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We identify and study classes of initial states in integrable quantum systems that, after the
relaxation dynamics following a sudden quench, lead to near thermal expectation values of few-
body observables. In the systems considered here, those states are found to be insulating ground
states of lattice hard-core boson Hamiltonians. We show that, as a suitable parameter in the
initial Hamiltonian is changed, those states become closer to Fock states (products of single site
states) as the outcome of the relaxation dynamics becomes closer to the thermal prediction. At
the same time, the energy density approaches a Gaussian. Furthermore, the entropy associated
to the generalized canonical and generalized grand–canonical ensembles, introduced to describe
observables in integrable systems after relaxation, approaches that of the conventional canonical
and grand–canonical ensembles. We argue that those classes of initial states are special because a
control parameter allows one to tune the distribution of conserved quantities to approach the one
in thermal equilibrium. This helps understanding the approach of all the quantities studied to their
thermal expectation values. However, a finite size scaling analysis shows that this behavior should
not be confused with thermalization as understood for nonintegrable systems.

PACS numbers: 02.30.Ik,05.30.-d,03.75.Kk,05.30.Jp

I. INTRODUCTION

The relaxation dynamics of isolated quantum systems
after a sudden quench is a topic that is attracting much
current attention. Interest on this problem has been
sparked by recent experiments with ultracold gases [1–4].
The high degree of isolation in those experiments allows
one to consider them as almost ideal analog simulators of
the unitary dynamics of pure quantum states. For exam-
ple, in Ref. [2], Kinoshita et al. showed that observables in
a (quasi-)one-dimensional bosonic system close to an in-
tegrable point do not relax to the values expected from a
conventional statistical mechanics description. Any non-
negligible coupling to a thermal environment would have
destroyed such a remarkable phenomenon. More recently,
Trotzky et al. [4] have shown that the experimental dy-
namics of Bose-Hubbard like (quasi-)one dimensional sys-
tems can be almost perfectly described by the unitary
dynamics of the relevant model Hamiltonian. The latter
was followed by numerically exact means utilizing the
time-dependent renormalization group algorithm [5, 6].

After the experimental results in Ref. [2], many theo-
retical works have found that, following a sudden quench
within integrable systems, few-body observables in gen-
eral relax to nonthermal expectation values [7–23] (for a
recent review, see Ref. [24]). Some of the novel insights
gained through these studies include, (i) the possibility of
describing observables after relaxation by means of gen-
eralized Gibb ensembles (GGE) [7–14, 16–18, 21–23], (ii)
the fact that even though in some cases the behavior of
nonlocal observables after relaxation can be parametrized
similarly to the one in thermal states [15, 20], an exact
description of those observables is only provided by the
GGE [22], and (iii) an understanding of the GGE through
a generalization of the eigenstate thermalization hypoth-
esis (ETH) [21]. ETH explains why thermalization oc-

curs in generic (nonintegrable) quantum systems after a
quench [25–27].

All the results discussed above have been obtained in
studies of several specific models. However, they are ex-
pected to hold in general for integrable systems. An
interesting, and so far non-generic, result reported in
Refs. [8, 21] was the observation of a phenomenon close to
“real” thermalization in integrable systems, in the sense
of the expectation values of few-body observables after
relaxation approaching those predicted in thermal equi-
librium. This occurred as a parameter used to generate
special classes of initial states was changed. In Ref. [8],
the initial states were insulating ground states of hard-
core bosons in half-filled period-two superlattices, while
in Ref. [21], they were the ground state of trapped sys-
tems with a Mott insulating domain in the trap center.

In this work, we revisit the systems above and fo-
cus in understanding the properties of the initial states
for which observables after relaxation were seen to ap-
proach thermal expectation values, despite integrabil-
ity. As said before, those states are insulating ground
states. Here, we show that the selected tuning parame-
ter makes those initial states approach Fock states (prod-
ucts of single site wavefunctions) at the same time that
(i) their energy density approaches a Gaussian, and (ii)
the entropy of their associated generalized canonical and
grand–canonical ensembles approach the entropies of the
canonical and grand–canonical ensembles. We argue that
(i) and (ii) above can be understood because the dis-
tribution of conserved quantities in such initial states
approaches the one of systems in thermal equilibrium.
Hence, they can have thermal like energy densities, en-
tropies, and observables after relaxation. However, after
a finite size scaling analysis, we conclude that this phe-
nomenon is conceptually different from thermalization as
it happens in nointegrable systems.
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The presentation is organized as follows: in Sec. II,
we introduce the models and observables of interest. We
also define the ensembles considered and provide details
on how the calculations are performed. Section III is de-
voted to study of the overlaps of the initial states with
the eigenstates of the final Hamiltonians, as well as to
the description of the energy densities in all cases. The
scaling of the entropy with system size, for the different
ensembles analyzed and for superlattice and trapped sys-
tems, is presented in Sec. IV. In Sec. V, we study the
distribution of the conserved quantities for the different
initial states and within standard statistical ensembles.
Finally, the conclusions are presented in Sec. VI.

II. MODEL, ENSEMBLES, AND OBSERVABLES

We are interested in the equilibrium and non-
equilibrium properties of lattice bosons in the limit of
infinite on-site repulsion (hard-core bosons). Those sys-
tems can be described by the Hamiltonian

Ĥ = −J
L−1
∑

j=1

(

b̂†j b̂j+1 +H.c.
)

+

L
∑

j=1

V ext
j n̂j , (1)

with the additional on-site constraints b̂†2j = b̂2j = 0,
which preclude multiple occupancy of the lattice sites.
Here, J is the nearest neighbor hopping, V ext

j is a site-
dependent local potential, and L is the number of lattice
sites. The hard-core boson creation (annihilation) opera-

tor in each site is denoted by b̂†j (b̂j) and the site number

occupation by n̂j = b̂†j b̂j . In what follows, we only con-
sider systems with open boundary conditions, and t = 1
sets our units of energy.

