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We present a numerical method for solving the Maxwell-Bloch equations describing pulse 
propagation for a two-level medium. The method is accurate, efficient, stable and well suited for 
this type of simultaneous equations. By applying the numerical scheme we investigate the 
evolutions of pulse area, pulse propagation, pulse velocity and spectral shapes under both 
homogeneous and inhomogeneous broadening conditions. The results show that, the area 
evolution and pulse reshaping procedure are significantly influenced by detuning and 
inhomogeneous line shape, which also impacts the oscillation tail and pulse-peak. Besides, the 
pulse-peak traces indicated the pulse velocity always increases with greater deviation in pulse area 
value from the value 2π. We also demonstrate the pulse velocity increased for a larger detuning or 
a wider inhomogeneous line shape. Furthermore, spectral feature shows that pulse spectra evolve 
into an oscillating shape. 

 

I. INTRODUCTION 

The coherent interaction of ultrashort optical pulses 
with resonant medium is a fundamental problem in 
quantum optics [1]. Recent advance in ultrafast laser 
technology has made it possible to generate extremely 
short and intense pulses such as single attosecond [2, 3] 

pulses. It has attracted much interest in the interaction 
of ultrashort pulse and atoms over the world. In the 
ultrafast regime, frequently in femtosecond, the 
relaxation has insufficient time to destroy the 
coherence, which makes the new phenomena of 
light-matter interaction becomes very interesting in 
such transient coherent processes.  

In an inhomogeneously broadened medium, the 
famous area theorem [4] governs the coherent 
nonlinear transmission of ultrashort optical pulses 
through materials that have an absorption resonance 
frequency, which the atomic relaxation is neglected. 
Even the profile of few-cycle pulses evolution can still 
be predicted by the area theorem [5]. A new derivation 
of the area theorem including pulse chirping is also 
obtained and can be used to investigate pulse phase 
evolution [6]. In most theoretical analysis for pulses at 
the sub-femtosecond level, the effects of relaxation of 
the atomic system are neglected since the durations of 
the pulses are far smaller than the decay time. While 
considering the relaxation time, the effects of 
relaxation rate on pulse area evolution has been 
extensively investigated [7], which shows numerically 
that the stabilization of pulse area is not permanent 
because the energy losses that due to the spontaneous 
decay. By zero-area pulse [8], in the case of both off 
resonance and on resonance zero-area pulse can 
produce complete population transfer in a two state 

quantum system [9]. As to near-resonant case, it also 
presents the generalized pulse area is stabilized for 
relatively small detunings [10]. For the phase of 
ultrashort pulse in two-level systems, the measurement 
of pulse phase is studied in theory and experiment [11, 
12]. As to the spectral behavior of a pulse passes 
through an atomic system, many literature is devoted 
to the spectral modifications [13], the spectral feature 
appears transition frequency and has significant 
deviation from a simple Lorentzian dip for larger pulse 
area [14,15]. The changes in the spectrum of a 
near-resonant pulse propagating through a two-level 
atomic system are also theoretically and 
experimentally studied [16]. It was shown that at the 
transition frequency the spectrum structure of the 
transmitted pulse depends sensitively on the pulse area, 
the pulse detuning and the absorption path length. 
Pulse shape is a visual display of pulse evolution in 
medium. It is reported that using a strong off-resonant 
ultrashort pulse one can control the shape of a weak, 
resonant, ultrashort pulse propagating in an assembly 
of two-level atoms [17]. Actually, without the driven 
pulse, the propagation of ultrashort laser pulses in a 
resonant atomic medium can leads to strong reshaping 
effects by dispersion [1, 18].  

Despite the above extensive work, in comparison, 
only few theoretical or experimental studies [17] were 
devoted to the influence of the absorption spectral 
bandwidth on the pulse shape, the pulse velocity, the 
pulse spectrum and other pulse propagation properties. 
The inhomogeneous linewidth [1] of a medium 
characterizes the absorption spectral bandwidth. Big 
inhomogeneous linewidth means strong 
inhomogeneous broadening effect, and carrier 
frequency is included in absorption line. In the 



 2

opposite case, the absorption spectral bandwidth is 
very narrow and dominates closely around the central 
frequency (even can be represented by δ function). In 
this paper, we establish a powerful numerical scheme 
to simulate the light-matter interaction in two-level 
medium. By applying this accurate and effective 
numerical procedure, we analyze the evolution of pulse 
area to the case of nonzero detuning for different 
inhomogeneous linewidthes. To have further 
understanding the interaction of coherent pulses with 
medium, an extended study of the behaviors of pulse 
shape and velocity during propagation in a two-level 
medium was performed. With all these effects in mind 
we restrict our attention to the resonant and 
near-resonant interaction, and focus on the basic 
two-level system.  

