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Transversely Stable Soliton Trains in Photonic Lattices

Jianke Yang
Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05401

We report the existence of transversely stable soliton trains in optics (for the first time to our
knowledge). These stable soliton trains are found in two-dimensional square photonic lattices when
they bifurcate from X-symmetry points with saddle-shaped diffraction inside the first Bloch band,
and their amplitudes are above a certain threshold. We also show that soliton trains with low
amplitudes or bifurcated from edges of the first Bloch band (Γ and M points) still suffer transverse
instability. These results are obtained in the continuous lattice model and further corroborated by
the discrete model.

PACS numbers: 42.65.Tg, 05.45.Yv

I. INTRODUCTION

It is well known that in homogeneous optical media, a
bright soliton stripe, which is localized along the longitu-
dinal direction and uniform along the transverse (stripe)
direction, is always unstable to transverse perturbations
[1–7]. When the longitudinal and transverse diffractions
have the same sign, the instability is of neck-type which
breaks up the stripe into filaments [4, 6, 7], while when
the two diffractions have the opposite sign, the instability
is of snake-type which bends the stripe to a wavy form
[5–7]. These two types of instabilities have been experi-
mentally observed as well [3, 8]. When a one-dimensional
optical lattice is imposed along the longitudinal or trans-
verse direction of the soliton stripe, the soliton stripe is
still transversely unstable [9, 10]. While the transverse
instability can be utilized for certain applications (such
as pulse compression), in many other cases (such as ex-
periments in lower dimensions), it is detrimental and un-
desirable. To suppress this transverse instability, some
ideas have been proposed. For instance, this instabil-
ity can be completely eliminated if the soliton stripe is
made sufficiently incoherent along the transverse direc-
tion [11]. This instability can also be significantly re-
duced (but not eliminated) by nonlinearity saturation or
incoherent mode coupling [12, 13]. Beside optics, trans-
verse instability is also a common phenomenon in other
branches of physics such as water waves [6, 14–16].

In this paper, we report the existence of coherent and
transversely stable solitons trains in optics (for the first
time to our knowledge). These stable soliton trains are
discovered in two-dimensional photonic lattices. They
comprise a periodic sequence of intensity lumps along the
transverse direction, and are localized along the longitu-
dinal direction. These soliton trains, which are exact sta-
tionary solutions of the underlying nonlinear lattice sys-
tem [17–19], are transversely stable when they bifurcate
from the X-symmetry point (with saddle-shaped diffrac-
tion) inside the first Bloch band of the lattice, and the
amplitude of the soliton trains is above a certain thresh-
old value. This finding is first obtained in the full contin-
uous lattice model. Then it is also corroborated by the
discrete nonlinear Schrödinger model, which is shown to

support transversely stable discrete line solitons as well
under similar conditions. Physically, these soliton trains
are transversely stable due to the stabilizing effect of the
photonic-lattice potential. However, the photonic lat-
tice does not stabilize every soliton train. Specifically,
low-amplitude soliton trains as well as soliton trains that
bifurcate from edges of the first Bloch band (Γ and M
points) are still transversely unstable. These transversely
unstable soliton trains will also be explained both math-
ematically and physically.

II. SOLITON TRAINS IN TWO-DIMENSIONAL

PHOTONIC LATTICES

The theoretical model we use for coherent-beam prop-
agation in a two-dimensional (2D) photonic lattice is [7]

iUz + Uxx + Uyy + n(x, y)U + σ|U |2U = 0, (2.1)

where z is the direction of propagation, (x, y) is the plane
orthogonal to the propagation direction, n(x, y) is the pe-
riodic refractive-index variation on the orthogonal plane,
and σ = ±1 represents self-focusing and self-defocusing
nonlinearity. All variables have been normalized. In our
analysis, we take the lattice to be

n(x, y) = h(cos2x+ cos2y), (2.2)

where h is the index-variation depth parameter. This is a
square lattice which arises frequently in optics and Bose-
Einstein condensates [7, 20]. This lattice is π-periodic
along both x and y directions, and is displayed in Fig.
1(a). Below, x and y will be called the principal axes
of the lattice since along them the lattice has the small-
est period. This lattice supports soliton trains aligned
along various directions in the (x, y) plane [17–19]. In
this paper, we only consider soliton trains alighed along
a principal axis of the lattice for simplicity, and take this
principal axis to be the y-direction. Such soliton trains
are of the form

