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Abstract

Controllable and dispersive magnetic permeability in the metamaterials (MMs) provide us more

freedoms to harness the propagation of ultrashort electromagnetic pulses at will. Here we discuss

the controllability of the Raman soliton self-frequency shift (SSFS) in the MMs with a nonlinear

electric polarization. First, we derive a generalized nonlinear Schrödinger equation suitable for few-

cycle pulse propagation in the MMs with delayed Raman response, and demonstrate the Raman,

high-order Raman and high-order nonlinear dispersion terms occurring in this equation. Second,

we present a theoretical investigation on the controllability of the Raman SSFS in the MMs.

Particularly, we identify the combined effects of the anomalous self-steepening (SS), third-order

dispersion (TOD) and Raman scattering on SSFS. It is shown that the positive SS effect suppresses

SSFS, however the negative SS effect enhances SSFS, and the positive TOD leads to the deceleration

of SSFS. Finally, the effects of SS and TOD on the SSFS of the second-order soliton are also

discussed.
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I. INTRODUCTION

Metamaterials (MMs) are artificial structures that display properties beyond those avail-

able in naturally occurring materials [1, 2]. MMs host a number of unusual properties [3],

and the controllable optical magnetic responses are essential for various applications such as

perfect len [4], superlen [5, 6], subwavelength waveguides and antennas [7, 8], and electro-

magnetic cloaking devices [9, 10]. Recently, the realizability of the optical MMs [1, 11, 12]

and achievable nonlinear MMs [13, 14] have stimulated many investigations on the nonlinear

optical properties of the MMs. Especially, the rich and novel linear and nonlinear electro-

magnetic properties enable MMs to be new but potential candidate for stable soliton and

other nonlinear phenomena. The electromagnetic (EM) pulse propagation equation in the

nonlinear MMs has been proposed, including the nonlinear interaction of ultrashort pulse

with MMs [15–19], modulation instability (MI) [20–22] and optical soliton [23, 24]. It is

found that the linear and nonlinear coefficients of the propagation equations in the MMs

can be tailored through tuning the linear properties of the MMs to attain any combination of

signs unachievable in ordinary matter, and shown significant potential to realize a wide class

of solitary waves and ultrashort pulse propagation [20–22]. It is also indicated that negative

refraction not only brings some new features to MI, but also makes MI possible, which is

otherwise impossible in ordinary material [20–22]. Furthermore, the dispersive magnetic

permeability generates more new nonlinear effects, including the anomalous self-steepening

(SS) effect, second-order nonlinear dispersion and other high-order nonlinear dispersion.

Particularly, the anomalous SS effect and second-order nonlinear dispersion lead to the sig-

nificant changes of the conditions for the MI and soliton, comparing with the case in an

ordinary positive-index material. Hence, the controllable nonlinear MMs will provide us

more freedoms to manipulate the ultrashort pulse and soliton.

In the present paper, we intend to give a systematic investigation of the Raman Soliton

self-frequency shift (SSFS) phenomenon associated with the novel optical properties of the

MMs. SSFS is a well known nonlinear phenomenon that the mean frequency of the short

pulse undergoes a continual redshift, which is induced by the Stimulated Raman scattering

(SRS) effect. Because of SRS effect, the energy of the short pulse is continuously transferred

from higher to lower frequency components so that the whole spectrum moves toward the

longer wavelength region during the propagation in the nonlinear material. In 1986, Mitschke
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et al. [25] firstly observed the SSFS in the optical fiber , then the theoretic analysis was

given by Gordon [26] in the same year. Since then SSFS has been investigated extensively in

the various optical fibers [27], and many applications are demonstrated including supercon-

tinuum generation [28], femtosecond pulse sources [29], analog-to-digital conversion [30] and

signal processing [31]. Hence, it is very important to manipulate the SSFS in different con-

ditions. For this purpose, various methods have been proposed to control SSFS, including

suppressing the SSFS by bandwidth-limited amplification [32–34], cross-phase modulation

[35], upshifted filtering [36], negative dispersion slope [37] and self-steepening (SS) [38] or

enhancing the SSFS by reducing the initial pulse width [39], optimizing the photonic crystal

fibers [40, 41]. However, the ability to manipulate SSFS by using conventional nonlinear

materials is limited. Unique EM properties of the MMs will provide an opportunity for

harnessing SSFS, including both enhancing or suppressing SSFS.

