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Complex and real unconventional Bose-Einstein condensations in high orbital bands
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We perform the theoretical study on the unconventional Bose-Einstein condensations (UBEC) in
the high bands of optical lattices observed recently. These exotic states are characterized by complex-
valued condensate wavefunctions with nodal points, or real-valued ones with nodal lines, thus are
beyond the “no-node” theorem of the conventional BECs. A quantum phase transition is driven
by the competition between the single particle band and interaction energies. The complex UBECs
spontaneously break time-reversal symmetry, exhibiting a vortex-antivortex lattice structure.

PACS numbers: 03.75.Nt, 03.75.Lm, 05.30.Jp, 05.30.Rt

Quantum wavefunctions are generally complex-valued.
However, the usual ground state wavefunctions of bosons
are very restricted because they are positive-definite as
stated in the “no-node” theorem [1]. This theorem ap-
plies under very general conditions: the kinetic energy
is unfrustrated (e.g. the Laplacian-type); the single par-
ticle potential can be arbitrary; the two-body interac-
tion depends only on coordinates. Mathematically, it
is a direct consequence of the Perron-Frobenius theorem
of matrix analysis [2]. This theorem implies that time-
reversal (TR) symmetry cannot be spontaneously broken
in various ground states of bosons, including superfluid,
Mott-insulating, and supersolid states.

The “no-node” theorem, however, only applies to
ground state, and hence not to meta-stable excited states
of bosons. This opens up a possibility for “unconven-

tional” states of bosons beyond the “no-node” theorem
[3]. Similarly to unconventional superconductors, in un-
conventional Bose-Einstein condensations (UBEC), the
condensate wavefunctions form non-trivial representa-
tions of the lattice symmetry groups. However, a major
difference exists. Cooper pairs have the center of mass
motion and the relative motion between two electrons of
the pair. In unconventional superconductors, it is the rel-
ative motion that is non-trivial. The degree of freedom
of the relative motion does not exist in the single bo-
son BEC. In UBECs, the condensate wavefunctions are
non-trivial.

Considerable efforts have been made to study uncon-
ventional states of bosons both experimentally and theo-
retically. Among the most exciting achievements are the
realizations of the meta-stable excited states of bosons
in high orbital bands [4–7], which leads to the opportu-
nity to the study of the UBECs [8–15], and other exotic
properties [16–21]. Below are some recent experimen-
tal results. Sebby-Strabley et al. succeeded in pump-
ing a large fraction of bosons into the excited bands in
a double-well lattice [4]. Mueller et al. observed the
quasi-1D phase coherence pattern by exciting bosons into
the p-orbital bands in the cubic lattice [5]. An impor-
tant progress was made by the group of Hemmerich [6]:
the UBECs in the sp-hybridized orbital bands were real-
ized in a checkerboard-like lattice, which allows to estab-
lish the fully cross-dimensional coherence. More recently,

UBECs in even higher orbital bands have been observed
in the same group [7].
In this paper, we present the theoretical study on

UBECs observed in the second, or, the first excited band,
of the checkerboard optical lattice. This band is of a hy-
bridized nature between the s-orbital of the shallower
sites and the p-orbitals of the deeper sites. The lattice
asymmetry favors a real-valued condensate wavefunction
with nodal lines, while interactions favor a complex-
valued one with nodal points. By solving the Gross-
Pitaevskii (GP) equation for these meta-stable conden-
sates, we find that tuning the lattice asymmetry drives
the phase transition between these two types of UBECs
in a good agreement with experimental observations.
We introduce the optical lattice employed in the ex-

periment [6]. Each unit cell consists of two sites with
different depths (denoted A and B below) as shown in
Fig. 1 (a). (A similar lattice potential with different
parameters has been plotted in Ref.[6]). The lattice is
constructed by the interference pattern of phase coher-
ent laser beams along ±x and ±y-directions generated
from a single laser through beam splitters and reflectors.
The optical potential reads