This model is integrable [28] and can be exactly solved
by first mapping it onto the spin-1/2 XX model (with
a site-dependent magnetic field in the z-direction) by
means of the Holstein–Primakoff transformation [29], and
then onto a noninteracting fermion Hamiltonian utiliz-
ing the Jordan–Wigner transformation [28, 30]. In the
fermionic language, the Hamiltonian can be straightfor-
wardly diagonalized and all the spectral and thermody-
namic properties of hard-core bosons can be computed
either analytically, or numerically in polynomial time.
Off-diagonal correlations are more difficult to calculate.
However, using properties of Slater determinants, they
can also be computed very efficiently numerically, for
ground state [31, 32] and finite temperature [33] equi-
librium problems, as well as during the unitary nonequi-
librium dynamics [34]. Those insights will be used later.

More generally, the nonequilibrium dynamics of iso-
lated quantum systems can be studied by writing the
(arbitrary) initial state |ψI〉 as a linear combination of

the eigenstates |Ψα〉 of the Hamiltonian Ĥ that drives

the dynamics, which satisfies Ĥ |Ψα〉 = Eα|Ψα〉. Hence,

|ψI〉 =
D
∑

α=1

Cα|Ψα〉, (2)

where D is the dimension of the Hilbert space and
Cα = 〈Ψα|ψI〉, and the time evolving wave function can
be written as

|Ψ(t)〉 = e−iĤt/~|ψI〉 =
D
∑

α=1

Cαe
−iEαt/~|Ψα〉. (3)

The time evolution of a generic observable Ô is then
dictated by the sums over all eigenstates

〈Ô(t)〉 = 〈Ψ(t)|Ô|Ψ(t)〉 =
∑

α,β

C∗
αCβ e

i(Eα−Eβ)t/~Oαβ ,

(4)

where Oαβ = 〈Ψα|Ô|Ψβ〉, and the infinite time average
of Eq. (4) (in the absence of degeneracies) can be thought
as the result of a diagonal ensemble average [27]

〈Ô〉DE =
∑

α

|Cα|2Oαα. (5)

As shown in Refs. [21, 27], this infinite time average de-
scribes observables after relaxation. We should stress
that this can be true even in the presence of degenera-
cies associated with integrability, except for cases with
massive degeneracies [14]. The validity of the descrip-
tion of integrable systems after relaxation, by means of
the infinite time average (5), has been demonstrated for
the 1/r Hubbard model in Ref. [14], and for the same
(hard-core boson) systems considered here in Ref. [21]
(supplementary materials).
The result in Eq. (5) is to be compared with the pre-

dictions of conventional statistical mechanics ensembles,
for a system in equilibrium with energy EI = 〈ψI |Ĥ |ψI〉
and total number of particles N . The canonical ensemble
predicts

〈Ô〉CE =
1

ZCE

∑

α

e−Eα/kBTOαα, (6)

where ZCE =
∑

α e
−Eα/kBT , T needs to be taken such

that EI = Z−1
CE

∑

α e
−Eα/kBTEα, and the sums run over

all eigenstates of the Hamiltonian (with energyEα) in the
sector with N particles. The grand–canonical ensemble,
on the other hand, predicts

〈Ô〉GE =
1

ZGE

∑

α

e−(Eα−µNα)/kBTOαα, (7)

where ZGE =
∑

α e
−(Eα−µNα)/kBT , T and µ need to be

taken such that EI = Z−1
GE

∑

α e
−(Eα−µNα)/kBTEα and

N = Z−1
GE

∑

α e
−(Eα−µNα)/kBTNα, and the sums run over

all eigenstates of the Hamiltonian (with energy Eα and
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number of particles Nα). The predictions of Eq. (6) and
Eq. (7) in general agree in the thermodynamic limit.
Thermalization is then said to occur if, for sufficiently

large systems, 〈Ô〉DE ≃ 〈Ô〉CE ≃ 〈Ô〉GE. Hence, the fact
that thermalization occurs in isolated systems is surpris-
ing as 〈Ô〉DE depends on the initial conditions through
the projection of the initial state onto all the eigenstates
of the Hamiltonian, while conventional statistical ensem-
bles only depend on the initial conditions through EI

and N . Since the energy distribution of the initial state
|ψI〉 in the eigenstates of the final Hamiltonian is nar-
row (because of locality, see Ref. [27] and its supplemen-
tary materials) and centered around EI , similarly to the
canonical and grand–canonical ensembles, then thermal-
ization can be understood to occur because of ETH [25–
27]. ETH states that in generic many-body systems Oαα

almost do not fluctuate between eigenstates that have
similar energies, i.e., the eigenstates themselves already
exhibit thermal behavior.
Along the line of those results, it has been also pro-

posed that one can define the entropy of the isolated sys-
tem after the quench to be the diagonal entropy [35]

Sd = −
∑

α

|Cα|2 ln(|Cα|2), (8)

which satisfies all the thermodynamic properties required
from an entropy. Indeed, this entropy has been recently
shown to be consistent with the microcanonical entropy
for nonintegrable systems [36], and hence, for sufficiently
large systems it is expected to agree with the entropy of
the canonical ensemble

SCE = lnZCE +
EI

kBT
, (9)

and with that of the grand–canonical ensemble

SGE = lnZGE +
EI − µN

kBT
, (10)

up to subextensive corrections.
In general, in integrable systems such as the ones of in-

terest in this work, the presence of a complete set of con-
served quantities prevents thermalization [7, 27]. (The
eigenstate thermalization hypothesis has been shown to
fail in those systems [21, 27].) However, after relaxation,
few-body observables can be described by means of a
generalization of the Gibbs ensemble [7], with a density
matrix