Our focus is on the investigation of the controllability of Raman SSFS in nonlinear MMs.

But, so far, the propagation characteristics of ultrashort EM pulse propagation in nonlinear

MMs with delayed Raman response are not clearly revealed. Only the competition between

Raman term and SS effect is investigated [24]. To unfold the role of the dispersion magnetic

permeability on Raman scattering term and demonstrate the controllability of Raman SSFS

in nonlinear MMs, in Sec. II, we give a simple derivation for the generalized nonlinear

Schrödinger equation (NLSE) suitable for few-cycle pulse propagation in the MMs. Then,

the linear and nonlinear characterization parameters described by Drude model are discussed

in Sec. III.A. In Sec. III. B, by utilizing the standard split-step Fourier method, the physical

mechanism of the controllable SSFS in the nonlinear MMs is investigated. Finally, the results

achieved are summarized in Sec. IV.

II. THEORETICAL MODEL FOR EM PULSE PROPAGATION IN NONLINEAR

MMS WITH DELAYED RAMAN RESPONSE

Two major theoretical models have been considered so far to describe the physics of the

EM pulse propagation in the nonlinear MMs. The first model is the envelope equation of

the nonlinear Schrödinger type, which reduces the second-order wave equation for the EM

field to a simple first-order NLSE for the envelope. In the framework of the slowing varying

envelope approximation (SVEA), generalized NLSEs for EM pulse propagation in the MMs
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with both nonlinear electric polarization and nonlinear magnetization are presented [17–19].

However, the NLSE in the framework of SVEA can be applied only to the EM pulse whose

temporal envelope changes slowly as compared with an optical cycle, and it will be broke

down even for initial pulses that are many optical cycles long [42]. Going beyond the usual

SVEA, Scalora et al. [15] investigated the propagation of EM pulses at least a few tens

of optical cycles in MMs. After that, Wen et al. [20, 21] obtained a more general NLSE

suitable for few-cycle pulse propagation in MMs.

The second model is the unidirectional optical pulse propagation equation (UPPE) for

EM field [43, 44]. Abandoning the envelope concept and operating directly with pulse field,

Kinsler has derived the UPPE for the materials with both electric and magnetic dispersion

and nonlinearity based on the directional field approach [44]. This requires only a single, well-

defined approximation to reduce a one-dimensional bidirectional forward-backward coupled

model down to a unidirectional first-order wave equation. The importation approximation is

that the pulse evolves only slowly on the scale of a wavelength, which is remarkably robust

for all physically realistic parameter values [45]. UPPE is proposed firstly by Kolesik et

al. to provide a seamless transition form Maxwell’s equation to the various envelope-based

models [46, 47]. This approach has no intrinsic bandwidth restrictions, makes no demands

on the pulse profile, allows for an arbitrary dispersion, and does not require a co-moving

frame. And that the NLSE previously published can be derived from the UPPE so long as

we select appropriate additional approximations in the UPPE [43, 44, 48].

In order to obtain the propagation equation in the nonlinear MMs with the delayed Raman

response, we generalize the derivation of the NLSE based on our works previously [20–22].

We assume that the pulse is propagating in uniform, bulk material, in which there are no free

charges and no free currents flow, and under the condition of a nonlinear polarization [13].

To describe electromagnetic fields propagating in dispersive MMs, we start with Maxwell

equations, ∇×E = −∂tB, ∇×H = ∂tDL + ∂tPNL, ∇ ·D = 0 and ∇ ·B = 0, where E and

H are electric and magnetic fields, respectively, and D and B are electric and magnetic flux

densities. D = DL+PNL, DL = εE, B = µH, with ε and µ being the medium permeability

and permeability respectively, PNL is the nonlinear polarization which is assumed to be

related to the electric field by the relation

PNL (r, t) = ε0χ
(3)E (r, t)

∫ t

−∞
R (t− t1) |E (r, t1) |

2dt1, (1)
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where it is assumed that the electric and the induced polarization vectors point along the

same direction. χ(3) is the third-order susceptibility, R(t) is the Raman response function

[49]. In the present paper, we focus on the influence of the linear and nonlinear EM properties

on the SSFS, hence we assume that the Raman response function in the MMs has the similar

form as that in the optical fiber.

