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We show that a combination of linear absorption spectroscopy, hyper-Rayleigh scattering, and a
theoretical analysis using sum rules to reduce the size of the parameter space leads to a prediction of
the imaginary part of the second hyperpolarizability of the dye AF-455 that agrees with the experi-
mental data gathered through two-photon absorption spectroscopy. Our procedure, which demands
self-consistency between several measurement techniques and does not use adjustable parameters,
provides a means for determining transition moments between the dominant excited states based
strictly on experimental characterization. This is made possible by our new approach that uses sum
rules and molecular symmetry to rigorously reduce the number of required physical quantities.

PACS numbers: 42.65.An, 33.15.Kr, 11.55.Hx, 32.70.Cs

I. INTRODUCTION

There is a long history of using nonlinear-optical tech-
niques to build an understanding of the mechanisms
of light-matter interactions. Given the availability of
mostly single-wavelength lasers, early measurements used
time domain studies to deconvolute mechanisms such as
molecular reorientation and the electronic response in
liquids[1–4] which were used to make fast optical gates,[5]
and in solids, for example, to study excitons in quasi-one-
dimensional polymeric crystals.[6, 7]
One of the first attempts to use dispersion in the Op-

tical Kerr Effect (OKE) to understand the nonlinear-
optical response in liquids was based on a qualita-
tive comparison of experimental results with the sum-
over-states (SOS) expression for the nonlinear-optical
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susceptibilities[8] as calculated by Orr and Ward.[9] More
recently, OKE dispersion measurements and more sophis-
ticated multi-state models have been applied to deter-
mining the transition moments between excited states in
silicon phthalocyanine-monomethacrylate.[10]
The difficulty with such approaches is that they re-

quire either non-realistically simple models with only a
couple of parameters; or, complex models that involve
transition moments between excited states that can not
be independently verified by experiment. Furthermore, a
set of parameters that successfully models one particular
measurement is not often consistent with other indepen-
dent measurements.
An alternative approach that is based only on exper-

imental characterization was proposed by Kelley, with
the goal of predicting the frequency dispersion of the
first hyperpolarizability of push-pull chromophores based
on the linear spectrum.[11] The main drawback of such
an approach is that it relies on the two-level approxi-
mation, which is not appropriate in the case of struc-
tures with more than one single transfer band peak in the
linear absorption spectrum. Furthermore, the two-level
model has been shown to be only valid for 1-D struc-
tures and hence does not apply to molecules with other
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symmetry motifs such as octupoles.[12–14] Moreover, it
has also been shown that in order to be consistent with
the Thomas-Kuhn sum rules, at least three levels must
contribute to the sum-over-states expression for the first
hyperpolarizability,[15, 16] so the two-level model is in-
appropriate for the modeling of the nonlinear-optical re-
sponse.

The sum rules are quantum mechanical identities that
relate the dipole matrix elements and energies to each
other; so, the SOS hyperpolarizability can be expressed
in terms of a subset of the dipole matrix elements.[17–19]
Indeed, the dipole-free SOS expression is derived by using
the sum rules to eliminate all terms with dipole moment
differences. Dipole-free expressions for both the hyper-
polarizability, β,[20] and the second hyperpolarizability,
γ,[21] have been derived and shown to be mathematically
equivalent to the standard SOS results. These dipole-free
expressions are key to significantly reducing the number
of parameters required to model the nonlinear response.

In the present work, we use linear absorption spec-
troscopy to determine the energies and transition mo-
ments from the ground state of the octupolar chro-
mophore commonly referred to as AF-455. Then, group
theory in conjugation with the symmetry of the molecule
is used to reduce the number of parameters required to
describe the nonlinearity so that the dipole-free SOS ex-
pression for the hyperpolarizability can be used in con-
junction with hyper-Rayleigh scattering to determine the
transition moment between the two dominant states. Us-
ing no adjustable parameters, we predict the spectrum
of the imaginary part of the second hyperpolarizability,
which we show agrees with the experimental results. This
suggests that our approach may be a simple alternative
that is straightforward to apply and yields self-consistent
results that span linear absorption, hyper-Rayleigh scat-
tering, and two-photon absorption spectroscopy.

What makes our work unique is that all of the quan-
tities required to predict the linear and nonlinear-optical
response are determined experimentally, which is made
possible using sum rules to reduce the number of required
parameters. Other approaches have been proposed to
provide estimates of the nonlinear response from simple
measurements. For example, Pérez-Moreno and cowork-
ers have introduced a rule of thumb that provides a rough
estimate of the resonant two-photon absorption (TPA)
cross-section of a large set of molecules simply using the
number of π electrons.[22] Rebane and coworkers used
a theoretical approach based on the density matrix to
show that parameters determined from a measurement
of the linear absorption spectrum of a dipole transition
can be used to determine the TPA cross-section at the
one-photon absorption maximum.[23] For a broad range
of molecules, the approach was shown to yield TPA cross-
sections that deviated at most by 50% compared with
measurements. However, while these approximate tech-
niques are useful for estimating the TPA cross-section,
they do not predict the dispersion of the TPA cross-
section, nor do they predict the first hyperpolarizability.

In contrast, the approach presented here leads to an ac-
curate prediction of the spectrum of the imaginary part
of the second hyperpolarizability, or equivalently, to an
accurate prediction of the TPA spectrum.

II. THEORY

Our approach begins by simplifying the analysis of the
dispersion of the nonlinear-optical susceptibilities by pro-
viding a model that depends only on a reduced set of mea-
surable molecular parameters. In contrast, most studies
reported in the literature rely on calculating and/or us-
ing as fit parameters transition energies between excited
states, excited state dipole moments, and energies.
Because excited-state parameters cannot be experi-

mentally verified, and often many sets of parameters can
yield reasonably good fits of the data to the theory, the
conclusions based on such studies may not be sound. Fur-
thermore, one set of parameters will often provide a good
fit to one experiment, but not to others. To compound
such problems, semi-empirical calculations of a nonlin-
ear susceptibility that agree with off-resonance measure-
ments often do not correctly predict the resonant behav-
ior.
We begin by introducing the sum-over-states (SOS)

dipole-free expressions of the nonlinear-optical suscepti-
bilities. These expressions reduce the number of param-
eters needed to describe the nonlinear-optical response
by eliminating the explicit dependence on dipole terms.
Next, we explore the symmetries of the octupolar struc-
ture using group theory to reject the traditional 4-state
model for planar octupoles and derive a 6-state model
that is in agreement with the linear absorption spectrum.
Then we use the dipole-free expressions to show how the
contributions of the 6-states can be reduced to an effec-
tive 3-state model.