V (x, y) = −
V0
4
|(ẑ cosα+ ŷ sinα)eiklx + ǫẑe−iklx

+ ηeiθẑ(eikly + ǫe−ikly)|2, (1)

where ŷ and ẑ are unit vectors describing light polar-
izations; kl is the laser wavevector; ǫ < 1 and η < 1
describe the imperfect reflection and transmission effi-
ciencies; θ is the phase difference between beams along x
and y-directions; α is used to tune the lattice asymmetry
by rotating the light polarization out of the ẑ-direction.
The point group symmetry of this lattice is analyzed

below. We start from the ideal case of ǫ = 1 with
α = 0◦ and θ = 90◦, at which A and B-sites are equiv-
alent. At η < 1, the lattice has the reflection sym-
metries with respect to both the x and y-axes, thus
the lattice is orthorhombic. Next we keep ǫ = 1 and
α = 0◦ but set θ away from 90◦. Then the unit
cell includes both A and B-sites. The primitive lat-
tice vectors are a0(êx ± êy) where a0 = π/kl as shown
in Fig. 1 (b). The optical potential becomes V =
−V0

2

(

cos 2klx + η2 cos 2kly + 4η cos θ cos klx cos kly
)

. θ
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FIG. 1: (a) The optical lattice with the reflection symmetry
with respect to the x-axis and the parameter values: η = 0.95,
ǫ = 0.81, θ = 95.4◦, α = α0 = 36◦ and V0 = 6.2Er. The A-
sites have deeper potential depth than those of B-sites. (b)
The basis vectors of the double-well lattice.

controls the potential difference between A and B sites.
The point group symmetry remains orthorhombic. Now
we move to the realistic case of ǫ < 1. The unit cell re-
mains double-well-shaped and the primitive lattice vec-
tors are the same. However, the orthorhombic symmetry
is broken and there is no point group symmetry for gen-
eral values of parameters. This asymmetry can be par-
tially compensated by setting α0 = cos−1 ǫ. We denote
this configuration as “symmetric” and other ones with
α 6= α0 as “asymmetric” below. The symmetric lattice
potential becomes V = −V0

2
ǫ
(

ǫ cos 2klx + η2 cos 2kly
)

−

V0ηǫ cosklx
[

cos(kly+θ)+ ǫ
2 cos(kly−θ)

]

, which has the
reflection symmetry with respect to the x-axis but not to
the y-axis.
Next we calculate the band structures. The reciprocal

lattice vectors are defined as ~Gm,n = m~b1 + n~b2 with
~b1,2 = (±π

a
, π
a
). The single particle Hamiltonian reads as

H0 = −~
2~∇2/(2M) + V (r) where M is the boson mass.

Using the plane wave basis, the diagonal matrix elements

are 〈~k + ~Gmn|H0|~k + ~Gmn〉 = Er{[akx/π + (m − n)]2 +
[aky/π + (m + n)]2}, where Er = ~

2π2/(2Ma2) is the
recoil energy. The off-diagonal matrix elements read

〈~k|H0|~k + ~G±1,0〉 = −
V0
4
ηǫ(cosαe∓iθ + e±iθ),

〈~k|H0|~k + ~G0,±1〉 = −
V0
4
η(cosαe±iθ + ǫ2e∓iθ),

〈~k|H0|~k + ~G±1,∓1〉 = −
V0
4
ǫ cosα,

〈~k|H0|~k + ~G±1,±1〉 = −
V0
4
ǫη2 cosα. (2)

We focus on the second band into which bosons are
pumped [6]. There are four points in the Brillouin
zone (BZ), i.e., O = (0, 0), K1,2 = (± π

2a0

, π
2a0

), and

M = ( π
a0

, π
a0

), at which the Bloch wavefunctions are TR
invariant, and thus real-valued. The band spectra are
symmetric with respect to these points, which means that
they are local energy extrema or saddle points. For the
symmetric lattice with α = α0, the second band has dou-
bly degenerate energy minima of the states ψK1,2

located
atK1,2, respectively. For the asymmetric case, the degen-
eracy between ψK1

and ψK2
are lifted. For α < (>)α0,
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FIG. 2: (a) The energy spectra for the second band, the pa-
rameter values are the same as Fig.1 except α = 0◦. (b) The
spectra of (a) along the line from (0, π

a
) to (π

a
, 0).

