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We show that dipolar interactions between ultracold polar alkali dimers in optical lattices can
be used to realize a highly tunable generalization of the t-J model, which we refer to as the t-J-
V -W model. The model features long-range spin-spin interactions Jz and J⊥ of XXZ type, long-
range density-density interaction V , and long-range density-spin interaction W , all of which can be
controlled in both magnitude and sign independently of each other and of the tunneling t. The “spin”
is encoded in the rotational degree of freedom of the molecules, while the interactions are controlled
by applied static electric and continuous-wave microwave fields. Furthermore, we show that nuclear
spins of the molecules can be used to implement an additional (orbital) degree of freedom that is
coupled to the original rotational degree of freedom in a tunable way. The presented system is
expected to exhibit exotic physics and to provide insights into strongly correlated phenomena in
condensed matter systems. Realistic experimental imperfections are discussed.

PACS numbers: 67.85.-d, 71.10.Fd, 33.80.-b, 33.20.-t

I. INTRODUCTION

Ultracold diatomic polar molecules have recently at-
tracted a great deal of attention both experimentally
and theoretically [1–6]. Two features of diatomic po-
lar molecules make them particularly interesting as com-
pared to the more typical systems of ultracold alkali
atoms. First, polar molecules possess a permanent dipole
moment, which can be manipulated with external fields
and which can lead to long-range anisotropic interac-
tions. This contrasts with atoms whose interactions are
typically short-range and isotropic. Second, the inter-
nal level structure of diatomic polar molecules is much
richer than that of atoms and, although more difficult
to control, allows, in principle, for richer physics. These
two features make diatomic polar molecules attractive
for numerous applications including quantum computa-
tion, quantum simulation, precision measurements, and
controlled quantum chemistry [1–5].

In Ref. [7], it was shown that these two unique features
allow ultracold polar molecules in optical lattices to sim-
ulate a highly tunable generalization of the t-J model
[8–11] referred to as the t-J-V -W model. In the origi-
nal t-J model, which arises as the large-U expansion of
the Hubbard model, hardcore electrons hop on a lattice
with tunneling amplitude t and interact with each other
via nearest-neighbor antiferromagnetic Heisenberg inter-
action J . In the regime of low hole doping (i.e. when
electron concentration is close to one per site), Heisen-
berg interaction favors antiferromagnetic ordering of the
background spins, while hopping of the holes favors their
ferromagnetic ordering. High-temperature superconduc-
tivity is believed to emerge as the best compromise in
this competition [10].

In the t-J-V -W model, the role of electron spin
is played by the rotational degree of freedom of the
molecules, while spin-spin interaction J is provided by
the dipole-dipole interaction. In addition to the tun-

neling t and spin-spin interaction J , this model features
density-density interaction V and density-spin interac-
tion W . Furthermore, the SU(2)-symmetric Heisenberg
interaction of the t-J model can be made anisotropic
in the t-J-V -W model (i.e. Jz 6= J⊥), premitting the
study of quantum magnetism in the presence of XXZ-
type interactions. All these aspects allow ultracold po-
lar molecules to simulate a rich variety of Hamiltoni-
ans, including those not accessible in condensed mat-
ter systems. As a first step towards understanding the
t-J-V -W model, Ref. [7] showed that the simplest ex-
perimentally realizable case of the t-J-V -W model with
V = W = Jz = 0 allows to strongly enhance the super-
conducting (i.e. superfluid for our neutral system) region
of the 1D phase diagram relative to the usual t-J model.

In the present paper, we provide the details behind
the derivation of the t-J-V -W model. In particular, we
show that the manipulation of the rotational degree of
freedom of the molecules via DC electric and microwave
fields allows to achieve full control of the coefficients of
the t-J-V -W Hamiltonian and discuss the implications of
this control on the accessible manybody physics. Specifi-
cally, one can tune the system into exhibiting the physics
very similar to the original t-J model, whose phase dia-
gram is still highly controversial beyond one dimension
[8–11]. Alternatively, one can access a wide range of other
regimes that include the spin-1/2 XXZ magnet and nu-
merous extensions of the t-J model, some of which are
believed to exhibit enhanced superfluid correlations. We
also show how to control the spatial anisotropy of the
Hamiltonian by changing the direction of the applied DC
electric field and how to control the optical potential ex-
perienced by different rotational states by an appropriate
choice of lattice laser beams.