This paper is organized as follows. Sec. II the basic 
equations and definitions are introduced. Sec. III 
elaborates the numerical procedure and gives the flow 
chart. Sec. IV is devoted to a numerical analysis of the 
behaviors of the generalized pulse area and pulse 
propagation properties, and discusses the influence of 
pulse and medium parameters on the pulse velocity 
and spectral shapes. Finally, in Sec. V we present our 
conclusions.  
 

II. BASIC EQUATIONS AND DEFINITIONS 

To study pulse propagation we solve the 
simultaneous Maxwell-Bloch equations for a two-level 
medium with the rotating-wave approximation, and 
consider the propagation in direction z. The Maxwell 
equation for propagation is 

1 2
0( , ) ( , ) ( )dt zz t cn z t v gτ

∞− −

−∞
Ω + ⋅ Ω = ⋅ ⋅ Δ Δ∫   

(1) 

where 2 2 2 1/2
0 0(2 / )n N cτ μ μ ω=  is the effective 

time, 0 0ω ωΔ = Δ + −  is the detuning of the laser 

frequency ω  from the resonance frequency 0ω , and 

0Δ  is caused by inhomogeneous broadening. ( )g Δ is 
the absorption line shape, such as line shape 
determined by Doppler broadening, N  is the atomic 
density, n is the medium’s refractive index, 

( , ) ( , ) /z t E z tμΩ =  is the Rabi frequency and 

( , )E z t  is the field envelope of the pulse, and 
( , , )v z tΔ  is the component of the Bloch vector that 

determines the absorption of a single atom and can be 
calculated from the Bloch equations 
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here 0w  is the initial population difference between 

the upper and lower states and 1T  and 2T  are the 
longitudinal and transverse relaxation times, 
respectively. Dimensionless space and time variables 
by using 0/z nz cτ′ = , 0/t t τ′ = , 1 1 0/T T τ′= , 

2 2 0/T T τ′ = , 0τ′Ω = Ω , 0τ′Δ = Δ . For convenience, 

we record 1 2, , , , ,z t T T′ ′ ′ ′ ′Ω and ′Δ as 1 2, , , ,,z t T T Ω and 
Δ . Eqs. (2) are unchanged, but Eq. (1) is reduced to  

( , ) ( , ) ( )dt zz t z t v g
∞

−∞
Ω + Ω = ⋅ Δ Δ∫       (3a) 

In Eq. (3a), the ( )g Δ  is the normalized 
inhomogeneous line shape. Before going further, we 
point out in homogeneously broadened medium, 

( )g Δ  is too narrow to have effect on the integral term, 
and it was written 

( , ) ( , ) ( , )t zz t z t v z tΩ + Ω =             (3b) 
We define it as a Gaussian line shape function 

2
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          (4) 

where dΔ  is the full width at half maximum of the 
inhomogeneous line shape (FWHM-ILS). The 
simultaneous solution of Eqs. (2) and Eq. (3) leads to 
fields that, when they are integrated over time at each 
propagation distance, give the area 

( ) ( , )dS z z t t
∞

−∞
′ ′= Ω∫                     (5) 

which obeys the simple equation [2]  
d

sin
d 2
S

S
z

α
= −                        (6) 

with 2
0π (0) /N cg nα ω μ μ=  is the linear optical 

attenuation coefficient for the material, and (0)g  is a 
Gaussian line shape with its maximum at 0Δ = . It 
proves useful to defined Ω  as follows 

2
2

2 ln 2

0( ) e p

t
tt

−

Ω = Ω                      (7) 

where pt  is the FWHM of Gaussian pulse and 0Ω  
is the pulse peak. Fourier transform solution of Eq. (7) 
shows the spectrum FWHM of input pulse is 

4 ln 2 /p ptΔ = .  
 