A. Sum Rules and the Dipole-Free SOS
Expressions

The polarizability of a molecule along x̂ for an incident
field of frequency ω polarized along x̂ is given by,[9]

αxx(ω) =

∞
∑

n

′ [
µ0nµn0

En0 − ih̄Γn − h̄ω
+

µ0nµn0

En0 + ih̄Γn + h̄ω

]

,

(1)
where µnm is the transition dipole moment along the x̂
direction between states n and m,1 En0 = En−E0 is the

1 A complex molecule is made of many electrons, so the dipole
moment operator is proportional to a sum over the position op-
erators of all the electrons. In matrix form, this can be expressed

as ~µij = −e
∑N

n

〈

ψi

∣

∣~x(n)
∣

∣ψj

〉

≡ −e~xij . where −e is the charge

of the electron and N is the number of electrons in the molecule.
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energy difference between states, and where the prime de-
notes the fact that the ground state is excluded from the
sum. Notice that the energy denominators are complex
to account for damping and broadening effects through
the linewidths, Γn.[9] Also, the molecular susceptibili-
ties are tensorial quantities, and for clarity we list only
the expressions for the diagonal component (along the x̂
component).
The Thomas-Kuhn sum rules are calculated from the

Schrödinger Equation using the closure identity.[24–26]
For charges under the influence of electric and magnetic
fields, the generalized sum rules are exactly obeyed, and
are derived from the matrix elements of commutators
of the Hamiltonian H and position x operators, which
yields[18]

2m

h̄2

∑

n

xlnxnp

(

En − 1

2
(Ep + El)

)

= Nδl,p,

(2)

where m is the electron mass, h̄ is the reduced Plank
constant and N is the number of polarizable electrons.
Note that the set of relationships given by Equation 2
with l = p are commonly called the sum rules. The
more general form above with l 6= p was developed to ac-
count for the off-diagonal components.[17, 18] Equation
2 corresponds to an infinite set of equations, which are
each labeled by distinct pairs of integers l, p. The sum
rules clearly show how the matrix elements of the posi-
tion operator (which is proportional to the dipole matrix,
µnm = −exnm) and energy levels are intimately related
to each other and therefore can not be independently ad-
justed.
The infinite set of equations embedded in the sum

rules can be used to simplify the SOS expressions for
the nonlinear-optical susceptibilities. The off-diagonal
sum rules of the type (l, p) = (0, i) with i = 1, 2, 3, · · ·
can be used to express the ground and excited state
dipole moments in terms of transition moments.[20] As
such, the explicit dependence on dipole terms can be
eliminated.[20] Using these relationships, the traditional
SOS expressions can be transformed into dipole-free SOS
expressions, which for the largest diagonal component of
the first hyperpolarizability yields,[20]

βxxx(ω1, ω2) =

∞
∑

m

′ ∞
∑

n6=m

′
µ0mµmnµn0

D−1
nm(ω1, ω2)

(3)

×
[

1− D−1
nm(ω1, ω2)

D−1
nn (ω1, ω2)

(

2
Em0

En0
− 1

)]

,

where,

Dnm(ω1, ω2) =

1

2

[

1

(En0 − ih̄Γn − h̄ω1 − h̄ω2) (Em0 − ih̄Γm − h̄ω1)

+
1

(En0 + ih̄Γn + h̄ω2) (Em0 − ih̄Γm − h̄ω1)

FIG. 1. The chemical structure of the AF-455 molecule. No-
tice that the relevant symmetry for the optical response is
D3h.

+
1

(En0 + ih̄Γn + h̄ω2) (Em0 + ih̄Γm + h̄ω1 + h̄ω2)

+ Permutations of ω1 ↔ ω2 for the previous terms] .(4)

This expression is sometimes called the reduced SOS ex-
pression.
The second hyperpolarizability, as well as higher-order

hyperpolarizabilities, can be transformed into a dipole-
free form. The resulting algebraic expressions are too
complex to present here, but their form can be found in
the literature.[21]

B. The molecular symmetry of AF-455

We will now consider the symmetry properties of the
AF-455 chromophore in order to define the energy level
diagram and to find an appropriate symmetry-adapted
basis that is consistent with the linear absorption data.
The chemical structure of the AF-455 chromophore is
shown in Fig. 1. First we notice that although strictly
speaking, the symmetry of the overall structure is C3h,
for all the optical properties the effective or relevant sym-
metry is dictated by the symmetry of the planar conju-
gated part of the molecule. That is, for optical purposes,
the relevant symmetry of the molecule is D3h.
Our next step is to define an appropriate basis that

would allow us to determine the energy level diagram
with the aid of group theory. Since we demand self-
consistency with all the experimental data, we need first
to consider the structure of the linear absorption data of
the molecule in solution (tetrahydrofuran), shown in Fig.
2. The linear spectrum clearly shows two broad bands.
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FIG. 2. (Color online) Linear absorption spectrum of AF-455
in solution in tetrhydrofuran (black open circles), and fit using
four Gaussians (red line). The individual Gaussian functions
are also shown; three to fit the first excited state - (dark green
dash-dot), (blue dots) and (light green dash-double dot) - and
one for the second excited state (pink dash).

For a complex molecule such as AF-455, each band might
be the result of many closely-lying excited states, with
coupling between vibronic and electronic states. While
in principle, low-temperature linear spectral characteri-
zation could be used to resolve the electronic structure,
such an approach would go against our principle of de-
manding self-consistency between the different measure-
ment techniques given that the second- and third-order
experiments are performed at room temperature. There-
fore, our self-consistent approach demands that we model
the response in terms of the two broad bands that are
present in the linear absorption spectrum at room tem-
perature. As we shall see, the use of the dipole-free ex-
pressions together with the Franck-Condon approxima-
tion allows us to model the dispersion using effective lev-
els that each might be a composite of closely-lying states.

Our initial choice of basis set should result in an energy
level diagram that is compatible with the experimental
linear absorption spectrum. It is customary to model
planar octupolar structures with D3h symmetry using a
set of 4 basis states, as sketched in Fig. 3.[12, 27, 28]
Although such an approach leads to an energy diagram
with three energy levels (see Fig. 3), the symmetry of
the states does not allow (x, y) transitions between the
ground and the first excited level,[12] and therefore, the
linear absorption spectra would only show one peak (for
details on the group theory calculations, please refer to
section B1 in the appendix). Hence, based on the empir-
ical evidence we rule out this traditional choice of basis.
Furthermore, the central ring (s-triazine) can not be rep-
resented by the same type of basis used for the branches.
While each of the branches has only 1 pz orbital at the

FIG. 3. (Color online) The 4-basis set that is traditionally
used for the modeling of charge-transfer octupolar structures
with D3h symmetry (top) and the resulting energy level dia-
gram (bottom). Using group theory, the 4-basis set shown on
the top are transformed by a linear combination into 4 sym-
metry adapted basis states (SALC). Allowed (x, y) transitions
are showed as dotted lines. This choice of basis has only one x
allowed transition connecting the ground state |g〉 and an ex-
cited state |e2, e3〉 (which is doubly degenerate) and therefore
is inconsistent with the observed two-band linear absorption
spectrum.

end of the conjugated path, the central ring has 3 pz or-
bitals and therefore they do not form an equivalent basis
set.2