Furthermore, we study in detail the generalization of
the t-J-V -W model to the case where not only the rota-
tional degree of freedom of the molecules, but also their
nuclear degrees of freedom play an important role. Due
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to the relative simplicity of their production, the only
ultracod polar molecules currently available in their elec-
tronic, vibrational, and rotational ground states are al-
kali dimers KRb [12–15] and LiCs [16, 17]. Therefore, we
focus on the hyperfine structure of alkali dimers, which
has recently been studied theoretically [18–22] and ex-
perimentally [23–25]. Specifically, we show how the ap-
plied DC electric field can be used to couple and decouple
rotational and nuclear degrees of freedom, thus allow-
ing for the control of nuclear spin effects. In the case
where nuclear spins are coupled to the rotational degree
of freedom, we show that the nuclear spins can function
either as classical – possibly spatially dependent – mag-
netic field or as a separate (orbital) quantum degree of
freedom with a highly tunable interaction with the rotor.
We also point out possible promising applications of the
system to quantum information processing. Since ultra-
cold ground-state polar alkali dimers are already avail-
able in experiments [12–17] and are even loaded in opti-
cal lattices [14], we expect our results to be immediately
applicable to current experiments.

Our work builds on an extensive body of literature
studying the many-body dynamics of polar molecules in
a lattice and making use of the internal rotational struc-
ture [3, 22, 26–37] and of fine and hyperfine structure of
molecules with a single electron outside a closed shell
[27, 28, 34]. We would also like to specifically high-
light recent work in Refs. [22, 37], which make important
steps towards the understanding of the effects of hyper-
fine structure on many-body physics with alkali dimers.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the t-J-V -W Hamiltonian in the
presence of both a rotational and a nuclear degree of
freedom and describe its main features. Then, in Secs.
III - VI, we present a detailed derivation and discussion
of this Hamiltonian. In particular, in Sec. III, we study
the rotational and hyperfine structure of the molecules in
the presence of a DC electric field. In Sec. IV, we study
the optical potential and the associated tensor shifts. In
Sec. V, we use the results of Secs. III and IV to give
a detailed derivation of the final Hamiltonian. In Sec.
VI, we find the regimes, in which the model is stable
to loss via chemical reactions. Finally, in Sec. VII, we
present the conclusions. Appendix A presents formulas
useful for studying the single-molecule Hamiltonian and
dipole-dipole interactions between molecules. Appendix
B describes the phenomenon of interaction-assisted tun-
neling, which arises if one considers small corrections to
the t-J-V -W model.

II. THE HAMILTONIAN AND ITS FEATURES

In this Section, we introduce the t-J-V -W Hamiltonian
in the presence of both a rotational and a nuclear degree
of freedom and describe its main features. The detailed
derivation is postponed until Secs. III-VI.

We consider diatomic polar molecules confined to a

single plane (e.g. using a strong 1D optical lattice) and
subject to a DC electric and, possibly, one or more
continuous-wave (CW) microwave fields. Furthermore,
in that plane, the molecules are assumed to be loaded in
the lowest band of a 2D optical lattice. Such a system
is not far out of reach experimentally: indeed, loading
of KRb molecules into 1D [14] and 3D [38] lattices and
of homonuclear Cs2 molecules into a 3D lattice [25] has
already been demonstrated.

As shown in Secs. III-V, taking into account the ap-
plied DC and microwave fields, we can reduce the internal
structure of each molecule to a tensor product of a two-
level dressed rotational degree of freedom (dressed states
labeled by |m0〉 and |m1〉; angular momentum operator
on site j labeled by Sj) and a two-level nuclear degree of
freedom (states labeled by | ↑〉 and | ↓〉; angular momen-
tum operator on site j labeled by Tj). In Secs. III-VI,
we derive the following Hamiltonian:

H=−
∑
〈i,j〉mσ

tm

[
c†imσcjmσ + h.c.