U(x, y, z) = u(x, y)e−iµz , (2.3)

where u(x, y) is a real-valued function which is localized
along the longitudinal x-direction and periodic along the
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FIG. 1: (Color online) (a) the photonic lattice (2.2) (with h =
6); (b) the diffraction surface µ = µ(k1, k2) of the first Bloch
band for this lattice. The high-symmetry points Γ = (0, 0),
X = (1, 0) and M = (1, 1) in the irreducible Brillouin zone
−1 ≤ k1, k2 ≤ 1 are marked by red dots.

transverse y-direction, and µ is the propagation constant.
The function u(x, y) satisfies the equation

uxx + uyy + µu+ n(x, y)u + σu3 = 0. (2.4)

In this section, we examine these soliton train solutions.
When u(x, y) is infinitesimal, Eq. (2.4) becomes a lin-

ear equation whose bounded solutions are Bloch modes,

p(x, y;µ) = ei(k1x+k2y)p̂(x, y;µ), (2.5)

where p̂(x, y;µ) is π-periodic in both (x, y), k1, k2 are
wavenumbers in the irreducible Brillouin zone −1 ≤
k1, k2 ≤ 1, and

µ = µ(k1, k2) (2.6)

is the diffraction relation. This diffraction relation can
be computed effectively by the Fourier expansion method
(see Sec. 7.2.3 in [21] for instance; a MATLAB code for
this computation is also available at the author’s web-
page). At the lattice depth h = 6, the diffraction func-
tion for the first (lowest) Bloch band is shown in Fig.
1(b). If the linear Bloch mode p(x, y;µ) is required to be
real, this mode then must be at one of the high-symmetry
points, Γ = (0, 0), M = (1, 1), and X = (1, 0), (0, 1) in
the irreducible Brillouin zone, and be π- or 2π-periodic
in x and y. For the first Bloch band (see Fig. 1(b)), Γ
and M are the lower and upper edge points, and X lies
inside the Bloch band where the diffraction surface has
a saddle shape. In this paper, we only consider soliton
trains bifurcated from this first band.
When u(x, y) is small but not infinitesimal, Eq. (2.4) is

weakly nonlinear, and its solution is a weakly modulated
Bloch-wave packet which bifurcates out from the under-
lying high-symmetry point of the Bloch band. When this
solution is a soliton train along the y direction, it can be
expanded into a perturbation series

u(x, y) = ǫA(X)p(x, y) + ǫ2A′(X)ν1(x, y) + . . . , (2.7)

µ = µ0 + τǫ2, (2.8)

where µ0 is the propagation constant of the high-
symmetry point, p(x, y) is the Bloch wave at µ0, ν1(x, y)
is a generalized Bloch function at µ0 which satisfies the
equation

∂xxν1 + ∂yyν1 + [µ0 + n(x, y)]ν1 = −2∂xp, (2.9)

τ = ±1, 0 < ǫ ≪ 1, X = ǫx is the slow spatial vari-
able, and A(X) is the one-dimensional (1D) envelope of
this Bloch wave. Notice that the solution ν1(x, y) to Eq.
(2.9) is periodic in both x and y with the same period
as p(x, y). In addition, this solution is not unique since
one may add an arbitrary homogeneous solution ζp(x, y),
where ζ is a free constant. Returning to the expansion
(2.7), we can see that adding ζp(x, y) to ν1(x, y) amounts
to a shift in the position of the envelope A(X). In order
to fix the location of the envelope A(X), we require that
ν1(x, y) be orthogonal to p(x, y),

∫ π

−π

∫ π

−π

p(x, y)ν1(x, y)dxdy = 0. (2.10)

This orthogonality requirement uniquely determines the
solution ν1(x, y). In the present case, the lattice n(x, y)
in (2.2) is symmetric in x, then p(x, y) is either symmet-
ric or antisymmetric in x. In this case, ν1(x, y) would
have the opposite x-symmetry of p(x, y) under the above
orthogonality condition.
By inserting this perturbation expansion into Eq. (2.4)

and following the analysis very similar to [22], we find
that the envelope A(X) satisfies the following equation

D1AXX + τA+ σαA3 = 0, (2.11)

where the x-direction diffraction coefficient D1 and the
nonlinear coefficient α are given by

D1 =
1

2

∂2µ(k1, k2)

∂k21

∣∣∣∣
µ=µ0

, α =

∫ π

−π

∫ π

−π
p4(x, y)dxdy

∫ π

−π

∫ π

−π
p2(x, y)dxdy

.