It is convenient to work in the frequency domain to deal with the problem of pulse

propagation in the dispersive medium. From the Maxwell equations we can obtain the

following wave equation in frequency domain,

∂2Ẽ (z, ω)

∂z2
= ω2µεẼ (z, ω) + ω2µP̃NL. (2)

For simplicity, we consider one longitudinal spatial coordinate and time. And we assume

that the electric field E propagates along the z directional, and both E and nonlinear po-

larization PNL are polarized parallel to the x axis. In addition, we assume the transverse

inhomogeneities of the medium polarization to be small. The tilde variables stand for the

Fourier transform of the corresponding untilde variables.

The purpose to transform Maxwell’s equations in temporal domain into frequency space

is that in frequency space we can expand ǫ(ω) and µ(ω) in powers of ω, thus enabling us

to treat the material parameters as a power series which we can truncate to an appropriate

order. However for simplicity it is better to expand ωǫ(ω) and ωµ(ω) about a suitable ω0

instead,

ωε(ω) =
∞
∑

m=0

[

Fm

m!
(ω − ω0)

m

]

, (3)

ωµ(ω) =
∞
∑

m=0

[

Gm

m!
(ω − ω0)

m

]

, (4)

where Fm = ∂m [ωε(ω)] /∂ωm|ω=ω0
, Gm = ∂m [ωµ(ω)] /∂ωm|ω=ω0

. Substituting Eqs. (3) and

(4) into Eq. (2), we have

∂2Ẽ

∂z2
= −

∞
∑

m=0

dm(ω − ω0)
mẼ − ω

∞
∑

m=0

Gm

m!
(ω − ω0)

mP̃
NL

, (5)

where dm =
m
∑

l=0
FlGm−l/ [l! (m− l)!].

We introduce an envelope and carrier form for the field in the usual way, E(z, t) =

(1/2)A(z, t) exp (ik0z − iω0t) + c.c, where k0 is the wave number and ω0 is the carrier fre-

quency. With this envelope-carrier substitution and taking the inverse Fourier transform of

5



Eq. (5), the propagation equation in the moving reference frame T = t− z/vg, Z = z, is

∂A

∂Z
= −

iβ2

2

∂2A

∂T 2
+

∞
∑

m=3

im+1δm
m!

∂mA

∂Tm
+

i

2k0

(

∂2A

∂Z2
−

2

vg

∂2A

∂T∂z

)

+
∞
∑

m=0

im+1γm
m!

∂m

∂Tm

(

1 +
i

ω0

∂

∂T

)

[

A (Z, T )
∫ ∞

−∞
R (T ′) |A (Z, T − T ′)|

2
dT ′

]

. (6)

where vg = 2k0/ (F0G1 + F1G0) is the group velocity, β2 = δ2 −
(

k0v
2
g

)−1
is group velocity

dispersion (GVD), δm = m!dm/ (2k0) and γm = ω0χGm/ (2k0) characterize the dispersive

and nonlinear properties of the material, respectively. We have not made any further approx-

imations in the derivation of Eq. (6), hence it is suitable for few-cycle pulses propagating in

the MMs.

For pulses wide enough to contain many optical cycles, the convolution integral in Eq.(6)

can be approximated by |A|2 − TR∂ |A|
2 /∂T , where TR is the first moment of the Raman

response function. We thus can simplify Eq. (6) to the following form

∂A

∂Z
= −

iβ2

2

∂2A

∂T 2
+

∞
∑

m=3

im+1δm
m!

∂mA

∂Tm
+

i

2k0

(

∂2A

∂Z2
−

2

vg

∂2A

∂T∂Z

)

+
∞
∑

m=0

im+1γm
m!

∂m

∂Tm

(

1 +
i

ω0

∂

∂T

)(

|A (Z, T )|2A− TRA
∂ |A|2

∂T

)

, (7)

We now calculate the first order non-SVEA correction terms by using Eq. (7) to evaluate

∂2A/∂Z2 and ∂2A/∂T∂Z [15]. Neglecting the dispersion terms higher than second-order

and higher order nonlinear terms,

∂2A

∂Z2
≈ −

β2
2

4

∂4A

∂T 4
− γ2

0 |A|
4A +

γ0β2

2

∂2

∂T 2

(

|A|2A
)

−
γ0β2

2
A2∂

2A∗

∂T 2
+ γ0β2 |A|

2 ∂
2A

∂T 2
, (8)