]

+
1

2

∑
i6=j

Vdd(Ri−Rj)

[
JzS

z
i S

z
j +

J⊥
2

(S+
i S
−
j + S−i S

+
j )

+V ninj +W (niS
z
j + njS

z
i )

]
+A

∑
i

Szi T
z
i . (1)

This Hamiltonian, together with the full control over its
coefficients and with the detailed study of the hyperfine
structure, is the main result of the present paper. The
first term (∝ tm) describes tunneling of molecules; the
second term (∝ Vdd) describes dipole-dipole interactions;
while the last term (∝ A) describes hyperfine interac-
tions. Let us describe each of these terms, including the
necessary definitions and the physical origin.

Let us begin with the tunneling term ∝ tm. The

bosonic or fermionic creation operator c†jmσ creates a

molecule on site j in the dressed rotor state m (= m0

or m1) and nuclear state σ (=↑ or ↓). The notation 〈i, j〉
indicates the sum over nearest neighbors, where each pair
of nearest neighbors is included only once. Throughout
the paper, we set ~ = 1. As we will show in Sec. IV,
the tunneling amplitudes tm0 and tm1 can be made ei-
ther equal or different by choosing the polarization and
frequency of the optical fields creating the lattice and by
choosing the dressed states |m0〉 and |m1〉. The over-
all magnitude of the amplitudes tm can be tuned from
zero up to a few kHz by changing the intensity of the
optical fields. Notice that the chemical potential is not
included in Eq. (1) since H conserves the total number
of molecules in each internal state |mσ〉 and since the
system is not coupled to a reservoir of molecules. The
effect of a chemical potential can be modeled by control-
ling the total number of molecules in each internal state
|mσ〉 during the preparation stage.

Let us now describe the dipole-dipole interaction term

∝ Vdd. The operator njmσ = c†jmσcjmσ counts the num-
ber of molecules on site j in the dressed rotor state m



3

FIG. 1. (color online). The geometry of the setup. The
molecules are assumed to be in the X-Y plane. A typical
vector R in that plane has polar coordinates (R,Φ). The
direction of the DC electric field has spherical coordinates
(Θ0,Φ0) in the X-Y -Z coordinate system. The quantization
axis ẑ for the spins lies along the applied DC electric field.
The other two axes (x̂ and ŷ) of the spin coordinate system
are not shown. The cosine of the angle between R and ẑ is
equal to R̂ · ẑ = sin Θ0 cos(Φ− Φ0) [see Eq. (2)].

and nuclear state σ, while the operator njm =
∑
σ njmσ

counts the number of molecules on site j in the dressed
rotor statem irrespective of the nuclear state. We assume
[see Sec. VI] that on-site interactions and/or on-site de-
cay for two molecules are so large that molecules obey
the hardcore constraint, i.e. each site can be occupied
by either 0 or 1 molecules [although it is straightforward
to extend the model to finite on-site interactions (see
e.g. Ref. [26])]. The operators Szj = (njm0

− njm1
)/2,

S+
j =

∑
σ c
†
jm0σ

cjm1σ, and S−j = (S+
j )† are the usual

spin-1/2 angular momentum operators on site j describ-
ing the two-level dressed rotor degree freedom and satis-
fying [Szj , S

±
j ] = ±S±j .

As shown in Fig. 1, the 2D plane, which the molecules
are confined to, is assumed to be the X-Y plane, while
the vector perpendicular to it defines the Z-axis (note
the use of the upper case to denote the spatial axes).
All angular momenta are, on the other hand, quantized
along the z-axis (note the use of the lower case to denote
angular momentum axes), which is the axis along which
the DC electric field is applied. The z-axis has spherical
coordinates (Θ0,Φ0) relative to the X-Y -Z coordinate
system. In Eq. (1), Ri is the position of site i in the X-Y
plane. Classical dipole-dipole interaction energy between
two unit electric dipoles oriented along ẑ and located at
sites i and j is then given by

Vdd(R) =
1

4πε0R3

[
1− 3(R̂ · ẑ)2

]
=

1

4πε0R3

[
1− 3 sin2 Θ0 cos2(Φ− Φ0)