ρ̂GGE = Z−1
GGEe

−
∑

n
λn În , (11)

where ZGGE = Tr
[

e−
∑

n
λn În

]

, and {În}, n = 1, . . . , L,

are the conserved quantities. In our systems, {În} are the
occupation operators of the single-particle eigenstates of
the noninteracting fermionic Hamiltonian to which hard-
core bosons can be mapped. {λn} are the Lagrange

multipliers, which are selected such that 〈ψI |În|ψI〉 =

Tr(Înρ̂GGE). For hard-core bosons, they can be com-
puted using the expression [7]

λn = ln

[

1− 〈ψI |În|ψI〉
〈ψI |În|ψI〉

]

(12)

and

ZGGE =
∏

n

(1 + e−λn). (13)

The fact that the GGE is able to predict expectation
values of few-body observables after relaxation can be un-
derstood in terms of a generalized ETH [21]. The idea in
this case is that eigenstates of the Hamiltonian that have
similar values of the conserved quantities have similar
expectation values of few-body observables. The GGE
is then the ensemble that, within the full spectrum, se-
lects a narrow set of states with the same distribution of
conserved quantities that is fixed by the initial state.
The GGE entropy is given by

SGGE = lnZGGE +
∑

n

λn〈ψI |În|ψI〉. (14)

Furthermore, one can also define a canonical version of
this generalized ensemble, with a density matrix

ρ̂GCE = Z−1
GCEe

−
∑

n λn În , (15)

for which only states with N particles are considered
when calculating traces. We keep λn in the sector with
N particles to have the same values as within the GGE,
and take the partition function to be the trace over states

with N particles, ZGCE = Tr
[

e−
∑

n λn În
]

N
. The en-

tropy of this ensemble can be computed as

SGCE = Tr[ρ̂GCE ln(ρ̂GCE)]N (16)

where, once again, only eigenstates of the Hamiltonian
with N particles contribute to the trace.
An interesting recent finding in Ref. [36] was that de-

spite the fact that the generalized ensembles do describe
few-body observables in integrable systems after relax-
ation, their entropy is always greater than that of the
diagonal ensemble, and the difference increases linearly
with increasing system size. This means that an expo-
nentially larger number of states contribute to the gen-
eralized ensembles when compared to the diagonal one.
The generalized ETH ensures that despite having a much
greater number of states, the generalized ensembles pre-
dict the outcome of the realization dynamics. This is
because the overwhelming majority of the states that
contribute to the generalized ensembles have identical
expectation values of few-body observables as the ones
that contribute to the diagonal ensemble [21]. All these
results are expected to be generic in integrable systems.
In this work, instead, we focus on special classes of

initial states that lead to expectation values of few-body
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FIG. 1: (Color online) Weights of the eigenstates of the final
Hamiltonian in the diagonal [top half in both panels] and
canonical [bottom half in both panels] ensembles, |Cα|

2 and

e−Eα/kBT /ZCE, respectively, for L = 36 and N = 18 (half
filling). The panel on the left (a) depicts results for a quench
from AI = 4 to AF = 0, and the panel on the right (b) for a
quench from AI = 0 to AF = 4. In both cases, we select the
initial state to be the ground state of Eq. (1) for the given
value of A = AI . The color scale indicates the number of
states, per unit area in the plot, that have a given weight.

observables that approach those in thermal equilibrium,
despite integrability [8, 21]. Since we know that ETH
is not satisfied in those systems [21, 27], then the fact
that observables after relaxation approach thermal values
must be related to special properties of the overlaps Cα of
the initial states with the eigenstates of the final Hamil-
tonians. Hence, we study the behavior of the Cα’s in such
systems. Hard-core bosons can be mapped onto nonin-
teracting fermions, so that one can generate the exponen-
tially large Hilbert space of finite systems [whose size is
(

L
N

)

] without the need of diagonalizing the full Hamiltoni-
ans. Those many-body states are created as products of
noninteracting fermionic eigenstates. They can be writ-
ten as Slater determinants, in terms of fermionic creation

operators f̂ †
k , as

|Ψα〉 =
N
∏

l=1

L
∑

k=1

Pα
kl f̂

†
k |0〉, (17)

and the same can be done for the initial state |ΨI〉 =
∏N

l=1

∑L
k=1 P

0
kl f̂

†
k |0〉. The overlap between the initial

state and the eigenstates of the final Hamiltonian can
then be calculated numerically as the determinant of the
product of two matrices [31, 32]

Cα = 〈Ψα|ψI〉 = det
[

(Pα)† P0
]

, (18)
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FIG. 2: (Color online) Same as Fig. 1 but for L = 44 and
N = 11 (quarter filling).

which, together will all the expressions presented previ-
ously, allow us to compute the energy distributions and
entropies in the diagonal, canonical, grand–canonical,
and generalized ensembles.

III. OVERLAPS

We first focus on the behavior of the weights |Cα|2 de-
termined by the initial state and compare it with the one
given by the canonical ensemble e−Eα/kBT /ZCE. Most of
the results reported in this manuscript are obtained from
calculations for superlattices with period two. What that
means is that in Eq. (1),

V ext
j = A(−1)j.