When sgn(D1) = sgn(σ) = −sgn(τ), the envelope equa-
tion (2.11) admits a sech soliton

A(X) =

√
2

|α| sech
X −X0√

|D1|
, (2.12)

where X0 = ǫx0 is the location of the peak of the en-
velope function A(X). When the Bloch wave p(x, y) is
modulated by this 1D sech envelope, the resulting solu-
tion (2.7) is then a low-amplitude soliton train along the
y direction.
One may notice that the envelope equation (2.11) is

translation-invariant, hence X0 is a free parameter in the
envelope solution (2.12). This seems to imply that soli-
ton trains can be obtained regardless of the position of
the envelope (2.12) relative to the underlying periodic
potential. This is not true however. In a similar 1D-
lattice model, it has been shown that the peak of the
envelope can only be located at two positions relative to
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the lattice [7, 23, 24]. Slight extension of that analysis
to the present 2D soliton train problem shows that the
envelope (2.12) of the soliton train, for the symmetric co-
sine lattice (2.2), also must be located at one of the two
positions

x0 = 0, π/2. (2.13)

The resulting soliton train with x0 = 0 is called the on-
site soliton train, and the other one with x0 = π/2 is
called the off-site soliton train. The off-site train resides
at (x, y) regions of low refractive indices n(x, y) and is
thus expected to be always unstable [7, 23, 24]. Thus
we only consider on-site soliton trains in the rest of this
article.
When the amplitude of the soliton train is not small,

the above perturbation series would be invalid. In such
cases, soliton trains can be determined numerically by
either the squared operator iteration methods or the
Newton-conjugate-gradient method (see Sec. 7.2 in [7]).
To illustrate, we take self-defocusing nonlinearity (σ =
−1) and lattice depth h = 6. In this case, a family of
soliton trains bifurcates out from the X point inside the
first Bloch band. The quasi-power curve of this family is
displayed in Fig. 2(a). Here the quasi-power Q is defined
as the integral of u2 from −∞ < x < ∞ and on one
transverse period 0 ≤ y ≤ π, i.e.,

Q =

∫
∞

−∞

dx

∫ π

0

dy u2(x, y). (2.14)

Two typical soliton trains, with low and high amplitudes
(quasi-powers), are displayed in Fig. 2(b,c) respectively.
The propagation constants for these two soliton trains
are µ = 4.3495 and 5.6. One can see that the intensity
peaks of these solitons are in-phase with each other along
the transverse (y) direction, but adjacent intensity peaks
along the longitudinal (x) direction are out of phase with
each other. In addition, the soliton train near theX point
has low amplitude and quasi-power, and is longitudinally
broad (occupying many lattice sites), while that away
from the X point has high amplitude and quasi-power,
and is longitudinally strongly localized (occupying prac-
tically a single lattice site). This type of soliton trains
has been theoretically predicted and experimentally ob-
served in [19]. In Fig. 4 of later text, another family of
soliton trains bifurcated from the M -symmetry point of
the first Bloch band will also be displayed.
In the next section, we will examine the transverse

stability of soliton trains. Before detailed analysis, let
us first develop some intuition. The soliton trains exist
under both self-focusing and self-defocusing nonlineari-
ties (σ = ±1), and they can bifurcate from the Γ and
M points at edges of the Bloch band [17, 18], or from
X points inside the Bloch band [19]. For soliton trains
bifurcated from the Γ point (which occurs under self-
focusing nonlinearity) [17], the intensity peaks along the
transverse (train) direction are all in-phase. For soliton
trains bifurcated from the M point (which occurs under

4 5 6
0

5

10

µ

Q

σ=−1

first  gapb

c

(a)

X

(b)

x

y

x

(c)