]
, (2)

where R = Ri −Rj = (R,Φ) in polar coordinates, and

R̂ = R/R is a unit vector along R. In Eq. (2), R̂ · ẑ =
sin Θ0 cos(Φ − Φ0) is the cosine of the angle between R

and ẑ. Vdd(R) is used in Eq. (1) and reproduces the
usual dipole-dipole interaction behavior with head-to-tail
attraction when ẑ = R̂ and side-to-side repulsion when
ẑ = Ẑ. The dipole-dipole interaction term in Eq. (1) is
multiplied by 1/2 since we double-count.

The origin of the Jz, J⊥, V , and W terms in Eq. (1)
can be evinced with the following simple example, which
does not involve the application of microwave fields. The
rotational degree of freedom of a single molecule is de-
scribed by the angular momentum operator N. Let us
pick as |m0〉 and |m1〉 the lowest two Nz = 0 states of
the molecule in the presence of a DC electric field along
ẑ. Due to the applied electric field, these states are not
eigenstates of N2 and possess nonzero dipole moments.
One can then intuitively think of the ground state |m0〉
as a dipole µ0 = µ0ẑ oriented along the DC field (i.e.
µ0 > 0) and of the excited state |m1〉 as a dipole µ1 = µ1ẑ
oriented against the DC electric field (i.e. µ1 < 0). Let
us now consider classical dipole-dipole interaction energy
Edd between a dipole µi = (µ0nim0

+ µ1nim1
)ẑ at site i

and a dipole µj = (µ0njm0
+ µ1njm1

)ẑ at site j, where
nkm indicates whether the molecule on site k is in state
|m〉 (nkm = 1) or not (nkm = 0):

Edd =
1

4πε0|Ri −Rj|3
[µi · µj − 3(µi · ẑ)(µj · ẑ)] (3)

= Vdd(Ri −Rj)(µ0nim0
+ µ1nim1

)(µ0njm0
+ µ1njm1

)

= Vdd(Ri −Rj)
[
JzS

z
i S

z
j + V ninj +W (niS

z
j + njS

z
i )
]
,

where Jz = (µ0 − µ1)2, V = (µ0 + µ1)2/4, and W =
(µ2

0−µ2
1)/2. The V term describes density-density inter-

actions, and is the only term that survives if one averages
Edd over the internal states |m0〉 and |m1〉 of each of the
two molecules. Furthermore, only the V term survives
if µ0 = µ1, in which case dipole-dipole interaction can-
not depend on the internal states of the two molecules.
The Jz term describes an Ising-type spin-spin interac-
tion. Since Jz is non-negative in this example, it favors,
for Vdd > 0, antialignment of molecules on sites i and
j. This makes sense since two side-by-side dipoles repel
if they are aligned, but attract if they are antialigned.
Finally, the W term describes spin-density interaction.
In the language of quantum magnetism, the presence of
a molecule on site i creates, via the term WniS

z
j , an

effective magnetic field along ẑ for the spin on site j.
As one can see from this discussion, an important differ-
ence of our Hamiltonian from Refs. [27, 28], which also
engineer magnetic models using molecules in optical lat-
tices, is that we use dipole-dipole interactions in first or-
der (rather than second order), which allows for stronger
interactions.

To understand the origin of the J⊥ term in Eq. (1),
one has to take into account the transition dipole mo-
ment µ01 between |m0〉 and |m1〉 [26]. In the same
way, in which an optical excitation can be exchanged
between two two-level atoms that are within an opti-
cal wavelength of each other [39], the J⊥ term describes
the exchange of a microwave excitation; in this exam-
ple, J⊥ = 2µ2

01. For a molecule on site i and a molecule
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on site j that share one microwave excitation, the J⊥
term is diagonalized by the symmetric and antisymmet-
ric states (|m0m1〉ij±|m1m0〉ij)/

√
2, which would be the

microwave equivalent of optical superradiant and subra-
diant states [39]. The presence of the J⊥ term is one of
the main differences of Eq. (1) from the Hamiltonian dis-
cussed in Ref. [22]. While this simple example illustrates
the physical origin of the dipole-dipole interaction terms
featured in Eq. (1), we will show in Sec. V B, that this
form of dipole-dipole interactions is much more general.
In particular, we will show that it applies even when mi-
crowave fields are applied and when states with Nz 6= 0
are involved.