Our choice of basis set must still be consistent with
D3h symmetry of the AF-455 chromophore but must in-
clude an additional independent state in order to gener-
ate enough (x, y) allowed transitions to be in agreement
with the linear absorption spectrum. Focusing on the po-
sition of the pz orbitals associated with every Nitrogen
in the structure, we introduce a set of 6 basis states as
shown in Fig. 4 (top). From this choice of basis set, and
using group theory, the symmetry-adapted basis that is

2 If we had started only with three initial basis states (each one
corresponding to the pz orbital at the end of the branch) as is
typical in the literature,[29] there would be only one excited state
energy (doubly degenerate), which is inconsistent with the linear
absorption data.
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generated has an energy level diagram compatible with
the linear absorption spectrum provided that two of the
excited states are close in energy such that they cannot
be resolved in the linear absorption spectrum. By in-
specting the resulting symmetry-adapted basis set (sec-
tion B2 in the appendix) we can indeed justify this condi-
tion. The original set of bases can be separated into two
subgroups, a set that spans the wavefunctions related to
excitations along the long conjugated branches (labeled
as |1〉, |2〉 and |3〉 in Fig. 4) and another set that spans
the wavefunctions related to excitations along the con-
jugated central ring (labeled as |4〉, |5〉 and |6〉). In the
absence of perturbations the central ring would be aro-
matic and therefore extremely stable. Consequently, it
will take much more energy to generate an excited state
that breaks the aromaticity than to generate a charge
transfer through the long branches.
We can estimate the energy ratio between the ener-

gies involved in the transitions within the branches (of
order δ) to the energies involved in the transitions within
the ring (of order ∆) by comparing the different sizes of
the unperturbed systems. A generic result of quantum
mechanics that relates the length of confinement of the
wavefunction (L) with its energy, E ∝ L−2, can be used
to calculate the ratio between the two energies as:

δ

∆
∝ (ring radius)2

(branch length)2
≈ 1

102
=

1

100
. (5)

We thus conclude that our choice of basis set is con-
sistent with the results from the linear characterization
experiments: the linear absorption spectrum shows the
transitions between 3 effective bands, which correspond
to 6 electronic levels, ground, first effective excited state
(made up from 3 closely-lying states) and second ex-
cited state (made up of two degenerate states) as shown
schematically in Fig. 4.

C. Using effective levels with the dipole-free
expressions: effects of closely-lying states upon the

hyperpolarizabilities

In the previous section (section II B) we have argued
that the symmetry of the AF-455 chromophore results in
a 6-state model that behaves as an effective three-level
model in the linear absorption. Now we will show how
we can model the hyperpolarizabilities in terms of these
effective states. Specifically, we will use the dipole-free
SOS expression for the first hyperpolarizability (Eq. 3)
to show that when a peak in the linear absorption spec-
trum is made up of the contributions from close-lying
states, these close-lying states act as one “effective” ex-
cited state for the purpose of modeling the linear and
nonlinear optical response. In particular, in the limit
when the closely-lying states are degenerate, the optical
observables can be modeled by treating each set of de-
generate states as one “effective” excited state.

FIG. 4. (Color online) The 6-member basis set that we pro-
pose for the modeling of charge-transfer octupolar structures
with D3h symmetry and a central ring (top) and the result-
ing energy level diagram (bottom). Using group theory, the
6 original basis shown on the top are transformed by a linear
combination into a 6-state symmetry-adapted basis (SALC).
Allowed (x, y) transitions are showed through dotted lines.
Notice that the energy difference between the first (|e1〉) and
second excited state (|e2, e3〉 which is doubly degenerate) is
much smaller than the energy difference between the rest of
the states, and therefore this choice of basis will show two ef-
fective bands in the linear absorption spectrum, in agreement
with the experimental linear characterization.

We start by assuming that each peak in the linear ab-
sorption spectrum is made of contributions from a set of
closely-lying states. By superposition, the contribution
of close-lying states can add to appear like the contri-
bution of one “effective” single state. Mathematically,
if |1′〉, |2′〉, · · · |k′〉 denote the closely-lying states that
result in the “effective” state |I〉, then it follows that:

k′

∑

i′=1

µgi′µi′g · d(1)i′ (ω) ≈ µgIµIg · d(1)I (ω), (6)

where the linear dispersion terms d
(1)
n are defined by:

d(1)n (ω) =

{

1

En0 − ih̄Γn − h̄ω
+

1

En0 + ih̄Γn + h̄ω

}

,

(7)
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in agreement with Eq. 1.
Next we consider the contributions from the closely-

lying states to the first hyperpolarizability. The dipole-
free expression for the first hyperpolarizability (Eq. 3)
can be expressed as:

βxxx(ω1, ω2) =
∑

n

′∑

m 6=n

′
µ0nµnmµm0 ·Dmn(ω1, ω2), (8)

Two types of terms contributing to Eq. 8 are:

• Terms that do not couple closely-lying states,
which are of the type µ0iµij′µj′0 · Dij′ (ω1, ω2) or
µ0i′µi′jµj0 ·Di′j(ω1, ω2).

• Terms that couple the closely-lying states, which
are of the type µ0i′µi′j′µj′0 ·Di′j′ (ω1, ω2).

Note that the primed indices refer to the set of nearly-
degenerate states.
The first type of contribution (with no coupling be-

tween closely-lying states) can be rewritten in terms of
one effective state. For example, consider all the pro-
cesses for which there is a transition from the ground
state |0〉 to state |1〉, then from |1〉 to one of the close-
lying states {|i′〉}i′=1′,···,k′ and then back to the ground
state:

k′

∑

i′=1′

µ01µ1i′µi′0 ·Di′1(ω1, ω2) = (9)

µ01(

k′

∑

i′=1′

µ1i′µi′0 ·Di′1) ≈ µ01µ1IµI0 ·DI1.

When all these terms are summed, they can be approxi-
mated as a transition to the “effective” state |I〉 in the
same manner as in the linear case (Eq. 6).

A problem arises from terms that couple closely-lying
states because they cannot be re-expressed with an “ef-
fective” single state. For example, consider:

µ0i′µi′j′µj′0 ·Di′j′ (ω1, ω2). (10)

Recalling the definition of the dispersion factor Di′j′

(Eq.4):

Di′j′(ω1, ω2) = (11)
(

1

D−1
j′i′(ω1, ω2)

− 1

D−1
j′j′(ω1, ω2)

{

2
Ei′0

Ej′0
− 1

}

)

.

Since states |i′〉 and |j′〉 are of nearly the same energy,
Di′j′ ≈ Di′i′ and Ei′0 ≈ Ej′0, and Eq. 11 reduces to:

Di′j′(ω1, ω2) ≈ (12)
(

1

D−1
i′i′(ω1, ω2)

− 1

D−1
i′i′(ω1, ω2)

{2− 1}
)

= 0.

