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Detecting Non-Abelian Geometric Phases with Three-Level Lambda Atoms
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We show that a non-Abelian gauge potential in two nearly degenerated dressed states may be
induced by two laser beams interacting with a three-level Λ atomic system. We demonstrate that
the populations of the atomic states at the end of a composed path formed by two closed loops
are dependent on the order of those two loops, showing an unambiguous signature of the non-
Abelian geometric phase. Through numerical calculations, we show that non-Abelian feature of the
geometric phases can be tested under realistic conditions.
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It was discovered by Berry that a geometric phase, in
addition to the usual dynamical phase, is accumulated
on the wave function of a quantum system, provided that
the Hamiltonian is cyclic and adiabatic[1]. Since then the
concept of geometric phase has been generalized to much
looser conditions, such as non-adiabatic, non-cyclic con-
ditions or even an open system[2–5]. In addition, it has
found many applications in various fields of physics[2].
Particulary, since the geometric phase has global feature
and is independent on the details of evolution path, it has
been used to achieve quantum gates, and the quantum
gates realized with pure geometric phases have intrinsic
fault-tolerant features[6–9].
According to the commutation characters of the gauge

potential related to the geometric phases, the geometric
phase factor in a quantum system can be divided into
two types: Abelian geometric phase related to usually a
non-degenerated state and non-Abelian geometric phase
corresponding to the degenerated states [1, 10]. Apply-
ing both the Abelian and non-Abelian geometric phase,
a pure geometric quantum computer can be formed. As
the first step of questing for a pure geometric quantum
computer, the Abelian geometric phase has been demon-
strated in many systems[2, 11, 12]. However, the key
character of non-Abelian structure, also known as the
noncommutative effect, has not been detected yet[13–18].
It is believed that the detecting of the non-Abelian ge-
ometric phase will be more complicated[8]. The nuclear
magnetic resonance(NMR) experiment detected the geo-
metric phase of the two-fold degenerate states[19]. How-
ever, only the Abelian part of the gauge structures has
been experimentally observed in this experiment due to
the limitation of the NMR implementation[14]. The ob-
servation of the non-Abelian geometric phase is impor-
tant in the field of quantum theory and it is also a crucial
step toward fault-tolerant geometric quantum computa-
tion.
In this paper, we demonstrate that a geometric phase

associated with the non-Abelian gauge potential will also
be induced by two laser beams interacting with a three-

∗Electronic address: yanhui@scnu.edu.cn

1

2

3

(a)

1

2

(b)

3

0

2 2

2 2

1 2

FIG. 1: (color online). (a)Three-level Λ atomic system cou-
pled with two laser beams characterized by the Rabi frequen-
cies Ω1 and Ω2 with a large single-photon detuning ∆. (b)The
dressed states and the corresponding energy levels.

level Λ system. The scheme will be performed with the
cold atomic system, which is well known as a perfect
platform for the quantum information processes. Actu-
ally the three-level Λ atoms are seldom to be used to ex-
plore the non-Abelian geometric phases since the eigen-
states are non-degenerate. However, we demonstrate
that the gauge potentials associated with the nearly de-
generated two states in the large detuning case are non-
Abelian, and thus the non-Abelian geometric phases can
also be unambiguously detected through comparing the
population of the atoms in the end of two composed
pathes (C1C2 and C2C1 specified below ) formed by two
closed evolution loops, where the dynamic phase of each
subloop can be removed by multi-loop method. Compar-
ing with the manipulating of the four level tripod atomic
system[13, 15, 17], the three level Λ system proposed here
is more simple and stable for the Alkali atoms and thus
we provide a promising method to detect the non-Abelian
geometric phases.
The system we consider is a cold atomic gas with

each has a three-level Λ-type configuration as shown in
Fig. 1(a). The ground states |1〉 and |2〉 are coupled to
an excited state |3〉 by two laser beams with the corre-
sponding Rabi frequencies Ω1 and Ω2, respectively, but
with the same large detuning ∆. The atom can be Rb87

and we choose 5S1/2 F = 1, 2 and 5P 3/2 F ′ = 3 to imple-
ment such configuration. In the interaction picture,the
laser-atom interaction Hamiltonian H reads