III. NUMERICAL PROCEDURE 

Because, in general, the set of coupled Eqs. (2) and 
Eq. (3) cannot be solved analytically, numerical 
computations are necessary. In this section we describe 
the method of predictor-corrector fourth-order 
Runge-Kutta that we used to calculate the dynamical 
properties of Maxwell–Bloch equations. Our 
computational procedure includes the initial value 
predictor cycle and the corrector-predictor cycle. As 
we mentioned above, our method is designed to 
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simulate wave propagation through two-level medium. 
Since the emphasis here is on the numerical procedure, 
we show just the particular set of the coupled Eqs. (2) 
and Eq. (3).  

In practice it is often useful for Eqs. (2), depend on 
time-differential only, to be solved by using the 
classical fourth-order Runge-Kutta scheme. This 
procedure is discussed in more detail in [15]. The 
method we use can be written as 
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= + + + +

   (8) 

where ht is the step size for differentiation in time 
domain, uif , vif  and wif  are the right side of Eqs. 
(2), respectively. As illustrated in Fig. 1(a), the 

/ tm T h= , T  is the time length. Eq. (3) has 
important property that its characteristics depend on 
both space-differential and time-differential. We first 
consider the right-hand side of Eq. (3a). The integral 
term is a cumulative sum of inhomogeneous line shape 
(Fig. 1(b)), and can be rewritten in integral form as 

( , , ) ( )d ( , , ) ( )
k

v z t g v k z t g kδ δ δ
∞

−∞
Δ ⋅ Δ Δ = Δ ⋅ Δ Δ∑∫ (9) 

the δΔ  is the step size of inhomogeneous line shape. 
For convenience, we record the right side of Eq. (9) as 

,z tΣ (in homogeneous broadened medium, Eq. (9) is 

neglected and , ( , )z t v z tΣ = ). The simple finite- 
difference form of Eq. (3) is  

1, 1 , 1 , 1 , , 1( ) ( )z t z t z z t z t t z th h+ + + + +Ω − Ω + Ω − Ω = ∑  (10) 

where zh  is the distance between any two space 
neighboring points. We assume the step size for 
differentiation in time is the same as the step size for 
differentiation in space for simplicity, which is 

z th h h= = . Hence, it can be viewed as a rectangle in z 
and t space with a square mesh of points. Eq. (10) is 
reduced to  

1, 1 , , 1z t z t z th+ + +Ω = Ω + ⋅∑                (11) 

In order to enhance the numerical calculation accuracy, 
we use the middle-grid-point to improve the simple 
finite-difference scheme. Thus 

1, 1 , , 1 1, 1( ) 2z t z t z t z th+ + + + +Ω = Ω + ⋅ ∑ +∑    (12) 

In order to solve the coupled Eqs. (2) and Eq. (3), 
we apply a predictor-corrector scheme. To understand 
this technique, we first look at the initial value 
predictor cycle, the envelope function of the Rabi 
frequency is given by Eq. (7), in addition, we assume 
that the system initially contains no energy, which 
means 0 0u = , 0 0v =  and 0 1w = −  (all atoms at 
the ground state). We obtain u, v and w by applying the 
classical fourth-order Runge-Kutta scheme under 

determined value ∆ and 1z = , then integrate the u 
using Eq. (9) under determined value 1z =  when 
starting at Δ = −∞  and ending at Δ = ∞ , and finally 
substitute the 1Σ  into Eq. (11) to obtain next Ω  
( 2z = ) in time domain. As we show in Fig. 1(c).  

During the corrector-predictor cycle, again using 
the fourth-order Runge-Kutta scheme and integrating 
the Eq. (9), and then substitute the 1z−Σ  and zΣ  into 

Eq. (12) to obtain the corrected zΩ . We note that the 

corrected zΩ  should be used to correct the u, v and w 
under the value z. Again we substitute the obtained u 
into Eq. (9) to get the integrating value 1z+Σ , and have 

the predictor value 1z+Ω . As illustrated in Fig. 1(c), 
our program loop returns to the starting point of the 
corrector-predictor cycle under the condition of z l<  
( /l L h= , L is the length).  

We point out again that under the condition of in 
homogeneously broadened medium, the subroutine of 
the integral equations in the main routine flow chart 
shown in Fig. 1(c)., is neglected and replaced by the 
subroutine of partial differential Bloch equations. So 
the initial value predictor cycle and the 
predictor-corrector cycle no longer need to apply the 
integral procedure, other procedures are the same as 
described above. 
 

 
FIG. 1. Flow chart for subroutines of (a) Partial differential Bloch 
equations and (b) Integral equations, (c) Main routine flow chart. 