Thus, the contributions of such terms to the hyper-
polarizability are negligible so the SOS expression for

the hyperpolarizability reduces to an effective three-level
model. In the case of truly-degenerate states, there is no
coupling between them, so they do not contribute to the
hyperpolarizability. A similar argument applies to the
expression for the second hyperpolarizability.
So far we have considered only the effects of closely-

lying and degenerate electronic levels upon the hyper-
polarizabilities. While it is clear that the same princi-
ple would apply for closely-lying vibronic states, it could
be argued that our reasoning does not hold for vibronic
states within the same electronic band if their spacing is
large enough. In principle such contributions should be
negligible because the transition dipole moments corre-
sponding to transitions between vibronic states are usu-
ally orders of magnitude smaller than electronic transi-
tion moments. However, we will assume that to first
order the Franck-Condon approximation applies to AF-
455, implying that transitions between vibronic states
on the same electronic band are disallowed or that they
lead to negligible contributions to the hyperpolarizabil-
ities. Since these are the only types of transitions that
we might miss by modeling the hyperpolarizabilities in
terms of “effective” states, we can use our self-consistent
procedure as a test of the validity of the Franck-Condon
approximation for the description of the optical proper-
ties of the AF-455 chromophore.

III. RESULTS AND DISCUSSION

We have shown how the symmetries of the AF-455
chromophore in combination with group theory lead to a
6-state model that is in agreement with the linear absorp-
tion spectrum and behaves as an effective 3-state model.
Using the dipole-free expressions, we have shownn that
the contributions of the 6 states can also be modeled
in terms of the effective 3-state model. This leads to a
model of the linear and nonlinear susceptibilities that de-
pends only on the energy differences between the two ex-
cited states and the ground state, E10, E20; their widths;
and the corresponding transition moments µ01, µ02, and
µ12. The quantities E10, E20, µ01, and µ02 can be deter-
mined using the linear absorption spectrum. The only
remaining unknown quantity is µ12. The transition mo-
ment between the two excited states can be determined
from a measurement of the first hyperpolarizability at
one wavelength provided that the other quantities are
known a priori. From these measured quantities, we will
show that all optical and nonlinear-optical properties are
predicted with no adjustable parameters.
We now apply this technique to the octupolar molecule

AF-455 in solution. The choice of AF-455 as a test of
our methodology is motivated by its group symmetry
(C3h), where one can directly determine the values of
the tensorial components of the molecular polarizabilities
from measurements in solution. In addition, the linear
spectrum is characterized by two clearly distinguishable
broad bands in the visible range making it possible to de-
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termine the energies and transition moments for a three-
level model analysis; and, the molecule has a measur-
able second- and third-order NLO response in a frequency
range that is easily accessible by experiment. Also, AF-
455 is a fluorescent molecule, which allows its TPA cross-
section spectrum to be characterized using two-photon
excitation fluorescence.
The absorption spectrum is used to determine its po-

larizability using the fact that with appropriate choice
of molecular coordinate system, αxx = αyy and αxy =
αyx = 0. Our analysis holds generally for any octupolar
molecule with D3h symmetry, which we will refer to sim-
ply as an octupole. An isotropic solution of octupoles will
have an isotropic polarizability of 〈α〉 = 2αxx/3. Thus,
from an absorption spectrum, the polarizability along x̂
can be directly determined.
The linear absorption spectrum of a sample is obtained

by measuring the transmittance of a broad spectrum
source passing through a cuvette of 1cm path length,
and containing a solution of the sample in solvent. The
spectrum is referenced to the transmittance through pure
solvent in an identical cuvette. The measured linear ab-
sorption spectrum of AF-455 in tetrahydrofuran (THF)
is shown in Fig. 2.
The two peak positions are used to determine the en-

ergies E10 and E20; and the width at half maximum for
each peak is used to determine Γ1 and Γ2. The absorp-
tion spectrum is fit to four Gaussian peaks; three for the
first excited state and one for the second excited state
as shown in Figure 2. The sum of the areas of the first
three peaks is used to calculate the transition moment
to the first excited state, using the method described by
Tripathi et al,[30] while the area of the fourth Gaussian is
used to get the transition moment to the second excited
state. The solid curve is the sum of all four peaks, and
shows that the four-Gaussian theory provides a good fit
to the data. The results are summarized in Table I.
The first hyperpolarizability is determined through

hyper-Rayleigh scattering (HRS), using a femtosecond
pulsed laser (Millennia X + Tsunami with a lock-to-clock
system that ensures 80MHz pulsed output) at a funda-
mental wavelength of λ = 800nm in conjugation with
a low-frequency lock-in amplifier and a signal generator.
Details can be found elsewhere.[31, 32] The measured
HRS hyperpolarizability, using the 90o geometry, yields,

〈

β2
HRS

〉

=
8

21
β2
xxx. (13)

The octupolar symmetry of the compound (which is used
in Equation 13 to determine βxxx directly from an HRS
measurement) was confirmed by the depolarization mea-
surements. Note that the other components of the β
tensor are given by,[33]

βxxx = −βxxy = −βxyx = −βyxx, (14)

while all other tensor components vanish. A demodu-
lation technique is used to determine a fluorescence-free

value to insure that only the hyperpolarizability is be-
ing measured.[34] We note that for AF-455, no fluores-
cence contribution was found at 400nm, which leads to
a more accurate determination of the first hyperpolariz-
ability than is possible with the demodulation technique
when fluorescence is present.
The dipole-free expression for the diagonal component

of the first hyperpolarizability (Eq. 3) for a three-state
model is given by:

βxxx(ω1, ω2) =

2
∑

n=1

2
∑

m 6=n

µ0nµnmµm0 ·Dmn(ω1, ω2), (15)

with the dispersion functions, Dnm(ω1, ω2) as defined
in Eq. 4 and µ ≡ −ex. In the HRS measurement,
ω1 = ω2 = ω. We note that for an infinite number of
states, the standard SOS and dipole-free expressions are
rigorously identical; but when truncated to three states,
the two are different. It is not possible a priori to know
which expression is more accurate. Our strategy is to
use the dipole-free expression because it does not require
knowledge of the dipole moments. The merits of this ap-
proach will be judged by the predictive capability of the
model.
The linear absorption measurement determines all the

transition moments, energies and widths except for µ12.
Thus, given that the first hyperpolarizability is measured
at a known frequency ω, Eq. 15 can be inverted to solve
for µ12 = −ex12. Table I shows all of the parameters
determined from linear absorption spectroscopy and the
measurement of the first hyperpolarizability at a funda-
mental wavelength of 800nm. The three values of µ12

listed in Table I represent the uncertainty range due to
uncertainty in the HRS measurement.
Figure 5 shows the experiment used for determining

the TPA cross-section from the measured two-photon
fluorescence power, a technique that was developed by
Xu and Webb.[35] Details of how the data is related to
the two photon cross-section can be found in the origi-
nal paper.[35] The advantage of this experiment is that
it is a reliable method for determining the TPA cross-
section[36] and is not as susceptible to excited state ab-
sorption as is nonlinear transmission.[37, 38] Here we
briefly describe the issues that are particular to our im-
plementation of the technique.
The sample solution is prepared by adding 0.0958 gram

of AF-455 crystals as received from Wright Patterson Air
Force Base to 200ml optical spectrum grade THF, in a
clean flask at room temperature. The mixture is agi-
tated in an ultrasonic water bath for thirty minutes to
make a uniform solution. Two quartz cuvettes (ordered
as a matched pair) are filled, and labeled S1 and S2, re-
spectively, are filled to 4/5 full with the uniform solution.
These two identical samples are used to calibrate the col-
lection efficiency of the reference and sample arms of the
TPA experiment.
The reference solution is made from 200ml of 100M