∂2A

∂T∂Z
≈ −

iβ2

2

∂3A

∂T 3
+ iγ0

∂

∂T

(

|A|2A
)

. (9)

Inserting Eqs. (8) and (9) in Eq. (7), keeping the dispersion terms to third order and

the nonlinear terms to second order derivatives of time, we finally obtain the propagation

equation first order in the propagation distance

∂A

∂Z
= −

iβ2

2

∂2A

∂T 2
+

β3

6

∂3A

∂T 3
+ iγ0 |A|

2A− iγ0σ |A|4A− γ0S1
∂

∂T

(

|A|2A
)

−iγ0S2
∂2

∂T 2

(

|A|2A
)

− iγ0TRA
∂ |A|2

∂T
− γ0T

′
R

∂

∂T

(

A
∂ |A|2

∂T

)

+iγ0η

(

2 |A|2
∂2A

∂T 2
−A2∂

2A∗

∂T 2

)

, (10)
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where β3 = δ3 − 3β2/ (k0vg) is the third-order dispersion (TOD), σ = γ0/ (2k0) is saturation

nonlinearity, S1 = 1/ω0+γ1/γ0− (k0vg)
−1 and S2 = γ1/ (ω0γ0)−β2/ (4k0)+γ2/ (2γ0) are SS

and second order nonlinear dispersive coefficients, respectively, T ′
R = − (1/ω0 + γ1/γ0) TR

is second order Raman effect coefficient, and η = β2/ (4k0) is the complex higher order

nonlinear coefficient. It can be found that the Raman scattering term is not influenced by the

properties of the MMs, however the high-order Raman effect coefficients will be influenced

by the dispersive magnetic permeability of the MM. These properties will provide us more

methods to control the propagation of the soliton and ultrashort pulse.

III. THE CONTROLLABLE RAMAN SOLITON SELF-FREQUENCY SHIFT IN

METAMATERIALS

To specially elucidate the Raman SSFS in MMs, we keep the linear dispersion terms to

the third order, only keep the first order time derivative of nonlinearity terms and neglect

the fifth-order nonlinearity. Thus Eq. (10) becomes

∂A

∂z
= −

iβ2

2

∂2A

∂T 2
+

β3

6

∂3A

∂T 3
+ iγ0[|A|

2A+ iS1
∂

∂T

(

|A|2A
)

− TRA
∂ |A|2

∂T
], (11)

This simplified equation has the same form as that in Ref. [24]. It can also be derived from

the UPPE [44] so long as we make appropriate additional approximations. For the purposes

of computations, it is convenient to rewrite Eq. (11) in normalized units. Introducing the

normalized variables τ = T/Tp, ξ = Z/|ld2|, and U = A/A0, where Tp is the duration of the

input pulse, A0 is the amplitude of the input field, and defining the mth-order dispersion

length, Ldm = Tm
p /βm, the nonlinear length, Lnl = (γ0A

2
0)

−1
, we can transform Eq. (11)

into the normalized form

∂ξU = −
isgn(β2)

2
∂2
τU +

b3
6
∂3
τU + iϑN2

[

|U |2 U + is1∂τ
(

|U |2 U
)

− τRU∂τ |U |2
]

. (12)

where ϑ = ±1 for focusing and defocusing nonlinearity respectively; N2 = |Ld2|/|Lnl|, N is

the soliton-order; b3 = |Ld2| /Ld3, s1 = S1/Tp, τR = TR/Tp. Clearly, as the pulse duration

Tp decreases, s1 and τR increase, meaning that the SS and Raman effects become more

important, like the linear dispersion.
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FIG. 1: (Color Online) SS coefficient s1, GVD parameter β2, normalized TOD parameter b3 versus

ω̃ for ωpm/ωpe = 0.8. β2 is calculated in units of 1/(cωpe), s1 and b3 in units of s.