 
The numerical procedure is now clear. In that way 

described above, we finally obtain the value of Ω 
describing the desired signal and the evolution of 
Bloch vector in both homogeneously and 
inhomogeneously broadened medium. Our method, 
compared with the finite difference method or general 
numerical scheme, has the advantage that it needs far 
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less calculation time (three or two orders of magnitude 
lower) for the same accuracy [20], which is discussed 
in the appendix.  
 

IV. RESULTS AND DISCUSSION 

Now we apply the numerical procedure to 
investigate the behavior of the pulse propagation in a 
two-level medium. In the calculations relative units of 
time τ0 and distance n/cτ0 are used, and all other 
parameters are also given in relation to the scaled time 
τ0 (see in Sec. II).  

A. Pulse Area 
Here we present a numerical analysis of the pulse 

area in homogeneously and inhomogeneously 
broadened two-level medium. We begin from the 
analysis of the behavior of the pulse area (according to 
Eq. (5), the definition pulse area is time integral 
starting at −∞  and ending at ∞) during propagation. 
In The Area Theorem [1], it is obtained that the 
evolution of pulse area depends on the input pulse area 
and the linear optical attenuation coefficient for the 
material, and there are two striking consequences of 
the area theorem which are (i) pulse with special 
values of area, namely integer even multiples of π, will 
not change the pulse area but finally split into multiple 
2π pulse; (ii) pulse area with other values is predicted 
to reshape into integer even multiples of π value, and 
also evolve into multiple 2π pulse [1,6]. Those 
properties can be shown to be stable in 
inhomogeneously broadened medium if the atomic 
relaxation is neglected.  

The area theorem is not suitable for 
homogeneously broadened medium as presented in Fig. 
2(a), in which we have plotted the area S as a function 
of distance for different input area of the pulse. We 
restrict our calculations to the resonant and ultrashort 
pulses, and the time duration of the input pulse is 
neglected. It is obvious that the formed oscillation and 
its properties should strongly depend on the initial 
pulse area. To show this feature of the propagation we 
have analyzed the pulse behavior with different initial 
areas. The figure shows the pulse with (0) 1.3πS =  
needs very short distance (almost 0.02z = ) to 
approach 2π and then oscillates around the value 2π. 
The continuous oscillation amplitude becomes smaller 
as raising distance; and the oscillation period, is a 
function of the distance, becomes longer with the 
increasing of distance. As compared with the pulses 
having areas of 1.5π and 1.9π, the pulse with larger 
area needs shorter distance to approach 2π, and the 
oscillation period and amplitude are also decreased 
relatively. While the initial input pulse area is 2π, the 
pulse area remains unchanged and with no oscillation, 
actually, the shape and peak amplitude of the pulse are 
stable as it propagates through the medium.  

 
FIG. 2. The spatial evolution of pulse area for four values of 
input pulse area in (a) Homogeneously and (b) 
Inhomogeneously broadened medium. 

 
The presence of our numerical calculations in Fig. 

2(b) shows that the smaller the initial pulse area is, the 
longer the optical path needed to approach 2π. Exactly, 
it proves that the area evolution in inhomogeneously 
broadened medium strictly obey the area theorem in 
the absence of relaxation time.  

One of the most interesting results of the area 
evolution in a medium is the effect of the 
inhomogeneous line shape. Here we give a few results 
showing the influence of the FWHM-ILS dΔ  which 
characterizes the inhomogeneous line shapes ( )g Δ  
on this effect. Fig. 3 shows the process of a pulse in 
resonance and with an input area (0) 1.5πS =  
converts into a 2π pulse. In general, for relatively large 
value of dΔ (= 3), the evolution curve of pulse area to 

approach 2π is smooth. As to the value of 0.3dΔ = , 
the distance of the 1.5π pulse approaching to 2π is 
relatively shortened, and there comes out an oscillation 
tail. The decrease of dΔ  (such as the dot curve) 
results in the shortening of the approaching distance, 
and makes the oscillation increasingly stronger. 
Compared with the area evolution in Fig. 2(a), we find 
out that the smaller value of dΔ  is, the closer the 
evolution properties are. Actually, homogeneous 
broadening is the limit of dΔ  tends to zero [1].  