The recipe for controlling dipole-dipole interactions
with applied DC electric and microwave fields is one of
the main results of the present paper. Specifically, as we
will discuss in Sec. II A 1, the spatial anisotropy of the
interactions can be controlled via (Θ0,Φ0). More impor-
tantly, as we will discuss in Secs. II A 1, II A 2 and derive
in Sec. V B, by tuning the strength of the DC electric field
as well as the frequency and intensity of the applied mi-
crowave field(s), one can achieve complete control over
signs and relative amplitudes of the coefficients V , W ,
Jz, and J⊥. The strength of the resulting dipole-dipole
interactions (quoted for nearest neighbors separated by
500 nm) is ∼ 0.4 kHz in KRb and ∼ 40 kHz in LiCs.
These dipole-dipole interactions (particularly in the case
of LiCs) are substantially stronger than superexchange
interactions in cold atoms (� 1 kHz [40]), making mag-
netism easier to access in such molecular systems than in
atomic systems.

Finally, let us describe the hyperfine interaction term
(∝ A) in Eq. (1). The operator njσ =

∑
m njmσ counts

the number of molecules on site j with nuclear spin σ
irrespective of the rotational state. The operators T zj =

(nj↑ − nj↓)/2, T+
j =

∑
m c
†
jm↑cjm↓, and T−j = (T+

j )†

are the usual spin-1/2 angular momentum operators on
site j describing the two-level nuclear degree freedom and
satisfying [T zj , T

±
j ] = ±T±j . The hyperfine interaction of

the form ASzi T
z
i relies on the fact [see Sec. III] that, for

a generic DC electric field, the hyperfine interaction can
be projected on states |m0〉 and |m1〉 and, moreover, is
diagonal in the same nuclear spin basis in both states (the
basis, in which the two nuclei are decoupled from each
other). Thus ASzi T

z
i simply reflects the fact that the

energy difference between any two of these eigenstates
(| ↑〉 and | ↓〉) is generally not the same in |m0〉 and
|m1〉: the flip of the nuclear degree of freedom from | ↓〉
do | ↑〉 in |m0〉 takes an energy larger by an amount A
than in |m1〉. In Sec. V A, we show that the hyperfine
interaction constant A can be tuned, via the strength of
the DC electric field and via the choice of nuclear spin
states, from zero to almost any value up to ∼ 1 MHz in
KRb and up to ∼ 100 kHz in LiCs. Moreover, as we will
note in Secs. II B and V A, while the interaction Szi T

z
i is

the easiest form of the hyperfine interaction that one can
obtain, any interaction between Si and Ti is, in principle,
achievable.

Both fermionic (40K87Rb [12]) and bosonic (7Li133Cs
[16] and 41K87Rb [15]) species are available experimen-
tally. The bosonic [22, 26, 31–33, 41–50] and fermionic
[22, 30–33, 37, 49, 51, 52] cases are expected to give rise
to different physics.

If tunneling in the third direction is negligible or if
stabilization against collapse and/or chemical reactions
in the third direction can be achieved without strong
dipole-dipole repulsion (see Sec. VI), we can extend the
Hamiltonian to 3D. A 1D geometry [7], as well as non-
square lattices can also be considered.

A. Rotational degree of freedom alone

In this Section, we ignore the nuclear degree of free-
dom in Eq. (1) and discuss the tunability of the resulting
model, as well as the physics that can be accessed with
it.