−0.02 0 0.02

−0.05

0

0.05 (B)λ

−0.1 0 0.1
−2

0

2
(C)λ

FIG. 2: (Color online) (a) the quasi-power curve of soliton
trains bifurcated from the X point inside the first Bloch band
under defocusing nonlinearity; the dashed (red) segment is
transversely unstable, while the solid (blue) segment is stable;
(b,c) profiles u(x, y) of soliton trains at low and high ampli-
tudes respectively; these solutions are located at the points
marked by the same letters on the quasi-power curve of (a);
(B,C) linear-stability eigenvalue (λ) spectra in the complex
plane for the soliton trains in (b,c).

self-defocusing nonlinearity) [18], the adjacent intensity
peaks along the transverse direction are all out of phase
(if this transverse direction is along a principal axis of the
lattice as in our present case, see Fig. 4). It is known that
in-phase dipoles under self-focusing nonlinearity and out-
phase dipoles along a principal axis of the lattice under
self-defocusing nonlinearity are both unstable [7, 25–28].
Then if the soliton trains are strongly localized along the
longitudinal direction (which occurs at large amplitudes,
see Fig. 4(c)), we may view the soliton trains as a col-
lection of transverse dipoles, hence we may expect the
soliton trains bifurcated from Γ and M points to be un-
stable. However, for soliton trains bifurcated from the X
points (under either self-focusing or self-defocusing non-
linearity), adjacent transverse intensity peaks are out of
phase under self-focusing nonlinearity, and are in-phase
under self-defocusing nonlinearity (see Fig. 2 and [19]).
Dipoles with such phase structures are stable in deep lat-
tices [7, 25–28]. Thus soliton trains bifurcated from X
points (at high amplitudes as in Fig. 2(c)) may be free of
transverse instabilities. In the next two sections, we will
confirm that these intuitions are largely correct, hence
transversely stable soliton trains will be discovered.

It should be cautioned, however, that these intu-
itions are reasonable only when the soliton trains have
high amplitudes, so that they are strongly longitudi-
nally localized (as in Figs. 2(c) and 4(c)), which makes
the transverse-dipole analogy meaningful. If the soli-
ton trains have low amplitude, then they are longitu-
dinally broad and occupying many lattice sites (see Fig.
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2(b)). In that case, longitudinal inter-site coupling be-
comes important, which makes the above transverse-
dipole analogy inappropriate. As we will show later, all
low-amplitude soliton trains are transversely unstable.

III. TRANSVERSELY STABLE SOLITON

TRAINS

In this section, we study the transverse stability of soli-
ton trains in 2D photonic lattices, and show that trans-
versely stable soliton trains exist.
First, we briefly show that low-amplitude soliton trains

are always transversely unstable. To show this, we
consider the dynamics of a low-amplitude soliton train,
whose solution can be expanded into a perturbation se-
ries,

U(x, y, z) = e−iµ0z
[
ǫΨ(X,Y, Z)p(x, y) + ǫ2U2 + . . .

]
,

(3.1)
where µ0 is the propagation constant of a high-symmetry
point, p(x, y) is the Bloch wave at µ0, 0 < ǫ≪ 1, X = ǫx,
Y = ǫy are slow spatial variables, Z = ǫ2z is the slow
propagation-distance variable, and Ψ(X,Y, Z) is the en-
velope function of this low-amplitude soliton train. Fol-
lowing the analysis of [22], it is easy to show that the
evolution of the envelope function Ψ(X,Y, Z) is governed
by the following constant-coefficient 2D NLS equation

iΨZ +D1ΨXX +D2ΨY Y + σα|Ψ|2Ψ = 0, (3.2)

where D2 is the y-direction diffraction coefficient,

D2 =
1

2

∂2µ(k1, k2)

∂k22

∣∣∣∣
µ=µ0

,

and D1, α have been given before. This 2D envelope
equation admits a line-soliton solution