A. The properties of metamaterial described by Drude model

For an ideal lossless MMs, the frequency dispersion εr(ω) and µr(ω) can be described by

the Drude model [4], εr = 1−ω2
pe/ω

2, µr = 1−ω2
pm/ω

2, where ωpe and ωpm are the respective

electric and magnetic plasma frequencies. For simplicity, we introduce scaled frequencies,

ω̃ = ω/ωpe, ω̃p = ωpm/ωpe. Thus the refractive index is n =
√

1− 1/ω̃2
√

1− ω̃2
p/ω̃

2, the

group velocity is vg = nc/(1− ω̃2
p/ω̃

4), and the GVD and TOD are

β2 =
1

ωpecnω̃

{

(

1 + 3ω̃2
pω̃

−4
)

−
1

n2

(

1− ω̃2
pω̃

−4
)2
}

, (13)

β3 = −
12ω̃2

p

ncω2
peω̃

6
−

3β2

(

ω̃4 − ω̃2
p

)

ωpen2ω̃5
. (14)

Then the normalized TOD coefficient and SS coefficient are

b3 = sgn (β3) s

∣

∣

∣

∣

∣

∣

∣

12ω̃2
pω̃

−4

(

1 + 3ω̃2
pω̃

−4
)

− n−2
(

1− ω̃2
pω̃

−4
)2 +

3
(

ω̃4 − ω̃2
p

)

n2ω̃4

∣

∣

∣

∣

∣

∣

∣

, (15)

s1 = s

(

1 +
ω̃2
p − ω̃4

n2ω̃4
+

ω̃2 + ω̃2
p

ω̃2 − ω̃2
p

)

, (16)

where s = 1/(ω0Tp). If we assume that ωpe > ωpm, we know that in Drude model, MMs

can be divided into three regions: (1) in the spectral interval ωpm < ω < ωpe, the linear

electromagnetic waves are evanescent (k2(ω) < 0). This is a band gap, where µr(ω) > 0

but εr(ω) < 0. (2) negative-index region with ω < ωpm, and (3) positive-index region with
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ω > ωpe. Moreover, to disclose the parameters characteristics in Eq. (12), we have plotted

the variation of β2, b3 and s1 in Fig. 1 for ω̃p = 0.8. β2 is calculated in units of 1/(cωpe),

and b3 and s1 in units of s. Obviously, in the negative-index region, β2 and s1 can be either

positive or negative, the zero GVD point and zero SS point are located at ω̃ ≈ 0.709 and

0.634 respectively. While in the positive-index region, β2 is always positive, but s1 can be

either positive or negative with the second zero SS point occurring. In both regions, b3 is

always positive. Furthermore, by controlling the structure parameters of MMs, the zero

GVD point can be shifted back and forth, and the SS and TOD can also be engineered.

B. Raman soliton self-frequency shift in the nonlinear MMs

Now, we discuss the Raman SSFS in the MMs. To disclose the roles of SS and TOD in

the SSFS, we numerically solve Eq. (12) using the standard split-step Fourier method for

ω̃p = 0.8 in the case of self-focusing nonlinearity. In our early article [20], we have found

that the negative SS moves the center of soliton toward the leading side, opposite to the case

of positive SS. Recently, Boardman et al. [23, 24] show that the negative SS can be used to

combat Raman scattering, however the influences of anomalous SS on the Raman SSFS are

still unfolded. We will particularly concern about the Raman SSFS in the negative-index

region due to the novel properties of the electromagnetic pulse propagating in this region,

and the results in the positive-index region can be disposed similarly. In the negative-

index region, SS coefficient can be positive, negative or zero, we choose three typical values

s1 = 0, 0.2 and −0.2 in the simulation. Moreover, the typical Raman coefficient τR = 0.1 is

assumed. An ideal optical soliton,

A(T, z = 0) = A0Sech(T/Tp), (17)

is defined as the input pulse, where A0 is the soliton amplitude and Tp is the pulse width. In

the simulations, we adopt the normalized amplitude and width, assume that the input pulse

is U(τ, ξ = 0) = Sech(τ). First, we focus on the effects of the anomalous SS on the SSFS,

and neglect the effect of TOD. To disclose the interplay between SS and Raman scattering,

we show the time evolution of the fundamental soliton (N=1) in different SS coefficients for