We will mainly focus on fillings (i) N = L/2 (half fill-
ing), for which observables after relaxation were seen to
quickly approach the thermal predictions when the value
of AI was increased and AF = 0, but no such thing was
observed when AI = 0 and AF was increased [8], and
(ii) N = L/4 (quarter filling), which does not exhibit an
approach to the thermal predictions, like the one seen at
half filling, no matter the selected values of AI and AF .
Some results for trapped systems, related to the findings
in Ref. [21], will be reported in the following section.
By comparing Eqs. (5) and (6), one may naively think

that for those states for which an approach to ther-
mal expectation values was observed, the weights of the
initial state in the eigenstates of the final Hamiltonian
|Cα|2 may approach those of the canonical ensemble
e−Eα/kBT /ZCE. In Fig. 1, we plot the values of |Cα|2 [top
half in both panels] and e−Eα/kBT /ZCE [bottom half in
both panels] for quenches from the ground state of a su-
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perlattice (AI = 4) to the homogeneous lattice (AF = 0)
(a) and from the ground state of the homogeneous lattice
(AI = 0) to the superlattice (AF = 4) (b).
Figure 1 clearly shows that the actual values of |Cα|2

are not only quantitatively (several orders of magnitude)
different from those of e−Eα/kBT /ZCE, but also qualita-
tively different for both quenches, as the former exhibit a
slower decay with the energy of the eigenstates. No con-
vergence between the values of |Cα|2 and e−Eα/kBT /ZCE

is observed as AI and AF are changed (not shown). In
Fig. 1, we also provide information about the number
of states, per unit area in the plot, that have a given
weight within in each ensemble (color scale). For the
quench from AI = 4 to AF = 0, one can see in Fig. 1(a)
(top half) that the number of states with nonzero values
of |Cα|2 continuously increases as the energy increases
and reaches a maximum around the center of the spec-
trum, where the density of states is largest. A similar
behavior can be seen within the canonical ensemble in
Fig. 1(a) (bottom half). For the quenches from AI = 0
to AF = 4, on the other hand, there are isolated islands
with nonzero weights both in the diagonal and canon-
ical ensembles [Fig. 1(b)]. This is because the many-
body spectrum exhibits bands of eigenstates separated
by gaps, which are determined by the value of AF . Such
a behavior can be straightforwardly understood from the
single-particle band-structure. In the periodic case, a rea-
sonably good approximation for large systems with open
boundary conditions, the latter exhibits two bands given
by the expression

ǫ±(k) = ±
√

4t2 cos2(ka) +A2, (19)

where “+” denotes the upper band and “−” the lower
band, and k is the single particle momentum. Depending
on which values of k are occupied in the many-body state,
the bands seen in Fig. 1(b) form.
Results for the same quenches as in Fig. 1, but for

quarter-filled systems, are presented in Fig. 2. The latter
are qualitatively similar to the former in everything, ex-
cept for the behavior of the number of eigenstates with
nonzero values of |Cα|2 in the quenches from AI = 4
to AF = 0 [top half in Fig. 2(a)]. At quarter filling,
when AI = 4, the initial state imprints a modulation on
the number of eigenstates with nonzero |Cα|2 (note that
the spectrum in the final Hamiltonian, when AF = 0,
has no gaps). That modulation is not present for the
quenches at half-filling [top half in Fig. 1(a)] and, as ex-
pected (because of the continuous spectrum of the final
Hamiltonian), it is not present in the canonical results in
the bottom half of Fig. 2(a).
The fact that the weights in the diagonal and canoni-

cal (or any other) ensemble are different from each other
is generic for integrable and nonintegrable systems [37],
and, as such, need not preclude thermalization. After all,
the weights with which eigenstates of the Hamiltonian
contribute to the canonical and microcanonical ensem-
bles are also different. The relevant quantity to compare
different ensembles is the energy density ρ(E), which is

0

0.05

0.1

0.15

0.2

ρ(
E

)

Diagonal
Canonical
Gaussian

-60 -40 -20 0 20 40
E

-20 -10 0 10
E

0

0.1

0.2

0.3

0.4

ρ(
E

)

(a) (b)

(c) (d)

A
I
=4, A

F
=0 A

I
=0, A

F
=4

L=36, N=18 L=36, N=18

L=44, N=11 L=44, N=11

FIG. 3: (Color online) Energy density ρ(E) for the quenches
depicted in Figs. 1 and 2. Results are presented for the case
AI = 4, AF = 0 in the left panels [(a),(c)] and for AI = 0,
AF = 4 in the right panels, for systems at half-filling [(a),(b)]
and at quarter filling [(c),(d)]. ρ(E) is reported for the di-
agonal and canonical ensembles, and, when appropriate, we
have fitted the results to a Gaussian (continuous lines in the
plots). In all cases δE = 0.1.

equal to the sum of the weights studied in Figs. 1 and 2,
over a given energy window δE, divided by δE. By con-
struction, the integral of this quantity over the full energy
spectrum is normalized to one. (δE needs to be selected
in such a way that the results for the energy density are
independent of its actual value.) The energy density not
only depends on the weights but also on the density of
states, and tells us which part of the spectrum is the one
that contributes the most to the ensemble averages.

In Fig. 3, we present ρ(E) for the quenches for which
the weights of the diagonal and canonical ensembles were
reported in Figs. 1 and 2. As expected, the energy density
in the canonical ensemble is very close to a Gaussian

ρ(E) = (
√
2πδE)−1e−(E−EI)

2/(2δE2) in all cases. For the
quenches from AI = 0 to AF = 4, the Gaussian is cut by
the bands described previously.