Rhodamine B solution by adding 0.00958 grams of Rho-
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E10 (eV) E20 (eV) |µ10| (D) |µ20| (D) Γ10 (eV) Γ20 (eV) |µ12|
upper(D) |µ12|

middle(D) |µ12|
lower(D)

3.0 4.1 12.6 9.4 0.22 0.35 15.5 12.6 9.7

TABLE I. Experimental parameters (from the linear absorption spectrum) and |µ12| measured using HRS. The range of |µ12|
values (upper, middle and lower) reflect the experimental uncertainties associated with HRS. All quantities are local-field
corrected values.
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FIG. 5. (Color online) Schematic representation of the exper-
iment used for measuring the two-photon absorption cross-
section.

damine B powder to 200ml optical spectrum grade
methanol followed by agitation in an ultrasound bath for
30 minutes at room temperature. A clean cuvette is filled
with this solution to 4/5 full and capped tightly.

A sample is excited with a laser beam, and the two-
photon fluorescence signal (integrated over all fluores-
cence wavelengths) is detected with an RCA C31034A-
02 photomultiplier tube (PMT). This PMT is of high
quantum efficiency over a broad range of wavelengths
throughout the visible. Filters are used to remove any
wavelengths corresponding to the pump energy or less,
leaving only the fluorescence spectrum due to two-photon
absorption. The time-integrated current from the PMT
is proportional to the number of two-photon absorptions.
A typical run uses the average over many lasers pulses of

the 10 Hz laser source to decrease noise. The reference is
used to take into account laser fluctuations and is used
as a standard for determining the absolute two-photon
absorption cross-section.
We are able to compute the TPA cross-section of our

unknown compound (AF-455) by comparing the col-
lected fluorescence signal from both the unknown com-
pound and a reference, provided that the TPA cross-
section of the reference is known. We use a standard
reference, Rhodamine B, whose TPA cross-section dis-
persion in the visible region had been previously charac-
terized by Xu and Webb.[35]
In addition to the TPA cross-section of the reference,

this technique also requires knowledge of the fluorescent
quantum yield of both the reference and the unknown
compound; or more precisely, the ratio of their effective
quantum efficiencies. This ratio could not be obtained
from the literature for the range of concentrations used
in our experiments. Therefore, we characterized the ef-
fective quantum efficiency ratio using one-photon excited
fluorescence spectroscopy, and extrapolated the results to
the two-photon regime, assuming that the one- and two-
photon quantum yields are the same since the emission
originates in the same excited state. We stress that such
an assumption is valid only for complex organic molecules
with broad bands where the quantum selection rules are
relaxed; but, not for a simple atom where strict selection
rules apply.
The TPA cross-section of a microscopic unit, σ2, is

directly related to the imaginary part of the second hy-
perpolarizability tensor, γxxxx(−ω;ω, ω,−ω):

σ2 =
16π2h̄

n2λ2
〈Im[γ∗

xxxx(−ω;ω, ω,−ω)]〉, (16)

where n is the refractive index of the solvent, ω and λ
are, respectively, the frequency and the wavelength of
the fundamental beam; and c is the speed of light. Local
field effects result in an effective “dressed” second hy-
perpolarizability (γ∗

xxxx), which is directly related to the
vacuum second hyperpolarizability through a local field
factor.[39] Notice that in Eq. 16, the brackets indicate
the orientational average over all the possible tensor com-
ponents. However, for molecules with D3h symmetry, the
tensor components are related to each other:[33]

γxxxx = γyyyy = 3γxxyy = 3γxyxy = etc . . . , (17)

such as it is possible to derive a direct relationship
between the measured orientational average, and the
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FIG. 6. (Color online) The measured spectrum of the imag-
inary part of the second hyperpolarizability (points) and the
theoretical curve (middle), that is predicted from the mea-

sured value of µ12 (|µ12|
middle). The upper and lower curves

represent the uncertainty in the HRS-determined transition
moment µ12. Note that there are no adjustable parameters

in the theoretical modeling. The linear absorption spectrum,
shifted by a factor of 2 with respect to the wavelenght and
normalized to the peak is shown for comparison.

diagonal component of the second hyperpolarizability.
In this manner, we can directly measure the spec-
trum of the imaginary part of the second hyperpolar-
izability, Im[γxxxx(−ω;ω, ω,−ω)], and compare it with
the spectrum predicted by the theory. The spectrum
of Im[γxxxx(−ω;ω, ω,−ω)] is predicted by substituting
the experimentally characterized values for the energies,
transition moments and linewidths (Table I) into the SOS
expression for the second hyperpolarizability. We use
the dipole-free expression to calculate γxxxx because it
does not require knowledge of the ground and excited
state dipole moments.[21] We do not present the dipole-
free-expression here, but rather refer the reader to the
literature.[21]
Figure 6 shows the theoretically-calculated value of the

imaginary part of γxxxx, as a function of wavelength us-
ing the measured values of the dipole moment matrix
elements, energies, and widths shown in Table I. The up-
per and lower curves show the uncertainty range due to
the experimental uncertainty in determining the excited
state transition moment µ12 using the HRS experiment.
The TPA spectrum was measured with the two-photon

fluorescence experiment, which yielded an isotropic aver-
age over all tensor components of the two-photon absorp-
tion spectrum. Given the D3h symmetry of the molecule,
the isotropic value can be related to the individual tensor
components. Thus, the measured TPA cross-section can
be related directly to the imaginary part of γxxxx.
All of the optical characterization experiments are per-

formed in solution, so for each order (linear, second- and

third-order), the measured quantity is an isotropic ori-
entational average over all the possible tensor compo-
nents that contribute to the response. For a molecule
with D3h symmetry, the relationships between the non-
zero tensor components allow us to compute directly the
value of the diagonal components of the polarizabilities
(αxx, βxxx and γxxxx) from the measured orientational
average.[33] As previously mentioned, the measurement
of the depolarization ratio through HRS using the 90o

geometry,[31, 32] confirmed that AF-455 belongs to the
D3h symmetry group, and hence that we can trust the
values of αxx, βxxx and γxxxx that were obtained through
orientational averaging.