Ψ(X,Y, Z) = A(X)e−iτZ , (3.3)

where τ = −σ, and A(X) is given in Eq. (2.12). This
envelope line soliton, when modulated onto the Bloch
mode p(x, y), yields the low-amplitude soliton train (2.7)
derived in the previous section. It is well known that
this envelope line soliton (3.3) is transversely unstable
in the constant-coefficient 2D envelope equation (3.2) [1,
6, 7]. Thus low-amplitude soliton trains (2.7) are also
transversely unstable. Since the transverse instability of
low-amplitude soliton trains is induced by the transverse
instability of their envelope line solitons, obviously the
longitudinal wave coupling plays an important role in
this instability (as has been pointed out in the end of the
previous section).
We can further derive the analytical formula for un-

stable eigenvalues of low-amplitude soliton trains. Since
the soliton train is periodic along the transverse direc-
tion, the normal modes of infinitesimal disturbances to

the train are of the form Ψ̃ ∼ eiky+λzψ(x, y), where k

is the transverse wavenumber of the disturbance, λ is
the eigenvalue, and ψ(x, y) is π-periodic in y. From the
above analysis and after variable scalings, it is easy to
show that the eigenvalue λ(k) is given by

λ(k) = ǫ2Λ(
√
|D2| k/ǫ), (3.4)

where Λ(K) is the eigenvalue of the normalized sech line
soliton

Φ0(X,Y, Z) =
√
2 sechXeiZ (3.5)

in the unit-coefficient 2D NLS equation

iΦZ +ΦXX + sgn(D1D2)ΦY Y + |Φ|2Φ = 0 (3.6)

for the disturbance proportional to eiKY , which have
been obtained in [7, 29]. A more rigorous derivation
of the eigenvalue formula (3.4), which is based on the
study of the linear-stability eigenvalue problem of low-
amplitude soliton trains, can also be made by a slight
modification of the analysis in [30].
If the low-amplitude soliton train bifurcates from the

X-symmetry point (as in Fig. 2), sgn(D1D2) = −1,
hence the envelope’s transverse instability is of snake
type. Since D1D2 < 0, the diffraction surface at the
X point has a saddle shape (see Fig. 1(b)). If the train
bifurcates from the edges of the first Bloch band (as in
Fig. 4), sgn(D1D2) = 1, hence the envelope’s transverse
instability is of neck type.
When the amplitude of the soliton train is not small,

the analytical stability analysis above becomes invalid.
Below, we numerically investigate the transverse stabil-
ity of higher-amplitude soliton trains by computing their
whole linear-stability spectra, using the Fourier colloca-
tion method described in Sec. 7.3 of [7].
First, we consider the soliton trains in Fig. 2, which

bifurcate from the X-symmetry point of the first Bloch
band. The numerically obtained linear-stability spectra
for the low- and high-amplitude soliton trains of Fig.
2(b,c) are displayed in Fig. 2(B,C) respectively. The
spectrum in Fig. 2(B) contains both real and complex
unstable eigenvalues which lie on the right half of the
spectral λ-plane, indicating that the low-amplitude soli-
ton train in Fig. 2(b) is transversely unstable. This
numerical result agrees with the analytical result given
above. Quantitatively we have also compared these nu-
merical eigenvalues with the analytical formula (3.4),
with the function Λ(K) provided in [7, 29], and found
excellent quantitative agreement as well.
A more important finding on this family of soliton

trains is that, when the amplitude (or quasi-power) of
these soliton trains reaches above a certain threshold,
transverse instability disappears, and these soliton trains
become fully stable. This can be seen in Fig. 2(C), which
gives the linear-stability spectrum for the high-amplitude
soliton train in Fig. 2(c). This spectrum does not con-
tain any unstable eigenvalue, indicating that this high-
amplitude soliton train is fully stable. What happens
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FIG. 3: (Color online) Nonlinear evolution of the soliton train
in Fig. 2(c) under 10% initial transverse perturbations (shown
are intensity fields |U |2). Left: the initial perturbed soliton
train; right: the solution at z = 100.