In diagonal ensemble, ρ(E) has been recently shown to
be very well described by a Gaussian for nonintegrable
systems, and sparse (very different from Gaussian) in in-
tegrable systems [36]. We find the latter to be generic for
our quenches, as shown in Figs. 3(c), 3(d), and, maybe
less evident but still true, in Fig. 3(b). Surprisingly, we
find that for quenches from AI 6= 0 to AF = 0 at half
filling, the energy density in the diagonal ensemble ap-
proaches a Gaussian as the value of AI is increased. See
Fig. 3(a) for AI = 4 and AF = 0. The Gaussian fit
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FIG. 4: (Color online) Scaling of the energy density in the
diagonal (a) and canonical ensembles (b) with increasing sys-
tem size. Results are reported for the quenches from AI = 4
to AF = 0 at half-filling. Continuous lines depict the result
of the fit of each data set to a Gaussian.

shown there improves with increasing the value of AI .
This highlights the special character of this class of ini-
tial states, and will be analyzed more quantitatively in
the following sections.
A remark is in order on the scaling of the plots shown

in Fig. 3 with increasing system size. For the canonical
ensemble, it is known that the width of ρ(E), relative to
the full width of the spectrum, vanishes in the thermo-
dynamic limit. The question is then what happens for
the diagonal ensemble. On general grounds, for Hamil-
tonians containing only finite-range terms, it was shown
in Ref. [27] (supplementary materials) that the width of
ρ(E), relative to the full width of the spectrum, also van-
ishes in the thermodynamic limit. The scaling of the
width of ρ(E) depends in this case on the nature of the
quench [27]. In Fig. 4, we show a finite size scaling for
ρ(E) in the diagonal (a) and canonical (b) ensembles in
the quenches from AI = 4 to AF = 0. These results are
consistent with the vanishing of the width of ρ(E), rela-
tive to the width of the spectrum, as the system size is
increased.

IV. ENTROPIES

In the previous section, we have shown that the en-
ergy distribution in quenches whose initial states are the
ground state of half-filled systems with a superlattice
(AI 6= 0) can be well described by a Gaussian, typical of
thermal states, as the value of AI is increased. However,
at least for the finite systems we can solve numerically,
we showed that such a Gaussian like energy distribution
is clearly different from that of the canonical ensemble.
In this section, we use the entropies, including the diag-
onal entropy Sd [35, 36], as a way to quantify the scaling
of the energy distributions in all ensembles as the sys-
tem size is increased. In Ref. [36], it was already shown
that the diagonal entropy in integrable systems increases
nearly linearly with system size, demonstrating its addi-

tive character.
In Fig. 5, we show the entropy per site for two differ-

ent quenches in half-filled systems, with increasing sys-
tem size. For both quenches, one can see that all entropy
per site plots tend to saturate to a constant value with
increasing L, making evident the additivity of this ob-
servable in all ensembles. Another result that is apparent
from those plots is that Sd is smaller that all other en-
tropies, and it seems that it will remain that way in the
thermodynamic limit, as noted in Ref. [36]. Now, an im-
portant difference between the behavior of the entropies
for a quench from the superlattice to the homogeneous
lattice [Fig. 5(a)] and the quench from the homogeneous
lattice to the superlattice [Fig. 5(b)] is that in the for-
mer, the entropy of the GGE and the grand-canonical
ensemble are nearly identical and the entropies of the
GCE and the canonical ensemble approach each other
with increasing system size. In the latter quench, the
entropies of the GGE and the grand-canonical ensemble
are different from each other and their difference is seen
to remain constant as the system size is increased. SGCE

and SCE approach each other as the system size increases,
but their difference is clearly larger than for the AI = 2
to AF = 0 quench.
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FIG. 5: (Color online) Entropy per site vs L in quenches
from the ground state of a superlattice with AI = 2 to the
homogeneous lattice AF = 0 (a), and from the homogeneous
lattice AI = 0 to the superlattice with AF = 2 (b). For
both quenches, we show results for the diagonal Sd, canonical
SCE, grand-canonical SGE, generalized canonical SGCE, and
generalized grand-canonical SGGE entropies. The systems are
at half-filling N = L/2.

In order to quantify the observations above for differ-
ent quenches and fillings, in Fig 6 we plot the scaling
of (SCE − SGCE)/L and (SGE − SGGE)/L with system
size. The left panels [Fig 6(a) and 6(b)] depict the re-
sults at half-filling. Figure 6(a) shows that for any given
pair AI = x → AF = 0 and AI = 0 → AF = x, where
x = 2, 4, 6, 8, the difference (SCE − SGCE)/L saturates
at greater values for the quenches starting from the ho-
mogeneous lattice than for those starting from the su-
perlattice (which, for the lattice sizes shown, still keep
decreasing as the system size is increased). The differ-
ence (SGE − SGGE)/L, in Fig. 6(b), exhibits and even
more remarkable behavior. It does not change with in-
creasing system size, and it can be seen to be orders
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FIG. 6: (Color online) Difference between the entropy of the
canonical ensemble and the GCE (a),(c), and between the
grand-canonical ensemble and the GGE (b),(d), for quenches
at half-filling (a),(b) and quarter filling (c),(d). In all panels,
the results for the quenches from the superlattice to the homo-
geneous lattice are depicted using empty symbols, while the
ones from the homogeneous lattice to the superlattice are de-
picted using filled symbols. For the former quenches, results
are reported for AI = 2 and AF = 0, AI = 4 and AF = 0,
AI = 6 and AF = 0, AI = 8 and AF = 0, and, for the latter,
results are reported for AI = 0 and AF = 2, AI = 0 and
AF = 4, AI = 0 and AF = 6, AI = 0 and AF = 8. In the
legend, we use the notation “AI to AF ” to label the plots.

of magnitude smaller for the quenches starting from the
superlattice when compared to those starting from the
homogeneous system. The difference (SGE − SGGE)/L
quickly approaches zero as the value AI in the superlat-
tice is increased. This is exactly the same behavior that
was observed in Ref. [8] for the difference between the
expectation value of the momentum distribution func-
tion (nk) in the grand-canonical ensemble and that of
the time average in the time evolving state. (The latter
can be reproduced using the GGE.)
Hence, we can conclude that for the particular class

of initial states in Ref. [8], where quenches starting from
the ground state of a system with a superlattice lead
to expectation values of nk that approach those in ther-
mal equilibrium as AI was increased, the sets of states
that contribute to the grand-canonical ensemble and the
GGE become increasingly similar to each other. Since
the GGE describes observables in the integrable system
after relaxation [7, 21], then thermal ensembles will also
provide a very good estimate for those observables as AI

is increased. From the results in Fig. 6(b), it is impor-
tant to stress that the entropies in the grand-canonical
ensemble and the GGE do not approach each other, for
a fixed value of AI , as the system size is increased.
In Fig. 6(c) and 6(d), we show results for an identical
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FIG. 7: (Color online) Difference between the entropy of
the grand-canonical ensemble and the GGE for quenches at
half-filling (two lower curves) and quarter filling (two upper
curves) vs AI . In all cases AF = 0. The dotted line depicts a
power-law fit to the large AI results at half-filling. For each
quench, results for two different system sizes are presented.