In previous discussions of area evolution, we 
ignored both longitudinal and transverse relaxation 
effects. In general, the longitudinal relaxation time 1T  

is far greater than the transverse relaxation time 2T , so 
the parameter used correspond to the calculation can 
be chosen as 1 210T T= . Fig. 4(a) shows the area 
evolution of the pulse with (0) 1.7πS =  as a function 
of propagation distance for different 2T in 
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homogeneously broadened medium. The general 
picture for each case is similar. For longer propagation 
distance, the pulse area no longer oscillates around the 
value 2π and almost stiff decreases to the 0π value. 
Since the lacking of energy by increasing value of 2T , 
the pulse is not able to stabilize and makes itself 
transform into 0π pulse. The analysis of Fig. 4(a) 
indicates that the larger 2T  is, the longer distance it 
can propagate. As to inhomogeneously broadened 
medium (see Fig. 4 (b)), the evolution form of pulse 
area also transform into 0π pulse due to the relaxation 
and energy losses, and the area of the pulse with 

2 10T = does not even reach the 2π value. It is obvious 
that the collapse curves, from 2π to 0π, are much 
smoother than the curves under homogeneous 
broadening condition. This effect can be explained by 
the pulse energy losing procedure [7]. 
 

 
FIG. 3. Evolution of pulse area as a function of propagation 
distance for different FWHM-ILS.  

 

 
FIG. 4. The spatial evolution of pulse area for different 
relaxation times in (a) Homogeneously and (b) 
Inhomogeneously broadened medium.  

The interesting evolution behavior of pulse area in 
Fig. 5(a) shows the influence of detuning in 
homogeneously broadened medium. In the near- 
resonant case with 0.1Δ = , the propagation distance 
before the pulse area approaching to 2π is obviously 
increased. As the detuning ∆ shifts toward bigger, a 
longer propagation distance under the area value of 
1.7π is observed. That means the detuning delays the 
converting procedure and makes the input pulse more 
stable at its initial area value, i.e., 0.3Δ = , the pulse 
oscillates around the value 1.7π for a propagation 
length almost 40. However, under inhomogeneous 
broadening condition, the area evolution of resonant 
pulse propagation with detuning still mainly obeys the 
area theorem (see Fig. 5(b)), and the impact is much 
smaller compared with Fig. 5(a).  
 

 
FIG. 5. Pulse area as a function of distance for different detuning 
values in (a) Homogeneously and (b) Inhomogeneously 
broadened medium. 

 

We therefore conclude that in atomic media with 
decay mechanism, whether the medium is 
inhomogeneous or homogeneous broadening, the pulse 
with whatever area value will collapse into 0π. 
Moreover, in the present paper of homogeneous 
broadening condition, the detuning plays an important 
role in the evolution of pulse area, but has relatively 
slight influence on the behavior of area evolution in 
inhomogeneously broadened medium.  

B. Pulse Shape 
We now turn to investigate the pulse propagation. 

The results of the propagation of a 1.7π pulse in 
homogeneously broadened medium are presented in 
Fig. 6. It can be seen that the pulse propagation process 
is interesting, the pulse shape is obviously deformed 
and there exists an oscillation tail beside the main 
pulse, and the peaks of the Rabi-frequency are not 
stable. Combining with the area evolution in Fig. 2(a), 
we believe that the unstable peaks make the area 
necessarily oscillate around the value 2π.  
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Furthermore, we also study the propagation 
behavior of pulses with other area values, e.g., 1.5π 
pulse, 1.9π pulse and 2π pulse. All compared pulses 
propagate under the same condition. We find that 
during the reshaping procedure, the closer the initial 
pulse area to 2π the more stable the Rabi-frequency 
performed (with neglective oscillation tail and more 
stable peaks).  
 

 
FIG. 6. Evolution of a 1.7π pulse in homogeneously broadened 
medium, 0Δ = . 

 

While considering the influence of detuning (again) 
on the pulse propagation, we plot the peaks curve of 
Rabi-frequency in Fig. 7. The solid curve, without 
detuning, presents a stiff decrease after propagating in 
the medium for a short distance, and evolves into an 
oscillating structure. As to 1Δ = , we observe the 
oscillations of peaks curve diminished. For the bigger 
detunings (plotted in dashed and dashed-dot curves), 
the peak value slowly and smoothly decays. Accurately, 
if we plot the pulse evolution with different detunings 
in a three-dimensional space-time, we’ll find big 
detuning slows down the pulse reshaping process and 
inhibits the oscillation. Actually, because the spectrum 
width interaction with atoms in homogeneously 
broadened medium is very narrow, a small detuning 
will hinder the interaction to some extent.  