K1(K2) become the band minimum, respectively. The
energy spectra of α = 0 is shown in Fig. 2 (a) and (b)
(A similar energy spectrum with different parameters has
been plotted in Ref.[6]).

The real space distributions of ψK1,2
are also calcu-

lated. Their nodal lines pass the centers of the deeper
sites of A. Thus the orbital component on the A-sites is
of the p-type and that on the shallower sites of B is of the
s-type. In fact, the p-orbital configurations of ψK1,2

(~r) in
the A-sites are actually not exactly along the directions
of êx± êy because of the lack of the tetragonal symmetry.
This point is mostly clear in the case of strong potentials
so that we can define local orbitals on each site. Even for
the symmetric lattice, the px and py-orbitals on the A-
sites can be defined according to their parities under the
reflection with respect to the x-axis. However, they are
non-degenerate. The orbital components of ψK1,2

(~r) are
nearly the same on A-sites, i.e., mostly the lower energy
p-orbital slightly hybridized with the higher one. The or-
thogonality of these two states comes from their different
lattice momenta.

Interactions determine the configurations of UBECs in
the presence of degenerate band minima. Any linear
superposition among them gives rise to the condensate
wavefunctions with the same kinetic energy. However,
interactions break this degeneracy. Previous studies on
p-orbital BECs based on tight-binding models predicted
linear superpositions between two Bloch wavefunctions
at degenerate band minima with a phase difference ±π

2
.

Such a condensate breaks TR symmetry spontaneously
[3, 8]. Bosons on p-orbital sites aggregate into the px±ipy
states to reduce their repulsive interaction energy. This
is a result of the second Hund’s rule: complex p-orbitals
are spatially more extended than the real orbitals, and
thus bosons have more room to avoid each other.

The optical potential in the current experiment is shal-
low, thus the system is in the weak correlation regime [6].
Instead of the tight-binding model, we use the GP equa-
tion. Because of the absence of the lattice potential along
the z-axis, we neglect the z-dependence of the conden-
sate wavefunction. We only consider its distribution Ψ(~r)

in the xy-plane. It is normalized as 1

Ω

∫ ′
d2r|Ψ(~r)|2 = 1

where
∫ ′
d2~r integrates over one unit cell with the area
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FIG. 3: The distributions of (a) the phase and (b) density
patterns of the complex UBEC. The parameter values are the
same as in Fig.1 except gρ0 = 0.6Er and α = 36◦. The vortex
and anti-vortex cores are located in the centers of A-sites.

of Ω = 2a20. The GP equation reads

{

−
~
2~∇2

2M
+ V (~r) + gρ0|Ψ(~r)|2

}

Ψ(~r) = EΨ(~r), (3)

where ρ0 = N0/V is the average 3D density with N0

the total boson number in the condensate and V is the
3D volume of the system; g is the s-wave scattering in-
teraction parameter. In the calculations below, various
values of interaction parameters gρ0 are used from 0 up
to Er, which is of the same order of magnitude with the
bandwidth. For this intermediate interaction, the GP
equation is known to provide a good description of the
system.

FIG. 4: Density distribution in the time-of-flight spectrum
for (a)complex condensate in the symmetric case (α = 36.0◦)
(b)complex condensate in the asymmetric case (α = 35.5◦).
(c)real condensate (α = 34.5◦). Other parameters values are
the same as Fig.1 except α.