1. Quantum magnetism

In this Section, we further suppose that the tunneling
is negligible. The simplest scenario is then the case of a
single molecule per site. In this case, ni = 1 for all sites
i. This means that the term in the Hamiltonian pro-
portional to V is a constant and can be dropped. The
term proportional to W gives an effective magnetic field
on each site. Ignoring edge effects, this magnetic field is
uniform, making the W term commute with the Hamil-
tonian. In this case, the W term can also be ignored, so
that Eq. (1) reduces to

H=
1

2

∑
i 6=j

Vdd(Ri−Rj)

[
JzS

z
i S

z
j +

J⊥
2

(S+
i S
−
j +S−i S

+
j )

]
.(4)

The important features of the interaction in Eq. (4) are
that it is long-range, anisotropic in both space and spin,
and highly tunable via the magnitude of the DC elec-
tric field, Θ0, Φ0, the choice of rotational states, and the
number, frequency, and intensity of applied microwave
fields. In Ref. [53] and Refs. [32, 33], this Hamiltonian
is studied in the 1D geometry in the context of ions and
molecules, respectively. The Jz = 0 case is also studied
in the context of molecules in Ref. [26]. In Ref. [36], this
Hamiltonian is studied in the context of exciton-impurity
interactions generated with polar molecules. Related lat-
tice models with dipolar interactions are also studied in
the context of Frenkel excitatons [54, 55]. In Ref. [56], a
similar Hamiltonian is studied in the context of molecular
Wigner crystals for quantum memory applications.

As we will show in Sec. V B, if we parametrize Jz and
J⊥ as Jz = |J | cosψ and J⊥ = |J | sinψ, any value of
ψ can be achieved by an appropriate combination of DC
electric and microwave fields. In other words, one can ac-
cess the full parameter space. For example, one can get a
classical Ising model with J⊥ = 0, a pure XX model with
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Jz = 0, or the SU(2)-symmetric Heisenberg interaction
(Jz = J⊥).

By changing the direction (Θ0,Φ0) of the applied elec-
tric field, one can control the spatial anisotropy of the
interaction [26, 57, 58]. In particular, one can set to
zero couplings along one or two directions in the X-Y
plane. We assume a 2D square-lattice geometry and de-
fine VX,Y = [1−3 sin2 Θ0 cos2(ΦX,Y −Φ0)](X2+Y 2)−3/2

as the coupling coefficient between the origin and the
site with coordinates (X,Y ). The coordinates are given
in units of lattice spacing a = λ/2, where λ is the
wavelength of the light used to form the lattice. Here
ΦX,Y = Arg(X + iY ) is the polar angle of the vector
(X,Y ) in the plane, and (Θ0,Φ0) are the polar and az-
imuthal angles of the applied DC electric field in the
(X,Y, Z) coordinate system.

In three dimensions, two cones making an angle
cos−1(1/

√
3) ≈ 0.30π with the applied DC electric field

(which points along ẑ) give vanishing dipole-dipole inter-

actions. As we tilt the electric field from Ẑ towards the
X-Y plane (i.e. increase Θ0), interactions in the plane
start changing magnitude in an anisotropic fashion. In
particular, when sin Θ0 = 1/

√
3 (Θ0 ≈ 0.20π), the cone

of vanishing interaction touches theX-Y plane giving one
line in the plane along which dipole-dipole interactions
vanish. As shown in Figs. 2(a) and (b), using Φ0 = 0 or
Φ0 = π/4, we can set V1,0 = 0 or V1,1 = 0, respectively.
An interesting feature of setting V1,1 = 0 is that (pro-
vided interactions beyond V1,−1 are ignored), this turns
a square lattice into an effective triangular lattice. We
note that the interactions VX,Y in Fig. 2 are normalized
by the magnitude of the largest one.

As we tilt the electric field further, the single line
of vanishing interaction splits into two, and the angle
between the two lines increases up to a maximum of
2 cos−1(1/

√
3) ≈ 0.61π when ẑ (i.e. the electric field)

is in the X-Y plane. This way, for example, coupling
along two orthogonal directions can be set to zero when
sin Θ0 =

√
2/3. In particular, as shown in Fig. 2(c), at

Φ0 = 0, we have V1,1 = V1,−1 = 0, while V0,1 is un-
changed and while the sign of V1,0 flips. Alternatively, as
shown in Fig. 2(d), at Φ0 = π/4, we get V1,0 = V0,1 = 0,
while V1,−1 is unchanged and while the sign of V1,1 is
flipped.