As in the inhomogeneously broadened medium, the 
pulse behaves in a similar way with the performance in 
Fig. 6, see Fig. 8(a) under slightly FWHM-ILS, where 
we neglect the relaxation and detuning. For the bigger 
detuning plotted in Fig. 8(b), the results suggest that 
both of the main pulse and oscillation tail transform 
relatively stable for FWHM-ILS 1dΔ = . Obviously, 
increasing the FWHM-ILS further such that the pulse 

peak reshaping can be obtained in a smooth and slow 
decrease process, and the oscillating structure almost 
disappeared. Theoretically, for the same incident pulse, 
the pulse spectrum is fixed, only the atoms with 
resonant frequency can have interaction with the pulse. 
Increasing FWHM-ILS means that the rate of active 
atoms near the central resonant frequency diminishes. 
That is the reason why big dΔ slows the area 
evolution shown in Fig. 3. 
 

 

FIG. 7. Evolution of 1.7π pulse for different detunings in 
homogeneously broadened medium. 

 
As we know, pulse breakup occurs when the pulses 

with areas above 3π due to the stimulated absorption 
and reemission processes [1, 21]. The pulse breakup 
depends on various parameters, including the pulse 
area, the atomic density and so on. In Fig. 9 we 
compare the propagation properties of pulses for 
different dΔ . We see that after a small optical path the 
pulses breakup are observed, the first part sharpens and 
the second part widens during propagation. The 
evolution of the first part is the same as Fig. 8 shown, 
and the second part, whose area is also converted to 2π 
but with slower velocity and lower energy. When the 
∆d is so small that the pulse breakup in the medium 
occurs more easily (in Fig. 9(a)) with relatively short 
optical path, as to increasing dΔ , only for a longer 
optical path will the pulse encounter a sufficient 
number of atoms to cause reshaping. After the pulse 
propagates further through the medium, we can find 
the velocity of the second parts are obviously different 
in the three figures.  
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FIG. 8. Evolution of 1.7π pulse for different FWHM-ILS. 

 

 
FIG. 9. Evolution of 3.4π pulse for different FWHM-ILS. 

 
Coming to the end of our discussion of the 

ultrashort pulse propagation, we want to emphasize the 
propagation relationship between the homogeneous 
and inhomogeneous broadening. In general, for quite 
big ∆d only the central part of the spectrum is active 
and the pulse shapes, including both the pulse peaks 
and with strong or weak oscillation tail, are also 
depended mainly on it.  

C. Pulse Velocity 
Another important feature of pulse propagation in 

medium is the velocity, which is influenced not only 
by the pulse properties but also by the optical materials. 
For ultrashort pulse, we use the main pulse peaks to 
mark pulse trace, and pulse velocity is reflected 
according the corresponding space-time coordinates of 
the curves.  

In the previous sections, we have shown that pulses 
have reshaping procedure during their propagation in 
absorbing medium, and pulse initial areas have 
significant influence on the evolutions of pulse area. 
Fig. 10 presents the peaks evolution that reflects the 
velocity of the pulse. As the optical path is a constant, 
we find that the pulse with initial area (0) 1.6πS =  
needs the maximum time among the four curves, and 
pulse with initial area (0) 1.7πS =  needs relatively 
short propagation time. With the increasing of pulse 
area (<2π), the needed time becomes shorter and 
shorter, which means the propagation velocity is 

increased. A close look at the four curves structure 
shows the following feature: At exactly the early 
evolution, the trace of solid curve is not stable and the 
velocity of pulse peak dramatically oscillates. 
Gradually, solid curve deviates from the initial 
direction, and pulse peak velocity becomes to be flat, 
within 0.5c-0.8c [22]. Actually, whatever the medium 
is homogeneous or inhomogeneous broadening, the 
reshaped pulse broadens its width, losses its energy 
and slows down.  

We also present the numerical study of detuning 
effect on the pulse velocity. If compare the four curves 
we can say roughly that for pulse without detuning 

0Δ =  the propagation time is the maximum, and for 
the pulse having detuning 1Δ =  it observes the 
needed propagation time is shortened. With the further 
increasing of detuning, the propagation time is pulled 
toward a limited value. In general, an increase of 
detuning means the rate of active atoms is diminished, 
which results in weakened the interaction between the 
pulse and medium. Meanwhile, the pulse velocity is 
naturally increased in the medium but will not exceed 
the speed of a pulse with initial area value 2π. 