Although Eq. 3 looks the same as the usual GP equa-
tion, the marked difference is that Ψ(~r) is not the ground
state condensate but the meta-stable one belonging to
the second band. The non-linearity of the GP equation
allows mixing between different Bloch wave states. Let
us start from the symmetric lattice with α = α0. Eq.
3 is solved self-consistently as follows. We define the
renormalized potential as Veff (~r) = V (~r) + gρ0|Ψ(~r)|2,
and solve the corresponding renormalized band structure.
Then the condensate wavefunction is optimized to min-
imize the total energy, which in turn determines Veff .
The renormalized band structure is similar to the free
one, which still has two degenerate band minima at K1,2.
We define the condensate wavefunction as

Ψ(~r) = cos δ ψK1
(~r) + eiφ sin δ ψK2

(~r). (4)

The total energy reaches minimal at δ = π
4

and φ =
±π

2
. Notice that the point φ = 0 also represents a

metastable stationary state which exhibits nontrivial dy-
namical instability[22–24], which is beyond the scope of
our paper. These complex condensate wavefunctions only
have nodal points, while the real ones ψK1,2

have nodal
lines. The complex ones are spatially more uniform, and
thus are favored by interactions. We plot the phase and
density patterns of this condensate in Fig. 3, which ex-
hibit a vortex-antivortex lattice structure. The vortex
and anti-vortex cores are located alternatively at centers
of A-sites, at which the antiferromagnetic order of orbital
angular momentum develops. For every closest four B-
sites, their phases wind around the central A-site follow-
ing the same vorticity. This is similar to the case of the
tight-binding models [3, 8]. The Bragg peaks in the time

of flight (TOF) spectra are located at (m + 1

2
)~b1 + n~b2

and m~b1+(n+ 1

2
)~b2 as observed in the experiment [6]. In

particular, the four peaks of ± 1

2
~b1,2 = (± π

2a0

,± π
2a0

) are

strongest with equal intensities, as shown in Fig.4 (a).
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FIG. 5: (a)The phase diagram as a function of α and the
interaction strength gρ0. Other parameters values are the
same as Fig.2. (b) The condensate fractions of ψK1

in the
complex UBEC Ψ = cos δ ψK1

± i sin δ ψK2
, the parameter

values are the same as Fig.1 except α and gρ0 = 0.6Er.

Now we move to the asymmetric lattice whose free
band structure minimum is non-degenerate. The com-
plex condensates are favored by interactions, and thus
should be stable at asymmetries weak enough. Certainly,
at large asymmetries, the real condensate wins due to the
gain of band energy. This picture is explicitly confirmed
by the phase diagram calculated by GP equation. As
shown in Fig. 5 (a), for a given value of the interaction
strength gρ0, the complex condensate in the form of Eq.
4 is stable in a finite parameter range from α1 to α2, be-
yond this regime the condensate changes to the real one,
and the TOF spectra of such a real condensate only con-

tain peaks of (m+ 1

2
)~b1 or (m+ 1

2
)~b2, as shown in Fig.4

(c)
In the complex condensate, the relative phase φ be-

tween ψK1,2
is always ±π

2
, i.e., Ψ and Ψ∗ are degenerate

as TR partners; δ is asymmetry dependent. The spatial
asymmetry of |Ψ(~r)|2 depends on that of the bare po-
tential V . However, Veff , a combination of V and |Ψ|2,
becomes symmetric. Without loss of generality, Ψ(~r) is
expanded in terms of two orthonormal real wavefunctions
ψ1,2(~r) in the same way as in Eq. 4 by replacing ψK1,2

with ψ1,2. Apparently, both Ψ(~r) and Ψ∗(~r) satisfy Eq.
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3, and yield the same Veff . The corresponding renormal-
ized single particle Hamiltonian, −~

2∇2/(2M) + Veff ,
has degenerate band minima ψ1,2. However, please note
that the superposition principle does not apply to the
non-linear GP equation: ψ1,2 are not solutions to Eq. 3.
|Ψ(~r)|2 is also asymmetric depending on the asymmetry
of the bare potential V . The TOF spectra still exhibit
four dominant peaks at ±( π

2a0

, π
2a0

) and ±(− π
2a0

, π
2a0

), as

shown in Fig.4 (b). The relative intensities of these two
pairs of peaks depend on the lattice asymmetry, which
can be reflected by the condensation fractions ψK1

in the
complex condensate, as plotted in Fig. 5 (b). An obser-

vation of the asymmetric peaks at ± 1

2
~b1,2 at α1 < α < α2

would provide a supporting evidence for the complex con-
densates. The TOF spectra lack phase information, thus

the observation of the symmetric peaks ± 1

2
~b1,2 at α0 [6]

could be interpreted as the phase separation of real con-
densates of ψK1,2

, or an incoherent mixing between them.
However, in these scenarios, the lattice asymmetry lifts
the degeneracy and only leads to one pair of peaks. Even
two condensates could coexist forming domains, the con-
densate fraction of ψK1

in the complex condensate should
not follow that plotted in Fig. 5(b).