τR = 0.1 in the Fig. 2. The output pulse at ξ = 30, is shown in Fig. 2(a), it seems to

indicate that the negative SS effect accelerates the movement toward the back of the pulse,
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FIG. 2: (Color Online) Time evolution of the fundamental soliton in different SS coefficients in

the anomalous GVD.(a)The output pulse intensity at the normalized distance ξ = 30, the input

pulse is also indicated in solid line; (b), (c) and (d) are the contour maps of the pulse evolution for

s1 = −0.2, 0 and 0.2, respectively. Here, τR = 0.1

and positive SS coefficient decelerates the movement. To disclose the interplay for the MMs

between SS effect and Raman scattering, in Fig. 2(b)-(d), we have plotted the contour maps

of the pulse evolution for s1 = −0.2, 0 and 0.2, respectively. If we neglect the SS effect

and only consider the Raman Scattering, as shown in Fig. 2(c), it is found that Raman

scattering moves the soliton toward the back of the pulse. However, in our early work [20],

we have shown that the negative SS effect moves the pulse to the leading sides, opposite to

the case of positive SS. Obviously, here is a process of competition between the negative SS

effect and Raman scattering effect. The SS effect prevails within a short distance, leading

to the movement toward the front of the pulse, as the propagation distance is increasing ,
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FIG. 3: (Color Online) Spectra evolution of the fundamental soliton in different SS coefficients in

the anomalous GVD.(a)The output pulse spectra at the normalized distance ξ = 30; (b), (c) and

(d) are the contour maps of the spectra evolution for s1 = −0.2, 0 and 0.2, respectively. Here,

τR = 0.1

Raman scattering is gradually beginning to occupy the dominant role and shift the soliton to

trailing sides, as shown in Fig. 2(b). Moreover, the positive SS effect and Raman scattering

both act to accelerate the movement toward the trailing sides, as shown in Fig. 2(d). At

the longer distances, the behaviors of the soliton evolution become very complex due to the

interplay of the SS effect and Raman scattering term, but we find that negative SS effect

actually accelerates the movement toward the trailing edges, opposite to the case of the

positive SS effect.

Now, let’s check the influences of the SS effect on the SSFS. Fig. 3 shows the soliton

evolution spectrum of the fundamental soliton for different SS coefficients. It is clear that
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FIG. 4: (Color Online) SSFS fitted as a function of the propagation distance for different SS

coefficients, τR = 0.1.

the positive SS decelerates SSFS, as shown in Fig. 3(d), this result is very close agree

with the prediction by Voronin et al [38] in the conventional optical fiber. But there is

still no correlative work for the role of the negative SS effect in the SSFS. As seen from

Fig. 3(b), we find that the frequency shift is enhanced markedly by the negative SS effect,

meanwhile the spectra are widened as shown in Fig. 3(a). These results show that the

negative SS effect has a valuable potential for supercontinuum generation and broadband

source. Moreover, the engineerable linear and nonlinear electromagnetic properties of MMs

allow us to manipulate the SS coefficient elaborately, and this controllable SS effect causes

the engineerable Raman SSFS. To demonstrate this, in Fig. (4) we compare the SSFS fitted

as the propagation distance for different SS coefficients from positive to negative values.

Within the long propagation distance, it is straightforward to see that the positive SS effect

suppresses the SSFS, and the frequency movements display a dramatic deceleration and

become saturated gradually as the propagation distance increased. The larger the positive

SS coefficient is, the less the frequency shifts when ξ > 15. However, the negative SS

effect shifts the soliton spectra toward the lower frequency constantly with the increasing

propagation distance, and the larger the absolute values of the negative SS coefficient is, the

greater the frequency shifts when ξ > 15. The frequency shifts for s1 = −0.3 are almost

three times as the frequency shifts without considering the SS effect at ξ = 30. Therefore,

we can obtain arbitrary SSFS as we expected by manipulating the SS effect in MMs.
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FIG. 5: (Color Online) Spectra evolution of the fundamental soliton in different TOD in the

anomalous GVD. (a)The output pulse spectra at the normalized distance ξ = 30; (b), (c), (d) and

(e) are the contour maps of the spectra evolution for b3 = 0, 0.1, 0.3 and 0.5, respectively. Here,

τR = 0.1, s1 = −0.2.