In this present section, we have shown numerically 
that the pulse velocity in medium is always increased 
with the greater deviation in pulse area value from the 
value 2π, and also observe an increase in detuning or 
FWHM-ILS can cause the pulse velocity to increase. 
The physical mechanisms are given theoretically.  
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FIG. 10. Evolution of pulse peaks for different input pulse areas 
in homogeneously broadened medium. (a) In dimensionless 
time. (b) In term of light velocity c. 

 

 
FIG. 11. Evolution of 1.7π-pulse peaks for different detuning in 
homogeneous broadened medium. (a) In dimensionless time. (b) 
In term of light velocity c. 

 

In Sec. IV part A, we studied the influence of 

dΔ on area evolution and given the important results. 

Furthermore, we investigate the influence of dΔ on the 
pulse velocity in our model. Fig. 12(a) presents the 
behavior of pulse peaks with initial area 1.5π for 
various dΔ . Expectedly, an increasing in the ∆d, the 
pulse velocity becomes more greater because the rate 
of active atoms near the central resonant frequency 
diminishes, this statement has confirmed by the results 
presented in Fig.3 and Fig. 8. We also illustrate the 
evolution of pulse with initial area value 1.8π for the 
same dΔ . Fig. 12(b) shows the evolution curves shifts 
toward the direction of smaller time, and the distance 
between the adjacent curves is also compressed. While 
the initial area is 2π, trends mentioned above will be 
further enhanced. On the other hand, the influence of 

dΔ  becomes weaker.  
 

 
FIG.. 12. Evolution of pulse peaks for different FWHM-ILS in 
inhomogeneously broadened medium. (a), (b) and (d) In 
dimensionless time. (d) In term of light velocity c. 
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D. Pulse Spectrum 

  In this section we discuss the influence of pulse area, 
detuning, and distance on the spectrum of input pulse. 
In the case of inhomogeneous broadened medium, the 
spectral shapes are similar with homogeneous 
broadened medium, by averaging atomic variables 
over a Doppler profile width [16]. 

 
FIG. 13. Spectral shapes of pulse at z=1 for different pulse area 
in homogeneous medium. 

 

In Fig. 13, we plot the spectrum of different pulse 
area, propagating in homogeneous broadened medium 
with T1=10, T1=10T2 and ∆=0. From the discussion of 
Fig. 4, we choose the small distance of z (z = 1) and in 
this situation pulse area does not decrease sharply. 
Frequencies near the atomic frequency show a dip on 
account of the interaction of dipole field and the pulse. 

 
FIG. 14. Spectral shapes of 1.25π-pulse for different detuning in 
homogeneous broadened medium: longitudinal time T1 and 
transverse time T2 are both ignored. 

 

When detuning is taken into consideration in Fig. 14, 
spectral shapes of the pulse evolve into oscillating 

structure especially around resonant frequency. 
Meanwhile frequencies near atomic frequency are 
amplified.This effect is related to the procedure of light 
reemission [10, 23]. 
 

V. CONCLUSIONS 

In conclusion, we have presented a 
predictor-corrector fourth-order Runge-Kutta method 
for integration of the Maxwell-Bloch equations with 
partial differential and integral terms. Since the 
characteristics are used, the Bloch equations only 
contain a partial derivative with respect to time 
independent variable, thus permitting us to apply the 
fourth-order Runge-Kutta method; the Maxwell 
equation, we choose a middle-grid-point scheme to 
enhance the calculation accuracy; as to the 
predictor-corrector method, which effectively 
improves the accurate results and greatly saves 
calculation time.  

Then, applying the numerical method we study the 
evolutions of pulse area, pulse propagation and pulse 
velocity under both homogeneous and inhomogeneous 
broadening conditions. We prove again that pulse area 
will collapse into zero under the decay mechanism, and 
find the FWHM-ILS and detuning have significantly 
influence on area evolution. The influence under 
homogeneous broadening condition is more obvious 
than in inhomogeneously broadened medium. As to 
pulse reshaping procedure, we point out that the 
oscillations of pulse-peak curve and tail mainly 
determined by the value of FWHM-ILS, and also 
effected by detuning. Additionally, we discuss pulse 
breakup under various FWHM-ILS and find pulse 
velocity changed obviously. Besides, we give the pulse 
peak trace that presents the pulse velocity to some 
extent. For various initial input pulse areas, it shows 
the pulse velocity becomes greater as the pulse area 
getting closer to 2π, and a bigger detuning also creates 
greater pulse velocity. As to inhomogeneously 
broadened medium for the same medium, bigger 
FWHM-ILS causes the pulse velocity in the medium 
relatively greater. Finally, we discuss the evolution of 
the pulse spectrum in homogeneous medium. The 
spectral shapes demonstrate that with absorption the 
frequencies near atomic frequency are absorbed. In the 
case of without consideration of absorption, spectral 
shapes show an oscillating and complex structure. 
 