FIG. 6: Phase diagram as a function of r1, r2 predicted by
Eq.6 for (a) g > 0; (b) g < 0.

For a better understanding of phase transitions
between real and complex UBECs, we construct a
Ginzburg-Landau (GL) free energy as:

F = −r1|ΨK1
|2 − r2|ΨK2

|2 + g1|ΨK1
|4 + g2|ΨK2

|4

+ g3|ΨK1
|2|ΨK2

|2 + g4(Ψ
∗
K1

Ψ∗
K1

ΨK2
ΨK2

+ h.c), (5)

where ΨK1,2
= ψK1,2

eiθ1,2 describe the condensate order
parameters atK1,2; θ1,2 are the phases of the condensates
of ΨK1,2

and ψ1,2 are real as explained before. Although
ΨK1,2

do not couple at the quadratic level due to the re-
quirement of translational symmetry, they do couple at

the quartic level as in the g4 term because ±2( ~K1 − ~K2)
equals reciprocal lattice vectors. g4 is positive for repul-

sive interactions which favors the relative phase differ-
ence θ1 − θ2 = ±π

2
, thus the free energy in Eq.(5) can be

reduced to:

F = −r1ψ
2

K1
− r2ψ

2

K2
+ g1ψ

4

K1
+ g2ψ

4

K2
+ gψ2

K1
ψ2

K2
, (6)

in which g = g3 − 2g4. We define G = 4g1g2 − g2 and
g1, g2, G > 0 as required by the thermodynamic stability
condition. In the superfluid regime, the complex UBEC
is characterized by the non-zero values of both ΨK1,2

,
while the real BECs correspond to one of these values
being zero. Without loss of generality, we fix g1, g2, g
and plot the phase diagram of the superfluid regime as
a function of r1, r2. As shown in Fig.6, for g > 0, the
complex BECs occur when g

2g2
< r1

r2
< 2g1

g
, where both

r1, r2 are positive. It is interesting to notice that for
g < 0, the complex BEC can exist even one channel is
off-critical (r1 < 0 or r2 < 0), which means that in this
case, the complex BEC is purely induced by interaction.
A similar phase diagram has been proposed in a different
context about p-wave resonant Bose gas[25, 26].

As interaction increases, and the system is brought into
the Mott insulating regime. Nevertheless, at least in the
weakly insulating regime, the suppress of the superfluid-
ity ordering is due to phase fluctuations, and the magni-
tudes of |ΨK1,2

| remain nonzero. Though θ1 and θ2 are
disordered such that 〈ΨK1,2

〉 = 0, their relative phase
θ1 − θ2 = ±π

2
. This indicates a TR breaking order with

a bilinear form of ΨK1,2
as L = i〈Ψ∗

K1
ΨK2

− Ψ∗
K2

ΨK1
〉

in the Mott insulating state. Its physical meaning here
remains the staggered circulating currents, i.e., this ex-
otic Mott insulating states preserve the antiferromagnetic
OAM order of the complex BECs but not the global phase
coherence.

In summary, we have studied the UBECs observed
in high orbitals bands in Ref.[6]. The unconventional
condensate wavefunctions can be real and TR invari-
ant with nodal lines, or complex breaking TR symmetry
with nodal points. In both cases, translational symmetry
is broken due to the nonzero condensation wavevectors,
thus these UBECs can be considered as unconventional
supersolid states. The interplay between lattice asymme-
try and interactions drives the transition between them.
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