is that, as µ moves away from the X point µ0 = 4.330
(i.e., as ǫ increases), the unstable eigenvalues initially in-
crease in size and drift away from the imaginary axis
of the spectral plane, as is predicted by the analyti-
cal formula (3.4). However, as µ increases further, the
unstable eigenvalues turn around and start to move to-
ward the imaginary axis (hence the transverse instability
weakens). When µ > µc ≈ 5.44, or Q > 5.3, all un-
stable eigenvalues merge into the imaginary axis, hence
instability vanishes, and the soliton trains become trans-
versely stable. Physically, what happens is that, as µ
moves away from the X point, the soliton train trans-
forms from a low-amplitude longitudinally-broad train
into a high-amplitude longitudinally-narrow train (see
Fig. 2(b,c)). In this process, the snaking instability
of the low-amplitude longitudinally-broad soliton train
is eventually arrested by the lattice when the train be-
comes strongly localized longitudinally.
We have found that the high-amplitude soliton train

in Fig. 2(c) is not only linearly stable, but also non-
linearly stable. To demonstrate its nonlinear stability,
we simulate its evolution in Eq. (2.1) when it is ini-
tially perturbed by 10% random-noise transverse pertur-
bations. This evolution simulation is performed using
the fourth-order split-step method (see Sec. 7.1 of [7]).
After long-distance simulations, we have found that this
train remains robust and does not break up at all. For
instance, one simulation result (with simulation distance
z = 100) is displayed in Fig. 3.
The soliton train in Fig. 2(c) may remind us the

train of lumps which form after the onset of neck-type
transverse instability to a line soliton in a homogeneous
medium [3, 7]. However, it is important to recognize that
the train of lumps in a homogeneous medium is not a sta-
ble structure. Upon further propagation, it will break up
[7]. In contrast, the soliton train in Fig. 2(c) is both
linearly and nonlinearly stable, and can propagate for all

distances without breakup (see Fig. 3). Here the pho-
tonic lattice plays an important role in the stabilization
of the soliton train in the presence of transverse pertur-
bations.
The photonic lattice, however, cannot stabilize every

soliton train (even if their amplitude is high). To demon-
strate, we consider the soliton trains which bifurcate from
the upper edge of the first Bloch band (M -symmetry
point) under self-defocusing nonlinearity (with h = 6 as
before). This soliton family is displayed in Fig. 4(a,c).
From the solution profile shown in Fig. 4(c), we see
that the intensity peaks of these soliton trains are out
of phase with each other along both the transverse and
longitudinal directions (as is expected since these trains
bifurcate from the M -symmetry point). However, this
family of soliton trains are all transversely unstable. To
demonstrate, the linear-stability spectrum for the high-
amplitude soliton train in Fig. 4(c) is shown in Fig. 4(b).
The real unstable eigenvalues on the right half of the
spectral plane indicate that this high-amplitude soliton
train is linearly unstable. The nonlinear instability of
this soliton train is displayed in Fig. 4(d). It is seen that
under weak perturbations, this soliton train breaks up
into filaments. For this solution family, the transverse
instability of low-amplitude soliton trains is neck-type
(since the diffraction coefficients D1, D2 have the same
sign at the M point). Then Fig. 4 shows that the neck-
type transverse instability of low-amplitude soliton trains
cannot be arrested by the photonic lattice as the soliton
train’s amplitude becomes high.
From Figs. 2 and 4, we learn that the phase relation

of transverse intensity humps also plays an important
role in the stabilization of soliton trains. Specifically, un-
der defocusing/focusing nonlinearity, the transverse in-
tensity peaks of the soliton train should be in-phase/out-
phase in order for it to be stable (as one would expect
from dipole stability results [7, 25–28]). This require-
ment on the phase relation translates into a requirement
that these soliton trains should bifurcate from the X-
symmetry point inside the Bloch band.
We should add that, for the family of soliton trains in

Fig. 2, even though they become stable when µ > µc ≈
5.44, if µ gets close to the second Bloch band (whose
lower edge is at µ = 7.23), then these soliton trains would
become unstable again due to wave coupling to the sec-
ond band.

IV. TRANSVERSELY STABLE LINE SOLITONS

IN THE DISCRETE NLS EQUATION

In the previous section, we demonstrated the existence
of transversely stable soliton trains in the continuous lat-
tice model (2.1). In this section, we corroborate this
finding by showing that the analogous transversely sta-
ble line solitons exist in the discrete NLS model as well.
The discrete NLS model is often used to qualitatively
describe wave dynamics in the continuous lattice model
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FIG. 4: (Color online) (a) the quasi-power curve of the soli-
ton trains bifurcated from the M point of the first Bloch band
under self-defocusing nonlinearity (the dashed red line indi-
cates this whole family is transversely unstable); (b,c) the
linear-stability eigenvalue spectrum and profile u(x, y) of the
soliton train at the marked point on the quasi-power curve
(µ = 5.6); (d) nonlinear evolution (z = 7) of the soliton train
in (c) under 10% initial transverse perturbations (shown is
the intensity field |U |2).