ACKNOWLEDGMENTS 

This work is supported by the National Natural 
Science Foundation of China under Grant 
No.10574166 and the Guangdong Natural Science 
Foundation under Grant NO. 8151027501000062



 10

APPENDIX 

We get some other methods in comparison with 
predictor-corrector fourth-order Runge-Kutta. The part 
of Bloch equation adopts Eq. (8), but the part of 
Maxwell uses different metholds. 

   Method I: Predictor-corrector fourth-order Runge 
-Kutta: 

1, 1 , , 1 1, 1( ) 2z t z t z t z th v v+ + + + +Ω = Ω + ⋅ + .  (A1) 

Method �: Square mesh of points (discussion of Eq. 

(11) in Sec. Ⅲ), 

            1, 1 , , 1z t z t z th v+ + +Ω = Ω + ⋅ .       (A2) 

Method � : Backward difference method, 

            1, 1 , ,z t z t z th v+ +Ω = Ω + ⋅ .        (A3) 

We compare numerical solution by different methods 
with annalytical solution by hyperbolic-secant pulse at 
z = 4 (units of 0 /c nτ ), pulse area S(0)=2π, detuning 

∆ = 0, and pulse duration 1pt =  (units of 0τ ). 

 

TABLE. Ⅰ. Step effects on the maximum global error of method Ⅰ, Ⅱ, Ⅲ, respectively. 

Step 
h 

Analytic 
Solution 
Ⅰ 

Method 
Ⅰ Error Ⅰ 

Analytic 
Solution 
Ⅱ 

Method 
Ⅱ Error Ⅱ 

Analytic 
Solution 
Ⅲ 

Method 
Ⅲ Error Ⅲ 

0.01 2.4847502 2.5244935 0.0397433 2.2538526 3.2770607 1.0231534 2.8965887 2.3250312 0.5715574 

0.005 2.5010517 2.4808136 0.0202381 2.4855154 3.0013508 0.5158354 2.7929807 2.5021345 0.2908462 

0.001 2.4730871 2.4689348 0.0041523 2.6620791 2.7651681 0.1030890 2.7019673 2.6430887 0.0588786 

 

It can be seen from the Table Ⅰ, in the case of 
same step, the error of method Ⅰare smaller 1 or 2 
orders of magnitude than errors of menthod Ⅱ and 
method Ⅲ. From the longitudinal view, the step is 
havled, and errors are half, which means method Ⅱ 
and method Ⅲ, in order to get the same accuracy as 
method �, must adopt smaller step and spend more 
time. 

In order to verify the convergence and reliability of 
the method, we compare the analytical solution of the 

evolotion of pulse area in inhomogeneous medium 
with numerical solution. We adopt hyperbolic-secant 
pulse and laser parameters are as follows: the 
longitudinal and transverse relaxation time T1=0, T2=0, 
detuning Δ=0, and step h=0.02. In Table Ⅱ we get the 
influence of the propagation distance on the abosolute 
errors of pulse areas, and results show that with the 
increase of propagation distance the absolute errors 
between numerical solution and analytical solution get 
smaller. Besides, the maximum global errors of 2π 
pulse also get smaller as the increase of distance [20]. 
As is mentioned above, it shows the convergence and 
reliability of the method.

  

TABLE. Ⅱ. Comparison of pulse area evolution for numerical solution and analytic solution. The initial input 
pulse areas are 1.3π, 1.5π, 1.9π and 2π respectively. 

             Pulse area z=3 z=6 z=9 z=12 z=15 

Absolute errors 

1.3π 0.0035 0.0012 9.0198e-5 6.5447e-6 1.7721e-6 

1.5π 0.0043 6.2639e-4 4.5997e-5 3.3658e-6 2.5447e-7 

1.9π 0.0012 8.9803e-5 6.6600e-6 5.7334e-7 1.2950e-7 

Maximum global errors 2.0π 0.0291 0.0290 0.0288 0.0287 0.0278 
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