

ω

∫
j(r′, ω)e−iks·r′d3r′ =

i

ω
j̃(−ks, ω), (7b)

where j̃(k, ω) is the space-time Fourier transform of the
current distribution and ks = kr/r (|ks| = |k0|) is the
wavevector in the direction of observation. Writing

j(r, t) = Ṙ(t)ρ(r−R(t)), (8)

and again making the dipole approximation ks·R(t)� 1,
we have [8]

j̃(−ks, ω) = −iωef(−ks)R̃(ω) = −iωef∗(ks)R̃(ω) (9)

and

E(r, ω) = ef∗(ks)k
2[R̃(ω)− r̂ · R̃(ω)r̂]

eikr

r
. (10)

With R̃(ω) given by (3), we identify the scattering am-
plitude

f(ks,k0) = f∗(ks)f(k0)e2α(ω)(k2ê0 − ks · ê0ks), (11)

where ê0 = E0/E0 = R̃/R̃ is the unit polarization vector
of the incident field. The forward scattering amplitude
(ks orthogonal to ê0) is therefore

f(k0,k0) = k2|f(k0)|2e2α(ω)ê0. (12)

The total scattering cross section σt, obtained by inte-
gration over all scattered solid angles, is

σt =

∫
dΩs|f(ks,k0)|2 =

8π

3
k4|f(k0)|4e4|α(ω)|2 (13)

where spherical symmetry implies f(ks) = f(k0). Hence,
from (6) we have

Im[α(ω)] =
2e2ω3

3c3
|α(ω)|2|f(k0)|2, (14)

which is an equivalent statement of the optical theo-
rem [6].

In the AL theory of radiative reaction [1] a dipole os-
cillator subject to a restoring force −Mω2

0R and an ex-
ternal electric field E is described nonrelativistically by
the equation of motion

R̈ + ω2
0R =

e

M
[E + ERR], (15)

where M and ω0 are respectively the (observed) electron

mass and the resonance frequency. ERR = (2e/3c3)
...

R is
the radiative reaction field. This implies

α(ω) =
1

M

1

ω2
0 − ω2 − iω3τe

, (AL) (16)

where τe = 2e2/3Mc3 is on the order of the time for
light to travel a distance equal to the classical electron
radius, r0 = e2/Mc2. This expression for α(ω) obviously
satisfies the crossing relation (4), and it is also seen from
(14) that the optical theorem is satisfied with |f(k)| = 1,
which is the form factor for a point-like electron. It also
follows from (13) that, with |f(k)| = 1, we have

σt =
2

3πN2
|n(ω)− 1|2

(ω
c

)4

, (17)

recovering the familiar, experimentally measured,
Rayleigh scattering cross section for a dilute gas of
isotropic, point-like scatterers: the gas refractive index
n(ω) is given in this case by n(ω) ≈ 1 + 2πNe2α(ω),
where N is the particle number density [9].

However, the result (16) of the AL theory violates the
causality requirement that α(ω) be analytic in the upper
half of the complex frequency plane. Additionally, as is
well known, the equation of motion (15), from which (16)
follows, exhibits runaway solutions as a consequence of
the “non-Newtonian” dependence of ERR on the third
derivative of R.

The alternative approach to radiative reaction cited
earlier [3, 4] (FO) is based on the quantum theory of dis-
sipation in which a particle is coupled to a “bath” of har-
monic oscillators, so that it experiences a Langevin force
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together with a dissipative force due to the back reaction
of the oscillators on the particle. In the case of interest
here the bath oscillators are associated in the usual way
with the electromagnetic field, the Langevin force is due
to the fluctuating electric field, and the back reaction re-
sults in the radiative damping force. The semiclassical
equation of motion for an electric dipole oscillator with
bare mass m is [3, 4]

mR̈(t) +

∫ t

−∞
dt′µ(t− t′)Ṙ(t′) +KR(t) = F(t), (18)

which follows by taking an expectation value, so that
the Langevin force, having zero mean value, does not
appear. F(t) is the expectation value of the externally
applied force; the linearity of the system implies that (18)
describes the classical system. The constant K charac-
terizes a harmonic restoring force, while the function

µ̃(ω) =

∫ ∞
0

µ(t)eiωtdt (19)

is a positive-real function [10] and can be calculated ex-
actly once the form factor of the electron is provided
[10–13]. A possible choice is [3, 11, 13]

|f(k)|2 =
Ω2

Ω2 + c2k2
, (20)

for which [3, 13, 14]

µ̃(ω) =
2e2

3c3
Ω2ω

ω + iΩ
, (21)

which gives the function µ(t) [3, 4]:

µ(t) = MΩ2τe[2δ(t)− Ωe−Ωt], (22)

where the delta function represents the memory-less
Markovian part and the second term in brackets results
in non-Markovian effects. M is again the observed mass
of the particle and is defined here by

M = m+
2e2Ω

3c3
, or m = M(1− τeΩ). (23)

Various authors have connected the existence of run-
away solutions of the AL equation with a negative bare
mass and the point-electron assumption [3, 7, 15]. This
is the case when Ω > τ−1

e (a point-like electron is recov-
ered in the Ω→∞ limit). Therefore, in the large-cutoff
limit, we take Ω = τ−1

e . When the external force is due
to an external electric field E(r, t), Eqs. (18), (20), and
(22) lead to [3, 13]

α(ω) =
1

M

1− iωτe
ω2

0 − ω2 − iγω
(FO) (24)

in the large-cutoff limit, where ω2
0 = K/M and we have

defined γ = ω2
0τe [13]. The equation of motion leading to

the polarizability (24) is [3]

M
[
R̈(t) + γṘ(t) + ω2

0R(t)
]

= F(t) + τeḞ(t). (25)

As already noted in [3], Eliezer [16] wrote a similar
equation for the simpler case of a free particle as one pos-
sible alternative to the Abraham-Lorentz equation [see
his equation (9)]. Thus, the second and third terms on
the left side of (25) did not appear. Also, on the right
side of (25), he replaced F(t) by eE(t) whereas the cor-
rect expression is given by our equation (2). Similar re-
marks apply to the results of Landau and Lifshitz [17],
who derived its free-particle version (ω0 → 0) from the
AL equation using an order reduction scheme (see also
[18]).

Eq. (24) obviously satisfies the crossing relation as well
as the requirement from causality that it be analytic in
the upper half of the complex frequency plane. From (24)
it also follows that

Im[α(ω)] =
2e2ω3

3c3
|α(ω)|2 1

1 + ω2τ2
e

. (26)

Since Ω = τ−1
e , the last factor on the right-hand side is

|f(k0)|2. Therefore the optical theorem in the form (14)
for Rayleigh scattering is satisfied identically.

The difference between equation (24) and the result
(16) of the AL theory leads to different predictions for
the Rayleigh cross section (17). Figure 1 compares the
real and imaginary parts of these two expressions for α(ω)
for a particular value of ω0. It can be seen, however, that,
because τe is so small, significant differences appear only
at extremely high frequencies at which the relativistic
effects occur.

More generally, without specifying the form of f(k),
the Fourier transform of (18) gives the general expression

α(ω) =
1

−mω2 − iωµ̃(ω) +K
, (27)

with

Re[µ̃(ω)] =
2e2ω2

3c3
|f(k0)|2. (28)

It follows in general, therefore, that the optical theorem
is satisfied regardless of the specific choice for the form
factor f(k).

For free electrons (ω0, γ → 0) the polarizability (24)
becomes

α(ω) = − 1

Mω2
(1− iωτe). (29)

The real part of α(ω) implies for frequencies ω � τ−1
e

the familiar formula n2
R(ω) = 1−ω2

p/ω
2 for the real part

of the refractive index, where ωp = (4πNe2/M)1/2 is the
plasma frequency. The imaginary part of α(ω) implies
for nR(ω) ∼= 1 an imaginary part nI(ω) ∼= ω2

pτe/2ω of the
refractive index, and therefore a power extinction coeffi-
cient

a(ω) =
2ω

c
nI(ω) = Nσ(ω), (30)
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FIG. 1: Real (a) and imaginary (b) parts of the polarizabilities e2α(ω) implied by equations (24) (solid curves) and (16) (dashed
curves). The electron charge and mass are assumed and the oscillator’s resonant frequency is set to hydrogen’s first optical
resonance, ω0 ≈ 2.45× 1015 Hz. The insets show that significant differences between the two theories appear only at very large
frequencies.

where

σTh(ω) =
8π

3

(
e2

Mc2

)2

(31)

is the Thomson cross section. As noted by Eliezer, the
AL equation results in a cross section differing from
σTh(ω) by a factor (1 + ω2τ2

e )−1.
We conclude that, unlike the AL theory, the approach

to radiative reaction presented in Reference [3] results
in a polarizability that is consistent with all three basic
physical requirements referred to in this paper, namely
causality, the crossing relation, and the optical theorem.

In addition, although the FO polarizability differs from
the polarizability that follows from the AL equation, it is
nevertheless consistent with the familiar expressions for
both the Rayleigh and Thomson scattering cross sections.
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