(2.1) with a deep lattice potential under the tight-binding
approximation [28]. In this context, the variable in the
discrete model can be viewed as the complex amplitude
of the ground-state eigenmode of each lattice-cell poten-
tial. The approximation of the continuous model (2.1) by
the discrete NLS equation is a significant reduction. Un-
der this reduction, the soliton train shown in Fig. 2(b,c)
in the continuous model becomes a transversely uniform

line soliton in the discrete model (see Fig. 5(c,d) below).
This treatment simplifies both theoretical analysis and
numerical computations.
The discrete NLS equation we consider is

i
d

dz
Um,n +∆2Um,n + σ|Um,n|2Um,n = 0, (4.1)

where ∆2 is the two-dimensional difference operator

∆2Um,n ≡ (Um+1,n − 2Um,n + Um−1,n) +

(Um,n+1 − 2Um,n + Um,n−1),

and σ = ±1 is the sign of nonlinearity. Here the intersite-
coupling coefficient in front of ∆2Um,n has been normal-
ized to be unity through scalings of z and Um,n. An
important property of this discrete model is that self-
focusing and self-defocusing nonlinearities can be trans-
formed to each other since this model is invariant under
the transformation [27]

Um,n → (−1)m+ne−8izU∗

m,n, σ → −σ. (4.2)

This transformation is very helpful for us to understand
the connection on soliton configurations and their stabil-
ity properties between self-focusing and self-defocusing
nonlinearities. It also means that one only needs to study

one type of nonlinearity (say, self-defocusing nonlinear-
ity), and infer the results for the other type of nonlinear-
ity by this transformation.
Solitons in the discrete model (4.1) are sought in the

form

Um,n(z) = um,ne
−iµz, (4.3)

where um,n is a real-valued function which satisfies the
equation

∆2um,n + µum,n + σu3m,n = 0, (4.4)

and µ is the propagation constant. When um,n is in-
finitesimal, the nonlinear term in (4.4) drops out, and
the bounded solution to the remaining linear equation is
then a discrete Fourier mode, um,n = ei(k1m+k2n), where
−π ≤ k1, k2 ≤ π are wavenumbers along the m- and n-
directions. Inserting this discrete Fourier mode into the
linear part of Eq. (4.4), we get the diffraction relation

µ = 2(2− cos k1 − cos k2). (4.5)

The corresponding diffraction surface is shown in Fig.
5(a). It is easy to see that this diffraction surface closely
resembles the first Bloch band of the continuous model
(see Fig. 1). Thus the discrete model (4.1) is appro-
priate for describing wave dynamics associated with the
first Bloch band in the continuous model (2.1). Notice
that the continuous spectrum of this discrete model (4.1)
contains only a single band 0 ≤ µ ≤ 8, while the contin-
uous spectrum of the continuous model (2.1) often con-
tains multiple Bloch bands. Thus if wave dynamics in
the continuous model (2.1) involves higher Bloch bands,
the discrete model (4.1) will be inappropriate.
Corresponding to the continuous soliton trains in Fig.

2, we can find a family of discrete line solitons that bifur-
cate from the X-symmetry point of the continuum band
under self-defocusing nonlinearity (σ = −1). These dis-
crete line solitons um,n are n-independent, thus they are
simply 1D discrete solitons in the 2D model (4.4). These
discrete solitons can be computed numerically by the
same squared operator iteration methods or the Newton-
conjugate-gradient method in [7] with very minor modi-
fications. The quasi-power curve of this soliton family is
shown in Fig. 5(b). Here the quasi-power Q is defined as

Q(µ) =
∞∑

m=−∞

u2m,n. (4.6)