set of quenches as the one in Fig. 6(a) and 6(b), but for
systems at quarter filling. For all quenches at quarter fill-
ing, one can see that the differences between the entropy
in the standard ensembles and in the generalized ones is
orders of magnitude larger than for the quenches at half
filling. The differences between the two are maximal for
the quenches with AI 6= 0. The behavior with changing
system size is, however, similar to the one in the systems
at half-filling. Hence, by comparing all panels in Fig. 6,
one can further see that there is something special about
the quenches starting from the half-filled superlattice.
As discussed in Refs.[8, 38], the ground state of half-

filled systems in a superlattice is insulating and, as the
value of A increases, its wavefunction approaches that
of a trivial Fock state [a product state of empty (low
chemical potential) and occupied (high chemical poten-
tial) sites]. In Ref. [8], it was shown that the one-particle

correlation length ξ decays as a power law ξ/a ∼ 1/
√

A/t
for large values of A/t (A/t & 4). In Fig. 7, we show how
(SGE − SGGE)/L decreases as AI increases. Here again,
we find a power-law decay for large values of AI , where
(SGE − SGGE)/L ∼ 1/A6

I . This large exponent explains
the fast reduction of (SGE−SGGE)/L seen in Fig. 6 when
AI was increased.
Since for large values of AI the initial states are nearly

uncorrelated states (ξ → 0), their overlaps with the
eigenstates of the final Hamiltonian can be understood
to be random and constrained only by energy conserva-
tion. This helps understanding the origin of Gaussian en-
ergy distribution observed in the previous section and the
closeness of the generalized ensemble entropies to those
of the standard ensembles as AI is increased. In Fig. 6,
we also present results for the quenches at quarter fill-
ing, where (SGE−SGGE)/L is seen to saturate to a finite
value when AI is increased. For both fillings, and the
system sizes depicted in that figure, finite size effects can
be seen to be negligible.
Confirmation of the conclusions above can be obtained

if one realizes that a similar argument applies to the sys-
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FIG. 8: (Color online) (a) Density in the center of the trap
as a function of the excitation energy per particle ε, which is
changed by increasing VI in a system with 50 lattice sites and
10 particles. (b) Difference between the entropy of the grand-
canonical ensemble and the GGE vs L for systems with differ-
ent excitation energy per particle. Inset: Integrated relative
difference between nk in the diagonal and canonical ensem-
bles (see text) vs the excitation energy per particle. Results
are presented for different system sizes, L = 25, 30, . . . , 45
[21].

tems discussed in Ref. [21]. There, the initial state was
selected to be the ground state of a trapped system where
[Eq. (1)],

V ext
j = V (j − L/2)2

is a harmonic trapping potential, and the evolution was
followed after the trap potential V was turned off, i.e.,
VI 6= 0 and VF = 0. For a fixed number of particles,
as VI increases, a Mott insulator (Fock state for hard-
core bosons) with density n = 1 forms in the center of
the trap. When initial states containing such Mott in-
sulating domains were used for the time evolution, the
difference between the momentum distribution function
in the diagonal ensemble and standard ensembles of sta-
tistical mechanics was seen to decrease [21].
In the inset in Fig. 8, we show the results obtained in

Ref. [21] for the integrated difference between the predic-
tions of the diagonal and canonical ensembles for nk

(∆nk)CE =

∑

k |〈n̂k〉DE − 〈n̂k〉CE|
∑

k〈n̂k〉DE
,

as a function of the excitation energy per particle

ε =
EI − EG

N
,

where EG is the ground state energy of the final (homo-
geneous) Hamiltonian. The excitation energy increases
by increasing VI , while keeping L and N constant [21].
The density in the center of the trap (in the initial

state), vs the excitation energy, is plotted in Fig. 8(a).
There, one can see that (∆nk)CE (in the inset) is smallest
and keeps decreasing when the density in the center of
the trap approaches or becomes equal to one, i.e., when
an increasingly large portion of the system comes close
or becomes a Fock state.

The scaling of the difference between the entropies
in grand-canonical ensemble and the GGE is shown in
Fig. 8(b) for different excitation energies. Similarly to
the results for the superlattice systems, that difference is
seen to be smallest (and decreasing with increasing sys-
tem size in this case) for the systems whose initial states
are closest to Fock states. Hence, once again, a spe-
cial class of initial states is seen to produce increasingly
“thermal like” observables and generalized ensembles.