The measured values of the diagonal tensor compo-
nents determined from isotropic averaging as described
above are shown as points with error bars in Figure 6.
We note that since the samples used in all measurements
are liquid solutions, all quantities such as the polarizabil-
ity, hyperpolarizability, transition dipole moments, etc.
are dressed values.[39] Vacuum quantities are then de-
termined using the appropriate local field models.[39]

The theoretical spectrum and the data are in good
agreement and all but one of the data points fall within
the error band of the predicted spectrum. Thus, the ap-
proach of using the dipole-free expressions for the first
and second hyperpolarizability provides a theoretical de-
scription that is consistent with three sets of measure-
ments. In particular, the magnitude of the predicted
spectrum of the imaginary part of the second hyperpolar-
izability through the two-photon resonance is consistent
with the data. While a two-photon resonant peak is ex-
pected in the vicinity of 826 nm (when 2h̄ω = 3eV ),
the shape and the strength of the peak around the reso-
nances are very sensitive to the values of the transition
moments and the linewidths. For example, if the mea-

sured value of µ12 (|µ12|middle) is increased or decreased
by more than 25%, the theoretical prediction would com-
pletely miss the experimental data. This suggests that
our approach may be useful in modeling the dispersion
of the linear and nonlinear susceptibilities of octupolar
molecules with D3h symmetry.

In light of the fact that AF-455 is a complex molecule,
it may appear somewhat surprising that the magnitude
of the predicted spectrum of the imaginary part of the
second hyperpolarizability using an effective three-level
model is in such good agreement with the data. This may
be due to several factors. First, the HRS measurement
was determined near the two-photon resonance, where
the TPA peak is measured so the contributions of the
first excited states are heavily weighted and dominate
the response. In contrast, an off-resonant HRS measure-
ment potentially includes contributions from the tails of
many higher-energy excited states, thus yielding an inac-
curate determination of the transition moment µ12. On-
resonance measurement insures that the influence of the
transition moment µ12 is large. Since the TPA spec-
trum is measured only near the two-photon resonance,
the same set of states are being probed. This set of states
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is well modeled by treating the close-lying states as one
“effective” state, which as we argued in section II C im-
plies that the Franck-Condon approximation is valid for
the description of the optical response of our molecule.
Finally, it is possible that the observed agreement is a
coincidence. Similar studies of other octupolar systems
would determine the general applicability of our method.

It is instructive to apply the same approach to the
three-level model using the standard SOS expressions
under the assumption that the three states are non-
degenerate and have no dipole moment. Using the value
of µ12, determined form HRS measurements and the
standard SOS expression form the hyperpolarizability,
the theoretical value of the second hyperpolarizability
predicts a two-photon absorption spectrum that is two-
orders of magnitude larger than the measured one. This
illustrates how the typical approach can lead to inaccu-
rate results, and supports our argument that the dipole-
free expression may be appropriate for such systems.

We also note that our theory correctly predicts the
shape of the TPA spectrum. It is common practice to
shift the absorption spectrum by a factor of two to ap-
proximate the TPA spectrum. The dotted curve in Fig-
ure 6 was calculated in this way, and the peak renormal-
ized to fit the data. Clearly, the shape is not the same as
the TPA data. This is not surprising because the TPA
spectrum depends also on transitions between excited
states and products of energy denominators while the
linear absorption spectrum depends only on transitions
from the ground state to individual excited states. Thus,
since our theory predicts both the magnitude and shape
of the spectrum, the approach is a promising one for self-
consistently modeling the first three orders of (non)linear
susceptibilities.

Finally, we should point out that our results can be
used to propose a new strategy for the optimization of
octupolar structures. The presence of the central con-
jugated ring with the three nitrogens demands that the
basis set be chosen to span the states of the molecule to
include the subset of the three basis states that span the
ring. Due to the fact that the conjugated branches are
much longer than the radius of the conjugated central
ring, the three excited states (one of them doubly degen-
erate) that result from the basis subset that spans the
branches are close in energy in comparison to the energy
of the other excited states. In the limit when the ratio
between the length of the branches and the ring radius
becomes large, the three excited states would become
closer in energy, so the system would better approximate
a true three-level system, with allowed (x, y) transitions
between the levels.

According to the three-level ansatz,[40] the intrinsic
nonlinear optical response is optimized when only two-
excited states contribute to the optical response. By in-
creasing the ratio between the length of the branches and
the size of the central ring, true octupolar systems could
get closer to the ideal three-level system, which would
maximize the intrinsic nonlinear response.

IV. CONCLUSION

We have introduced an approach that combines mea-
surements, symmetries, and sum rules to fully character-
ize the important states of a molecule that allows all of
the linear and nonlinear susceptibilities to be accurately
modeled with no adjustable parameters. Our approach
is general in that it can be applied to any molecule of any
symmetry class. In the present work, we have illustrated
this approach for an octupolar molecule ofD3h symmetry
that is modeled using three effective excited states. We
have used the dipole-free forms of the SOS expressions
for the first and second hyperpolarizabilities, which are
derived from the sum rules and do not require knowledge
of the ground and excited state dipole moments.
We have shown that the presence of a central conju-

gated ring in a system with D3h symmetry results in
an effective three-level model whose dipole matric and
energies can be fully characterized using linear absorp-
tion spectroscopy and one near-resonant HRS measure-
ment. A key to reducing the number of measurements
required is the use of symmetries and sum rules. This
approach bridges the gulf between the two-level model,
which misses important states, and multilevel models,
that use adjustable parameters to fit the data or results
of semi-empirical calculations that can not be directly
validated by experiment.[41, 42] More importantly, our
approach of combing theory with experiment leads to a
small set of measured quantities that accurately predict
the polarizability, hyperpolarizability, and second hyper-
polarizability. Furthermore, our results show that we can
model the nonlinear optical response in terms of “effec-
tive” broad bands that are composed of closely-lying or
degenerate states and that are easily characterized from
the linear absorption spectrum at room temperature.
Finally, we have proposed a new paradigm to in-

crease the intrinsic nonlinear response of octupolar chro-
mophores with D3h symmetry, based on the inclusion of
a central conjugated ring and the extension of the conju-
gated branches.
Our approach is generalizable to other systems using

an analogous approach, provided that symmetries of the
molecule exist that allow tensor components of the first
(and second) hyperpolarizabilities to be related to each
other. The sum rules, used in conjunction with dipole-
free SOS expressions, can then be used to simplify the
model so that a reduced number of quantities are required
to fully characterize a molecule.