H = −h̄(Ω1|1〉〈3|+Ω2|2〉〈3|+ 2∆|3〉〈3|) + h.c., (1)

where the Rabi frequencies Ω1 = Ωsin θeiϕ and Ω2 =



2

Ω cos θ with Ω =
√

|Ω1|2 + |Ω2|2(θ, ϕ are the vari-
able parameters). In this paper, we assume that the
parameters θ, ϕ and Ω may be time-dependent but
position-independent. Usually it is more convenient to
study the dress state representation, while the dressed
states are the eigen-states of the Hamiltonian (1). The
dressed states |χ〉 = (|χ1〉, |χ2〉, |χ3〉)Tr (as shown in
Fig.1(b)) of the Hamiltonian H are specified by |χ〉 =
Γ(|1〉, |2〉, |3〉)Tr(Tr denotes the transposition), where

Γ =





cos θ − sin θe−iϕ 0
sin θ cos γeiϕ cos θ cos γ − sin γ
sin θ sin γeiϕ cos θ sin γ cos γ



 , (2)

and γ is given by tan γ = (
√
∆2 +Ω2 −∆)/Ω, with the

corresponding eigenvalues λ = ( 0,∆−
√
∆2 +Ω2, ∆+√

∆2 +Ω2) [20]. Under the large detuning case ∆ ≫ Ω,
we could get γ = 0 for tan γ → 0. Then the two dressed
states {|χ1〉, |χ2〉} have negligible contribution from the
excited state |χ3〉.Thus a subspace is spanned by the two
lower dressed states{|χ1〉, |χ2〉}, where

|χ1〉 = cos θ|1〉 − sin θe−iϕ|2〉,
|χ2〉 = sin θeiϕ|1〉+ cos θ|2〉. (3)

In this subspace, the spontaneous emission can be ne-
glected for (λ2 − λ1)/(λ3 − λ2) ≈ 0. Then the jump-
ing from |χ1〉, |χ2〉 to |χ3〉 can also be neglected. Thus
the adiabatic condition can be fulfilled. With the two
degenerate states (Ω ≫ ∆ −

√
∆2 +Ω2 ≈ 0 when

∆ ≫ Ω) shown in Eq.3, the non-Abelian adiabatic ge-
ometric phases can be induced in the subspace spanned
by |χ1〉 and |χ2〉.
We briefly recall the general formalism of non-Abelian

geometric phases[10, 13]. Considering a Hamiltonian
whose time-dependence is described by a close curve
C in a parameter space, i.e.: H(t) = H(Rµ(t)) (µ =
1, 2, · · · , n) with R(t) ∈ C, which has a set of N degener-
ate levels. According to the adiabatic theorem, an instan-
taneous state |Ψa〉 can always be expanded as a superpo-
sition of |ηa〉: |Ψa〉 =

∑

b |ηb〉Uba, where |ηa〉 is an N -fold
degenerate set of orthogonal instantaneous eigenstates of
the Hamiltonian H(t). Substituting the wave function
|Ψa〉 into the Schrödinger equation i d

dt |Ψa〉 = H(t)|Ψa〉,
we get:

U̇ba = −
∑

c

〈ηb|η̇c〉Uca. (4)

We can use the relationship 〈ηb|η̇c〉 =
∑

µ Aabµ(dR
µ/dt)

to define a gauge potential as follows

Aabµ = 〈ηa|
∂

∂Rµ
|ηb〉. (5)

Then a matrix of formal solution to Eq.(4) can be ob-
tained by direct integration,

Uab = [P exp(−
∫

AµdR
µ)]ab, (6)

where P denotes the time-ordering operator. The quan-
tity A =

∑

µ AµdR
µ is defined in Eq.(5). Substituting

Eq.(3) into (5), we have

Aθ = −iσy cosϕ+ iσx sinϕ,

Aϕ = −i sin2 θσz + i sin θ cos θ cosϕσx (7)

−i sin θ cos θ sinϕσy.