V. CONSERVED QUANTITIES

Conserved quantities play a fundamental role in the
dynamics and description after relaxation of integrable
systems. The latter follows from the evidence that gen-
eralized ensembles are able to describe observables after
equilibration while standard statistical ensembles are, in
general, not [7–14, 16–18, 21–23]. Hence, a distinctive
behavior is expected of the distribution of the conserved
quantities for those initial states for which observables
after relaxation approach thermal values. In this section,
we study the behavior of the conserved quantities in those
and other cases analyzed in the previous sections.
As explained in Sec. II, the expectation values of the

conserved quantities in hard-core boson systems can be
straightforwardly computed because they are the occu-
pation of the eigenstates of the noninteracting fermionic
Hamiltonian (there are L of those) to which hard-core
bosons can be mapped. As such, they can be calcu-
lated within the GGE (identical to those of the initial
state and the diagonal ensemble by construction) and in
the grand-canonical ensemble, for very large lattices. In
the grand-canonical ensemble, the occupation of the con-
served quantities is dictated by the Fermi distribution

〈În〉GE =
1

e(ǫn−µ)/kBT + 1
, (20)

where ǫn are the single particle eigenenergies.
In Figs. 9(a) and 9(b), we depict the conserved quan-

tities in the GGE (initial state) and the grand-canonical
ensemble for quenches at half filling from the ground state
in a superlattice to the homogeneous lattice [Fig. 9(a)]
and from the ground state of the homogeneous lattice to
the superlattice [Figs. 9(b)]. (The conserved quantities
are ordered from the highest to the lowest occupied in
the initial state.) A clear contrast can be seen between
those two panels. In Fig. 9(a) the results for the GGE
and grand-canonical ensemble are almost indistinguish-
able from each other while in Fig. 9(b) they are clearly
very different from each other. This behavior does not
change with increasing system size as in the same figure,
depicted as continuous lines, we also report results for
lattices ten times larger than those used for the calcula-
tions depicted as symbols. Qualitatively, all these results
are similar to those obtained in Ref. [21] for the trapped
systems analyzed in the previous section.
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FIG. 9: (Color online) Expectation value of the conserved
quantities in quenches from AI 6= 0 to AF = 0 (a),(c) and
from AI = 0 to AF 6= 0 (b),(d), for systems at half filling
(a),(b) and systems at quarter filling (c),(d). The conserved
quantities are ordered from the highest to the lowest occupied
in the initial state. Filled symbols depict the results of the
GGE (conserved quantities in the initial state) and empty
symbols depict the results of the grand-canonical ensemble.
The results denoted by symbols (lines) correspond to systems
with 38 (380) sites in the half-filled case (a),(b) and with
48 (480) sites in the quarter-filled case (c),(d). Note that
already for the smallest system sizes depicted here (the largest
analyzed in the previous sections) finite size effects for the
conserved quantities are negligible. They exhibit an almost
perfect overlap with the results in systems ten times larger.
Results are reported for quenches between AI = 2 and AF =
0, AI = 4 and AF = 0, AI = 6 and AF = 0, AI = 8 and
AF = 0; and, between AI = 0 and AF = 2, AI = 0 and
AF = 4, AI = 0 and AF = 6, AI = 0 and AF = 8. In the
legend, we use the notation “AI to AF ” to label the plots.

Insights on the contrast between the results in Fig. 9(a)
and Fig. 9(b) can be gained if one notices that the distri-
bution of conserved quantities for the quenches from and
to the superlattice are smooth, and identical when AI in
the former is equal to AF in the latter. This immediately
helps one understanding why the grand-canonical ensem-
ble prediction of the conserved quantities can match that
of the quenches from the superlattice (AI 6= 0) to the ho-
mogeneous lattice (AF = 0) but not that of the quenches
from the homogeneous lattice (AI = 0) to the superlat-
tice (AF 6= 0). In the former, the final system exhibits no
gaps (AF = 0) and the conserved quantities [the Fermi
distribution, see Eq. (20)] can be a smooth function of n
at finite temperatures, while in the latter the system is
gapped (AF 6= 0) and, hence, a discontinuity must occur
in the Fermi distribution at the gap position [as seen in
Fig. 9(b) for n/L = 0.5].

The results reported in the right panels [(c) and (d)] in
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L
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∆I

2 to 0
4 to 0
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L
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0.15
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FIG. 10: (Color online) Integrated differences between the
conserved quantities in the GGE (initial state) and in the
grand-canonical ensemble (see text) vs L for half-filled sys-
tems in quenches from AI 6= 0 to AF = 0 (a) and from
AI = 0 to AF 6= 0 (b). Results are reported for quenches
between AI = 2 and AF = 0, AI = 4 and AF = 0, AI = 6
and AF = 0, AI = 8 and AF = 0 in (a); and, between AI = 0
and AF = 2, AI = 0 and AF = 4, AI = 0 and AF = 6, AI = 0
and AF = 8, in (b). In the legend, we use the notation “AI

to AF” to label the plots.

Fig. 9, for systems at quarter filling, are qualitatively sim-
ilar to those in Fig. 9(b). For all quenches, the conserved
quantities in the initial state are very different from those
predicted by the grand-canonical ensemble. The differ-
ences can be noticed to be particularly large if one real-
izes that, for many conserved quantities, the initial state
has a zero expectation value while the grand-canonical
ensemble predicts nonzero, and large, values. This helps
in understanding the large differences seen in the previ-
ous section between the entropies in the generalized and
standard ensembles, for the quenches at quarter filling.
Once again, the behavior of the conserved quantities in
thermal equilibrium is dictated by the Fermi distribu-
tion, and can be understood given the gapless or gapped
nature of the spectrum of the final system.
Figure 10 depicts how the difference between the con-

served quantities in the initial state and the grand-
canonical ensemble, given by the integrated relative dif-
ference

∆I =

∑

n |〈În〉GGE − 〈În〉GE|
∑

n〈În〉GGE

,

behaves as the system size increases. The results pre-
sented, for half-filled systems in quenches from a super-
lattice potential (AI 6= 0 and AF = 0) in Fig. 10(a)
and to a superlattice potential (AI = 0 and AF 6= 0) in
Fig. 10(b), show more quantitatively that the results in
Fig. 9 do not change with increasing system size.
Figure 10 also makes evident that there is a big quanti-

tative difference between ∆I in the systems whose initial
state is the ground state in the superlattice [Fig. 10(a)]
and those whose initial state is the ground state of the
homogeneous lattice [Fig. 10(b)]. This is better seen in
Fig. 11, where ∆I is plotted vs AI for the former case and
vs AF for the latter. In both cases, we find power-law
decays, which are ∼ 1/A3

I when the initial state was cre-
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FIG. 11: (Color online) Integrated differences between the
conserved quantities in the GGE and in the grand-canonical
ensemble. Results are reported for quenches where (i) AI 6= 0
and AF = 0 (two bottom curves) vs AI , and (ii) AI = 0
and AF 6= 0 (two upper curves) vs AF , and for two different
system sizes. The dotted lines depict a power-law fits to the
large AI ,AF results.

ated for AI 6= 0 and ∼ 1/AF when the final Hamiltonian
has AF 6= 0. It is important to stress that while increas-
ing AI does not qualitatively change the time dynamics
of observables of interest, increasing AF does [8]. In the
latter case the damping (relaxation) of the observables
is inhibited [8], so that the assumption that observables
relax to time independent values breaks down.