Appendix A: Units in nonlinear optics

In this article we have used cgs-gaussian units to report
the values of the second hyperpolarizability (Fig. 6) and
other experimental values (Table I). This choice of units
is motivated by the fact than in cgs-gaussian units, the

polarization, ~P , and the electric field strength, ~E, have
the same units (statV/cm), and the second hyperpolariz-



11

750 800 850
0.0

0.3

0.6

0.9

1.2

C
onvention II: (10 -58 C

4m
4/J 3)

| 12|lower= 9.7 D

| 12|middle= 12.6 D

| 12|upper= 15.5 D

 Wavelength(nm) 

C
on

ve
nt

io
n 

I: 
(1

0-4
7  m

5 /V
2 )

 Im[
xxxx

(- ; , , - )]

0.0

0.3

0.6

0.9

1.2

 

FIG. 7. (Color online) The measured spectrum of the imag-
inary part of the second hyperpolarizability (points) and the
theoretical curve (middle), that is predicted from the mea-

sured value of µ12 (|µ12|
middle), in S.I. Convention I units

(left axis) and in S.I. Convention II units (right axis). The
upper and lower curves represent the uncertainty in the HRS-
determined transition moment µ12. Note that there are no

adjustable parameters in the theoretical modeling.

ability has units of (cm5/statV 2), sometimes referred to
as esu. Traditionally, experimental values of the second
hyperpolarizability have been reported in esu units.
In contrast, in S.I. units, the polarization has units of

(C/m2) while the field strength has units of (V/m), which
has led to two possible different sets of units for the sec-
ond hyperpolarizability, since in S.I. units there are two
possible conventions for the definition of the nonlinear
susceptibilities.[39] In the first convention (Convention
I), the nonlinear susceptibilities are defined through:

P (n) = ǫ0χ
(n)(E)n, (A1)

where P (n) is the nth-orther polarization, ǫ0 is the vac-
uum permittivity (in units of (F/m)), χ(n) is the nth-
order nonlinear susceptibility and E is the electric field
strength. In this convention, the units of the second hy-
perpolarizability are (m5/V 2).
In the second convention (Convention II), the nonlin-

ear susceptibilities are defined through:

P (n) = χ(n)(E)n, (A2)

and the units of the second hyperpolarizability are
(C4m4J−3).
For completeness, we plot the predicted dispersion and

the experimental data points for the second hyperpolar-
izability in Fig. 7 using S.I. Convention I units (left axis);
and using S.I. Convention II units (right axis).
Finally, in Table I, we have expressed the energies in

units of electron Volts (eV) and the transition dipole mo-
ments in units of Debye (D). These are convenient units
to describe molecular properties because all values are
near unity in the same way that macroscopic values of

length and mass are near unity in SI units. A Debye
is equal to 10−18statCcm in cgs units, or approximately
3.33564× 10−30C.m in S.I. units, while an electron Volt
is approximately 1.602164 × 10−12erg in cgs units, and
approximately 1.602164×10−19J in S.I. units. In this ap-
pendix we report the energies and the transition dipole
moments using strict cgs units (Table II) and using S.I.
units (Table III).

Appendix B: Finding the symmetry-adapted linear
combinations (SALC) basis from the original basis

set under for D3h symmetry and the allowed
transition moments

In this appendix we use group theory to find the re-
ducible representations that are spanned by the differ-
ent choice of bases for the modeling of the AF-455 chro-
mophore. The reducible representation is found by ob-
taining the character table for the different operations
of the group for the chosen initial basis. From there,
we can derive the symmetry-adapted linear combinations
(SALC) basis. For details about the group theory calcu-
lations, please refer to the text by Cotton.[43].

1. Four initial bases

Consider an octupole that is modeled with four or-
thonormal bases |φ1〉, |φ2〉, |φ3〉, and |φ4〉 as shown in
Fig. 3 (top). Table IV shows the character table for the
D3h group. The reducible representation Γred1 that re-
sults from this choice of basis set is presented in the last
row of the character table.
Since we are only concerned with transition dipole mo-

ments that are allowed or disallowed, we will drop the last
column of the character table for the rest of the appendix.
Using group theory, the reducible representation can be
reduced to two A2

′′ and one E′′ irreducible representa-
tions, and the Symmetry Adapted Linear Combinations
(SALCs) can be obtained by applying projection opera-
tors of each of these irreducible representations on molec-
ular orthonormal bases |φ1〉 and |φ4〉.[43] The normalized
SALCs are given by:

|g〉 = 1√
3
(|φ1〉+ |φ2〉+ |φ3〉), (B1)

|e2〉 = 1√
6
(2|φ1〉 − |φ2〉 − |φ3〉), (B2)

|e3〉 = 1√
2
(|φ2〉 − |φ3〉), (B3)

|e1〉 = |φ4〉. (B4)

Group theory allows us to determine how many levels
are degenerate, but does not tell us about the relative
ordering of the levels in terms of their energy. |g〉 and
|e1〉 are the ground state and the non-degenerate excited
state, respectively, corresponding to two A2

′′ irreducible
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E10 E20 |µ10| |µ20| Γ10 Γ20 |µ12|
upper |µ12|

middle |µ12|
lower

(erg) (erg) (statC.m) (statC.m) (erg) (erg) (statC.m) (statC.m) (statC.m)

4.8× 10−12 6.6 × 10−12 12.4 × 10−18 9.4× 10−18 0.35× 10−12 0.56× 10−12 15.5× 10−18 12.6× 10−18 9.7× 10−18

TABLE II. Experimental parameters (from the linear absorption spectrum) and |µ12| measured using HRS in cgs units. The
range of |µ12| values (upper, middle and lower) reflect the experimental uncertainties associated with HRS. All quantities are
local-field corrected values.

E10 E20 |µ10| |µ20| Γ10 Γ20 |µ12|
upper |µ12|

middle |µ12|
lower

(J) (J) (C.m) (C.m) (J) (J) (C.m) (C.m) (C.m)

4.8× 10−17 6.6× 10−17 4.2× 10−29 3.14 × 10−29 0.35 × 10−17 0.56 × 10−17 5.17 × 10−29 4.2× 10−29 3.24 × 10−29

TABLE III. Experimental parameters (from the linear absorption spectrum) and |µ12| measured using HRS in S.I. units. The
range of |µ12| values (upper, middle and lower) reflect the experimental uncertainties associated with HRS. All quantities are
local-field corrected values.

representations, and |e2〉 and |e3〉 are two degenerate ex-
cited states corresponding to the E′′ irreducible represen-
tation. The position of the state |e1〉 is chosen arbitrarily
in Fig. 3 (bottom), which has no significance in our cal-
culations.

We summarize the possible transition moments, di-
rect products of the corresponding irreducible represen-
tations, and the calculated characters in Table V.

A transition moment is allowed only if the direct prod-
uct is or contains the totally symmetric irreducible repre-
sentation, for instance, A1

′ in D3h symmetry. Therefore
the x-, y-allowed transition moments are given in Table
VI, as shown also in Fig 3 (bottom).