Clearly the gauge potential A has non-Abelian feature.
Substituting Eq.(7) into (6), we can obtain

U = exp(−
∫

Aθdθ −
∫

Aϕdϕ). (8)

Note that

ϑx = −
∫

sinϕdθ −
∫

sin θ cos θ cosϕdϕ,
ϑy =

∫

cosϕdθ +
∫

sin θ cos θ sinϕdϕ,
ϑz =

∫

sin2 θdϕ,
(9)

then the evolution operator is given by

U = ei
−→σ −→

ϑ (t), (10)

where −→σ = (σx, σy, σz) and
−→
ϑ (t) = (ϑx, ϑy, ϑz). There-

fore the entire phase factor which contains geometric
phase as well as dynamic phase and the evolution op-
erator in the three level Λ system is obtained.
We now turn to construct two closed pathes that can be

used to detect non-Abelian features of the entire phases.
The detection of these features of the pure geometric
phases will come after we have applied additional pro-
cesses to cancel the dynamic phases. From now on,
we choose two specific closed paths in the parameter
space(both parameters θ and ϕ vary with time) to an-
alyze the non-Abelian features numerically. We choose
the Rabi frequencies in the closed loop C1 as

Ω1 = Ω0f(t), Ω2 = Ω0e
−t2/τ2

, (11)

where ϕ = 2π
τ t and f(t) is

f(t) =

{

sin (πtτ ), 0 ≤ t ≤ τ
0. others

(12)

Thus the parameter θ(t) is determined by

tan θ(t) =
|Ω1|
|Ω2|

= sin (
πt

τ
)et

2/τ2

. (13)

From 0 to τ , the parameters (θ, ϕ) vary from (0, 0) to
(0, 2π), so a closed path in the parameter space is formed
by modulating the laser beams. Substituting Eq.(11) into
(10), we obtain the gauge potential A1, and the corre-
sponding evolution operator is

U1 = P exp (−
∮

C1

Aµ
1dχ

µ). (14)



3

(a)

(b)

P
d

P
d

1 7

0

0.6

1
3

5
7

0
0.2

0.4

0

0.2

0.4

0.6

FIG. 2: (color online). The population difference Pd versus
different parameters of α and β. The population difference is
induced by the entire phase which contains geometric phase
as well as dynamic phase. (b)The population difference Pd

versus parameter α when β = 0.8.

Similarly, we set the Rabi frequencies of the closed loop
C2 as follows

Ω1 = αΩ0f(t), Ω2 = Ω0e
−(t−β)2/τ2

. (15)

Here we have introduced the variables α, β with α being
an amplitude attenuation and β being a time delay to
differentiate the two closed paths. Obviously, the starting
and ending point of C2 are set to be the same as C1. The
corresponding evolution operator of C2 is given by

U2 = P exp (−
∮

C2

Aµ
2dχ

µ), (16)

where A2 is the corresponding gauge potential along the
path C2. Supposed that the initial eigenstates |χ1,2〉i and
the final eigenstates |χ1,2〉f after the evolution of C1, C2

are given by

|χ1〉i = |χ1〉f = |1〉, |χ2〉i = |χ2〉f = |2〉. (17)

If the system is prepared to the state|Ψ〉i = |χ1〉i initially,
after undergoing a composed path(first C1, and then C2),
the total evolution operator should be U = U2U1. On the
other hand, if the system undergoes the counter-order
composed path, the evolution operator is U ′ = U1U2.
Now, we will focus on the elements U11 and U ′

11 in the
matrix U and U ′, respectively. We find that P = |U11|2
and P ′ = |U ′

11|2 are the probabilities of the final state in
the state |1〉 corresponding to the end of the evolution
U and U ′, respectively. Thus the population difference
between the two composite pathes is given by

Pd = P − P ′ = |U11|2 − |U ′

11|2. (18)
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FIG. 3: Schematic representation of the multi-loop method to
cancel the effects of dynamic phases. The cold atoms are in-
teracting with lasers, its Hamiltonian evolves in the parameter
space as that a spin particle subject to an effective magnetic
field (denoted as B).
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FIG. 4: (color online). The population difference Pd ver-
sus the parameters of α and β. The population difference
is induced by the pure geometric phase after canceling the
dynamic phase. (b)The population difference Pd versus pa-
rameter β when α = 0.8.