Finally, from Figs. 10 and 11, we should emphasize
once again that, complementary to the behavior seen for
(SGE − SGGE)/L in the previous section, the scaling of
∆I vs L is similar for both types of quenches, namely,
any finite value of AI (if AF = 0) or AF (if AI = 0)
leads to a finite ∆I in the thermodynamic limit. The
difference between those quenches resides in the actual
values of ∆I and their behavior with changing AI or AF .

On the basis of those results we can now understand
that, for the classes of initial states in Refs. [8, 21] for
which observables after relaxation approached thermal
values, the control parameter used tuned the distribu-
tion of conserved quantities to approach thermal values
(resulting in generalized ensembles that, for those states,
approach thermal ensembles). This behavior, however,
should not be confused with thermalization as under-
stood for nonintegrable systems. For the latter, the dif-
ference between observables after relaxation and the pre-
dictions of statistical mechanics ensembles is expected to
vanish in the thermodynamic limit, while, for the special
classes of initial states that we have studied here for in-
tegrable systems, such a difference remains finite in the
thermodynamic limit for any selected (finite) value of the
control parameter.

To conclude, there is an important distinction to be
made about the generalized ensembles when compared
with standard ensembles of statistical mechanics. In the
latter, the conserved quantities (energy, momentum, an-
gular momentum, etc) are additive and their number is
∼ 1. In the generalized ensembles, the conserved quan-

tities are, strictly speaking, not additive and their num-
ber, in the integrable systems considered here, is ∼ L.
The fact that they are not additive can be immediately
seen in Fig. 9, where after making the system size ten
times larger the value of the conserved quantities does
not change. Instead, their number increased by a factor
ten (that is the reason for plotting the conserved quanti-
ties as functions of n/L).
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FIG. 12: (Color online) Lagrange multipliers in quenches from
AI 6= 0 to AF = 0 for systems at half filling (a) and systems at
quarter filling (b). (The results for quenches from AI = 0 to
AF 6= 0 are the identical.) Symbols (lines) correspond to sys-
tems with 38 (380) sites in the half-filled systems (a),(b) and
to systems with 48 (480) sites in the quarter filled systems.
Once again, note that size effects for the Lagrange multipli-
ers are negligible. Results are reported for quenches between
AI = 2 and AF = 0, AI = 4 and AF = 0, AI = 6 and AF = 0,
and AI = 8 and AF = 0. In the legend, we use the notation
“AI to AF” to label the plots.

In Fig. 12, we show the values of the Lagrange multi-
pliers for the same quenches and system sizes depicted in
Fig. 9. As expected from the expression for the Lagrange
multipliers [Eq. (12)], they are a smooth function of the
values of the conserved quantities (and exhibit negligible
finite size effects in Fig. 12). One can then think of the
conserved quantities, considered here to build the gener-
alized ensembles, as additive in a coarse grained sense.
This follows if one realizes that by increasing the system
size the Lagrange multipliers in a coarse grained region
do not change their values (Fig. 12), but the sum of the
expectation values of the conserved quantities in that
region (Fig. 9) grows proportionally to the increase of
system size. Hence, effectively, the conserved quantities
behave as additive. A discussion on the role of additivity
of the conserved quantities in generalized ensembles can
be found in Ref. [24].

VI. SUMMARY

We have studied the dependence on the initial state of
the description of integrable systems after relaxation fol-
lowing a sudden quench. In general, integrable systems
are not expected to thermalize. Hence, we have focused
in understanding special classes of initial states that lead
to values of observables after relaxation that approach
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those in thermal equilibrium, when a control parameter
is changed. One of our main findings is that, even for such
initial states, thermalization does not occur as in nonin-
tegrable systems. In the latter, the difference between
the thermal expectation value of an observable and those
after relaxation is expected to vanish in the thermody-
namic limit. In the integrable systems discussed here, no
matter the initial state selected (which is an eigenstate
of another integrable system where the control parame-
ter is one of the parameters of the initial Hamiltonian),
the distribution of conserved quantities in the thermal
ensembles is always different from (but can be arbitrar-
ily close to) that of the diagonal ensemble (or the GGE),
and the difference does not vanish with increasing sys-
tem size. Since the values of the conserved quantities
constrain the outcome of the relaxation dynamics, the
observables after relaxation do not reach thermal values
in the thermodynamic limit.
Another of our main findings is that what the con-

trol parameter is doing in those special classes of initial
states is tuning the distribution of conserved quantities to
approach thermal values. As a result, the initial states

exhibit energy densities that are increasingly Gaussian
like, and entropies of their associated generalized ensem-
bles that approach those of standard ensembles. Similar
to the behavior seen for the conserved quantities, the
difference between the entropy per site in the general-
ized and standard ensembles remain nonzero in the ther-
modynamic limit. It can, however, be made arbitrarily
small by changing the control parameter. Interestingly,
for the model considered here, the special initial states
were found to be insulating ground states that approach
products of single site wavefunctions.
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