2. Six-state initial basis

Now we consider six orthonormal bases |φ1〉, |φ2〉, |φ3〉,
|φ4〉, |φ5〉, and |φ6〉 as shown in Fig. 4. Following the
same procedure as in the case of 4 initial basis (section
B 1, we obtain the following SALCs:

|g〉 = 1√
3
(|φ5〉+ |φ6〉+ |φ4〉), (B5)

|e1〉 = 1√
3
(|φ1〉+ |φ2〉+ |φ3〉), (B6)

|e2〉 = 1√
6
(2|φ1〉 − |φ2〉 − |φ3〉), (B7)

|e3〉 = 1√
2
(|φ2〉 − |φ3〉), (B8)

|e4〉 = 1√
6
(2|φ5〉 − |φ6〉 − |φ4〉), (B9)

|e5〉 = 1√
2
(|φ6〉 − |φ4〉). (B10)

Table VII shows the character table for the D3h group.
The reducible representation Γred2 that results from this
choice of basis set is presented in the last row of the
character table.
Table VIII shows the possible transition moments, di-

rect products of the corresponding irreducible represen-
tations, and the calculated characters.
Finally, we can calculate the allowed x-, y- transition

moments. The x-, y-allowed transition moments are be-
tween |g〉 and |e2, e3〉, |g〉 and |e4, e5〉, |e1〉 and |e2, e3〉,
|e1〉 and |e4, e5〉, |e2〉 and |e3〉, |e2, e3〉 and |e4, e5〉, and
|e4〉 and |e5〉, as shown in Fig. 4 . x- or y- transitions
between |g〉 and |e1〉 are forbidden.
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TABLE IV. The character table for the D3h group. The reducible representation Γred1 that results from the choice of 4 basis
shown in Fig. 3 is presented in the last row.

D3h E 2C3 3C2 σh 2S3 3σv

A1
′ 1 1 1 1 1 1 x2 + y2, z2

A2
′ 1 1 -1 1 1 -1 Rz

E′ 2 -1 0 2 -1 0 (x, y) x2 − y2, xy

A1
′′ 1 1 1 -1 -1 -1

A2
′′ 1 1 -1 -1 -1 1 z

E′′ 2 -1 0 -2 1 0 (Rx, Ry) xz, yz

Γred1 4 1 -2 -4 -1 2

TABLE V. Possible transition moments, direct products of the corresponding irreducible representations, and the calculated
characters for different operations of the group, that result from the choice of 4 basis presented in Fig. 3.

D3h E 2C3 3C2 σh 2S3 3σv

A1
′ 1 1 1 1 1 1 x2 + y2, z2

A2
′ 1 1 -1 1 1 -1 Rz

E′ 2 -1 0 2 -1 0 (x, y) x2 − y2, xy

A1
′′ 1 1 1 -1 -1 -1

A2
′′ 1 1 -1 -1 -1 1 z

E′′ 2 -1 0 -2 1 0 (Rx, Ry) xz, yz

〈g|(x, y)|e1〉 A2
′′E′A2

′′ 2 -1 0 2 -1 0

〈g|(x, y)|e2, e3〉 A2
′′E′E′′ 4 1 0 4 1 0

〈e1|(x, y)|e2, e3〉 A2
′′E′E′′ 4 1 0 4 1 0

〈e2, e3|(x, y)|e2, e3〉 E′′E′E′′ 8 -1 0 8 -1 0

〈g|z|e1〉 A2
′′A2

′′A2
′′ 1 1 -1 -1 -1 1

〈g|z|e2, e3〉 A2
′′A2

′′E′′ 2 -1 0 -2 1 0

〈e1|z|e2, e3〉 A2
′′A2

′′E′′ 2 -1 0 -2 1 0

〈e2, e3|z|e2, e3〉 E′′A2
′′E′′ 4 1 0 -4 -1 0

TABLE VI. Allowed transition moments for the irreducible representation spanned by the initial choice of 4 basis presented in
Fig. 3.

〈g|(x, y)|e2, e3〉 〈e1|(x, y)|e2, e3〉 〈e2|(x, y)|e3〉

〈e2, e3|(x, y)|g〉 〈e2, e3|(x, y)|e1〉 〈e3|(x, y)|e2〉

TABLE VII. The character table for the D3h group and the reducible representation Γred2 that results from the choice of 6
basis shown in Fig. 4.

D3h E 2C3 3C2 σh 2S3 3σv

A1
′ 1 1 1 1 1 1 x2 + y2, z2

A2
′ 1 1 -1 1 1 -1 Rz

E′ 2 -1 0 2 -1 0 (x, y) x2 − y2, xy

A1
′′ 1 1 1 -1 -1 -1

A2
′′ 1 1 -1 -1 -1 1 z

E′′ 2 -1 0 -2 1 0 (Rx, Ry) xz, yz

Γred2 6 0 -2 -6 0 2
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TABLE VIII. Possible transition moments, direct products of the corresponding irreducible representations, and the calculated
characters the for different operations of the group, that result from the choice of 6 basis presented in Fig. 4.

D3h E 2C3 3C2 σh 2S3 3σv

A1
′ 1 1 1 1 1 1 x2 + y2, z2

A2
′ 1 1 -1 1 1 -1 Rz

E′ 2 -1 0 2 -1 0 (x, y) x2 − y2, xy

A1
′′ 1 1 1 -1 -1 -1

A2
′′ 1 1 -1 -1 -1 1 z

E′′ 2 -1 0 -2 1 0 (Rx, Ry) xz, yz

〈g|(x, y)|e1〉 A2
′′E′A2

′′ 2 -1 0 2 -1 0

〈g|(x, y)|e2, e3〉 A2
′′E′E′′ 4 1 0 4 1 0

〈g|(x, y)|e4, e5〉 A2
′′E′E′′ 4 1 0 4 1 0

〈e1|(x, y)|e2, e3〉 A2
′′E′E′′ 4 1 0 4 1 0

〈e1|(x, y)|e4, e5〉 A2
′′E′E′′ 4 1 0 4 1 0

〈e2, e3|(x, y)|e2, e3〉 E′′E′E′′ 8 -1 0 8 -1 0

〈e2, e3|(x, y)|e4, e5〉 E′′E′E′′ 8 -1 0 8 -1 0

〈e4, e5|(x, y)|e4, e5〉 E′′E′E′′ 8 -1 0 8 -1 0

〈g|z|e1〉 A2
′′A2

′′A2
′′ 1 1 -1 -1 -1 1

〈g|z|e2, e3〉 A2
′′A2

′′E′′ 2 -1 0 -2 1 0

〈g|z|e4, e5〉 A2
′′A2

′′E′′ 2 -1 0 -2 1 0

〈e1|z|e2, e3〉 A2
′′A2

′′E′′ 2 -1 0 -2 1 0

〈e1|z|e4, e5〉 A2
′′A2

′′E′′ 2 -1 0 -2 1 0

〈e2, e3|z|e2, e3〉 E′′A2
′′E′′ 4 1 0 -4 -1 0

〈e2, e3|z|e4, e5〉 E′′A2
′′E′′ 4 1 0 -4 -1 0

〈e4, e5|z|e4, e5〉 E′′A2
′′E′′ 4 1 0 -4 -1 0