Therefore,we can detect the noncommutative feature
through measuring Pd. If Pd 6= 0, the non-Abelian gauge
structure is confirmed.

The quantitative results of Pd versus different α and
β are plotted in Fig.2(a). Since the operation time of
the laser beams is τ , let U1(U2) implement during time
0 → τ , while U2(U1) implement from τ to 2τ for the
evolution U(U ′), the non-Abelian gauge structure of the
entire phase can be demonstrated from the difference Pd.
Fig.2(b) is a further detailed diagram with parameters
β = 0.8 and α varies from 1 to 7.

The approximately degenerated subspace spanned by
the two lower dressed states |χ1〉, |χ2〉 stands for an effec-
tive spin−1/2 system. Similar to this spin−1/2 system,
the effective magnetic field will introduce an external dy-
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namic phase, which will also contribute to the population
difference. In order to detect the effects induced from
pure geometric phase, we should develop a method to
remove the dynamic phase. A general approach is the
multi-loop method to cancel the dynamical phases: let
the state |Ψ〉 evolve along the time-reversal path of the
first-period loop during the second period[21]. Although
the dynamic phase of each single loop doesn’t vanish,
the total dynamic phase will be canceled by the over-
lapping of the two loops. In our system, this procedure
can be achieved by reversing the effective magnetic field
B(2τ − t) = −B(t) on the same loop of the first-period
[0, τ) (as shown in Fig.3). The effective magnetic field B

is parameterized by θ, ϕ, and it naturally satisfies the re-
lationship: B(θ, ϕ) = −B(−θ,−ϕ) in the rotating frame.
It is straightforward to find that, θ, ϕ in equation(10) un-
der the time-reversal transform t → −t become

θ(t) → −θ(−t), ϕ(t) → −ϕ(−t),
dθ(t) → dθ(−t), dϕ(t) → −dϕ(−t).

(19)

Substituting Eq.(19) into (9), we can get ϑ(−t). Hence,
we have the evolution of the time-reversal loop U− =

ei
−→σ −→

ϑ (−t), so the pure geometric evolution operator can
be given by

Ug =
1

2
U−U. (20)

According to Eq.(20), the population difference Pd with
evolution Ug is shown in Fig.4(a). The noncommutative
property is still very clear for the non-vanishing difference
Pd. As shown in Fig.4(b), Pd = 21.01% when β = 0.89
and α = 1.42, which is high enough to be detected in the
experiments.

In addition, we briefly discuss the experimental fea-
sibility of the proposed scheme. Firstly, we need ∆ ≫
Ω0(adiabatic condition); Secondly, Ω0 ≫ 1/Γc (Γc is
the coherence time of the dark state, stimulated Ra-
man adiabatic passage condition). When setting the
Rabi frequency Ω0 = 2π × 0.1MHz and the detuning
∆ ≥ 2π×100MHz, which are feasible in experiment[22].
Thus, all the conditions can be fulfilled.

In conclusion, we have proposed an experimentally fea-
sible scheme to detect the pure non-Abelian geometric
phases with three level Λ atoms. By designing two spe-
cific composite cyclic evolutions formed by C1C2 and
C2C1, we have shown in detail that the non-Abelian ge-
ometric phases can be observed through detecting the
population of the internal states. The observation of the
truly non-Abelian geometric phase is important in the
field of quantum theory as well as a crucial step toward
fault-tolerant geometric quantum computation.
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