In the above discussions, TOD has been neglected. However, normalized TOD coefficient

β3 is inversely proportional to the pulse width Tp, hence TOD becomes necessary for few-

cycle pulses. Fig. 5 shows the spectra evolution of the fundamental soliton in different TOD

in the anomalous GVD, here we assume that τR = 0.1,s1 = −0.2. For the sake of contrast,

we have chosen four TOD coefficients, b3 = 0, 0.1, 0.3 and 0.5. TOD coefficient is always

positive in the MMs described by the Drude model, which can be seen from Fig. 1. If b3 = 0,

the main peak shifts toward the leading side at a rapid rate with the increasing distance

13



FIG. 6: (Color Online) Spectra evolution of the second-order soliton in different SS coefficient in

the anomalous GVD. (a)The output pulse spectra at the normalized distance ξ = 2; (b), (c), and

(d) are the contour maps of the spectra evolution for s1 = −0.05, 0 and 0.05, respectively. Here,

τR = 0.1, b3 = 0.

due to the interplay of the SS effect and Raman scattering, as shown in Fig. 5(a). However,

when TOD is taken into consideration the main peak shift of the pulse is suppressed, as

shown in Fig. 5 (b)-(e). Moreover, the frequency shift is decelerated with the increasing

TOD coefficients. The frequency shift of the main peak at b3 = 0.5 has been suppressed to

the half of the frequency shift comparing with the case of neglecting the TOD coefficient.

Finally, we give a simple discussion about the interplay between the SS effect and Raman

scattering on the higher-order solitons. Here, Fig. 6 shows such an example for a second-

order soliton (N=2) by solving Eq. (12) numerically with τR = 0.1 and three different SS

coefficients s1 = −0.05, 0 and 0.05. For high-order soliton, even relative small values of

τR and s1 will lead to the decay of higher-order soliton into its constituents at a very short
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distance. For the spectra evolution of the second-order soliton, the comparison of Fig. 3 and

Fig. 6 shows that even a small negative SS coefficient (s1 = −0.05) has achieved relatively

large frequency shift of the main peak. This shift is far greater than the frequency shift of

the fundamental soliton at a larger negative SS coefficient (s1 = −0.2). Like the frequency

shift for the fundamental soliton, the negative SS coefficient enhances the SSFS and positive

SS suppresses the SSFS. Another important difference seen between Fig. 3 and Fig. 6 is that

the pulse spectrum of the second-order soliton evolves into several bands, and these trailing

frequency bands also shift to lower frequency with the increasing propagation distance.

Obviously, the negative SS coefficient leads to wider spectrum width, which suggests that

the nonlinear MMs have valuable potentials for supercontinuum generation and broadband

source.

IV. CONCLUSION

We have presented a theory to investigate the Raman SSFS in the nonlinear MMs. We

derive a generalized NLSE suitable for few-cycle pulse propagation in the MMs with delayed

Raman response, which is formally similar to the case of ordinary positive-index materials,

but has an anomalous SS parameter, high-order Raman terms and high-order nonlinear

dispersion. Then we show that the SSFS in nonlinear MMs with the controlled linear and

nonlinear electromagnetic properties can be tailored. In particular, it is found that the

negative SS term can enhance SSFS and the positive SS term will suppress SSFS within

the long propagation distance. Moreover, we discuss the influence of TOD on SSFS, and

show that TOD will decelerate the SSFS. Finally, the interplay between the anomalous

SS effect and Raman scattering on the second-order soliton is discussed. For high-order

soliton, we show that even relative small values of negative SS parameter can achieve relative

large frequency shifts. Numerical calculations indicate that the negative SS coefficient leads

to wider spectrum width, means that the nonlinear MMs are the valuable candidates for

supercontinuum generation and broadband source.
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Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,”J.

Opt. Soc. Am. B, 26, 2064-2071 (2009).

[42] J. K. Ranka and A. Gaeta, “Breakdown of the slowly varying envelope approximation in the

self-focusing of ultrashort pulses ,” Opt. Lett., 23, 534 (1998).

[43] P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A, 81,

013819(2010).

[44] P. Kinsler, “A uni-directional optical pulse propagation equation for materials with both

electric and magnetic responses,” Phys. Rev. A, 81, 023808(2010).

[45] P. Kinsler, “Limits of the uni-directional pulse propagation approximation,” J. Opt. Soc. Am.

B, 24, 2363(2007).

[46] M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional optical pulse propagation equa-

tion,” Phys. Rev. Lett., 89, 283902(2002).

[47] M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From

Maxwell??s to unidirectional equations,” Phys. Rev. E, 70, 036604(2004).

[48] G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modeling

of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express, 15,

5382(2007).

[49] G. P. Agrawal. Nonlinear Fiber Optics, 3nd edn. (San Diego, Academic, 2001).

19