Profiles of two typical solitons, near and far away from
the X point (with µ = 4.4 and 29), are displayed in Fig.
5(c,d). The one in Fig. 5(c) has low amplitude (quasi-
power) and is longitudinally broad, which is the counter-
part of the low-amplitude soliton train in Fig. 2(b). The
one in Fig. 5(d) has high amplitude (quasi-power) and
is longitudinally strongly localized, which is the counter-
part of the high-amplitude soliton train in Fig. 2(c). To
determine the transverse stability of these discrete line
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FIG. 5: (Color online) (a) the diffraction surface (4.5) of the
discrete NLS equation; (b) the quasi-power curve of discrete
line solitons bifurcated from the X point inside the continuum
band under self-defocusing nonlinearity; the dashed (red) seg-
ment is transversely unstable, while the solid (blue) segment
is stable; (c,d) profiles um,n of discrete line solitons at low
and high amplitudes respectively; these solitons are located
at the points marked by the same letters on the quasi-power
curve of (b); (C,D) linear-stability spectra for the discrete line
solitons in (c,d).

solitons, we have computed their linear-stability spectra
by the Fourier collocation method [7], and the results
are displayed in Fig. 5(C,D). The spectrum in Fig. 5(C)
indicates that the low-amplitude discrete line soliton in
Fig. 5(c) is transversely unstable. In addition, this spec-
trum qualitatively closely resembles the continuous coun-
terpart in Fig. 2(B). The spectrum in Fig. 5(D), on the
other hand, does not contain any unstable eigenvalue, in-
dicating that the high-amplitude discrete line soliton in
Fig. 5(d) is transversely stable. Thus the existence of
transversely stable discrete line solitons is established.
In the present discrete model (4.1), the threshold for
transversely stable line solitons is at µ > µc ≈ 21.5, or
Q > 39.0.
Now we examine nonlinear developments of these dis-

crete line solitons under transverse perturbations. We
find that when these solitons are linearly unstable (see

Fig. 5(b)), then under perturbations, they would develop
snake instability and eventually disperse away. This is il-
lustrated in Fig. 6(a,b) for the low-amplitude discrete
line soliton in Fig. 5(c). Analytically, this snake instabil-
ity can also be understood. Briefly speaking, the enve-
lope of a low-amplitude discrete solution to Eq. (4.1) is
governed by an equation similar to (3.2), where D1 and
D2 are the diffraction coefficients. At the X-symmetry
point, D1D2 < 0, thus the line soliton to this envelope
equation suffers snake-type instability [1, 6, 7], which
translates to the snake instability observed in Fig. 6(a,b).
When the discrete line solitons are linearly stable (see
Fig. 5(b)), however, they would propagate robustly for
all distances without breakup. This is illustrated in Fig.
6(c,d) for the high-amplitude discrete line soliton in Fig.
5(d).
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FIG. 6: (Color online) Nonlinear evolutions of discrete line
solitons in Fig. 5(c,d) under 10% initial transverse pertur-
bations (shown are intensity fields |U |2). Upper row: the
low-amplitude case; lower row: the high-amplitude case.

By comparing these results for the discrete NLS model
(4.1) to those for the continuous model (2.1), one can
easily see that the results for both models are qualita-
tively almost identical. For both models, we discovered
transversely stable soliton trains under similar condi-
tions, i.e., when they bifurcate from X-symmetry points
and have high amplitudes. The instability behaviors for
low-amplitude soliton trains are also the same in both
models. However, minor differences between the two
models do exist. For instance, in the discrete model,
line solitons bifurcated from the X point in Fig. 5 are
transversely stable for all µ > µc ≈ 21.5; while in the
continuous model, soliton trains bifurcated from the X
point in Fig. 2(a) can become unstable again when µ
gets close to the second Bloch band. The reason for this
difference is that the discrete model can not capture the
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multi-band coupling, as we have mentioned earlier in this
section.

V. SUMMARY

In summary, we have reported the existence of trans-
versely stable soliton trains in optics. These soliton trains
are found in two-dimensional square photonic lattices
when they bifurcate from X points (with saddle-shaped
diffraction) inside the first Bloch band, and their ampli-
tudes are above a certain threshold. These stable soliton
trains arise due to the combined effect of the photonic
lattice, proper transverse phase relation, and strong lon-

gitudinal localization. We have also shown that soliton
trains with low amplitudes or bifurcated from edges of
the first Bloch band (Γ and M points) still suffer trans-
verse instability. These results have been obtained in
both the continuous lattice model and the discrete NLS
model, and results from both models are in very good
qualitative agreement.
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