Finally, some couplings can be set equal to each other.
For example [Fig. 2(e)], at sin Θ0 ≈ 0.51 and Φ0 = 0,
we have V1,0 = V1,1 ≈ 0.2V0,1. Alternatively [Fig. 2(f)],
at sin Θ0 = 0.66 and Φ0 = π/4, we have 0.29V0,1 =
0.29V−1,1 = −V1,1.

In experiments, it is difficult to achieve a perfect occu-
pation of exactly one molecule per site. There will, thus,
always be empty sites, which will play the role of defects
in the corresponding spin model. Furthermore, empty
sites can be introduced on purpose to emulate the effect
of static non-magnetic impurities in quantum magnets.
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FIG. 2. (color online). Control over the spatial anisotropy
of the interactions by changing the direction (Θ0,Φ0) of the
applied DC electric field. For different (Θ0,Φ0), the plots
show the dipole-dipole interaction coefficient VX,Y (normal-
ized by the magnitude of the largest VX,Y ) between the
origin and the site (X,Y ); some sites have the normalized
value of VX,Y listed next to them. For grayscale viewing,
the plus and minus signs on the plot indicate the sign of
VX,Y . (a) Θ0 = sin−1(1/

√
3) ≈ 0.20π, Φ0 = 0. (b)

Θ0 = sin−1(1/
√

3), Φ0 = π/4. (c) Θ0 = sin−1(
√

2/3) ≈
0.30π, Φ0 = 0. (d) Θ0 = sin−1(

√
2/3), Φ0 = π/4. (e)

Θ0 = sin−1(
√

(2
√

2− 1)/(6
√

2− 3/2)) ≈ 0.17π, Φ0 = 0. (f)

Θ0 = sin−1(
√

(2− 1/
√

2)/3)) ≈ 0.23π, Φ0 = π/4.
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2. The t-J-V -W model

Allowing for tunneling between sites, we arrive at the
following Hamiltonian, which we refer to as the t-J-V -W
model:

H=−
∑
〈i,j〉mσ

tm

[
c†imσcjmσ + h.c.

]

+
1

2

∑
i 6=j

Vdd(Ri−Rj)

[
JzS

z
i S

z
j +

J⊥
2

(S+
i S
−
j + S−i S

+
j )

+V ninj +W (niS
z
j + njS

z
i )

]
. (5)

This model is an extension of the t-J model [9, 59, 60].
The t-J model emerges from the large-U expansion of
the Hubbard model. Despite significant efforts to iden-
tify the phase diagram of the t-J model, only the 1D
phase diagram is relatively well-established (via numeri-
cal methods) [9, 59, 60]. It has also been demonstrated
that, in 1D, the addition of repulsive nearest-neighbor
interactions V

∑
i nini+1 (giving rise to the so-called t-

J-V model) and next-nearest-neighbor repulsive interac-
tions V ′

∑
i nini+2 (giving rise to the so-called t-J-V -V ′

model) can strengthen superconducting (i.e. superfluid
for our neutral system) correlations in the t-J model [59].
Ref. [59] also argues that this effect will manifest itself in
a 2D geometry as well. A confirmation of this statement
can have important implications in the understanding of
high-temperature superconductivity in cuprates.

The highly tunable model in Eq. (5) provides unique
opportunites to study a generalized t-J model in 1D and
2D geometries. Some of the important features of Eq.
(5) as compared to the t-J model are as follows. First,
instead of antiferromagnetic nearest-neighbor Heisenberg
interactions (J⊥ = Jz > 0), Eq. (5) features long-range
(1/R3) XXZ interactions with values of J⊥ and Jz that
can be independently tuned in magnitude and sign. For
example, by adjusting the sign of J⊥, one can obtain
the unusual ferromagnetic interactions for fermions and
antiferromagnetic interactions for bosons. Second, in-
stead of the (−J4 + V )

∑
〈i,j〉 ninj interactions, Eq. (5)

features long-range (1/R3) density-density interactions
(∝ V ), which can be easily made repulsive to favor su-
perfluid correlations. Third, t in Eq. (5) can be tuned
independently from Jz, J⊥, and V , and W . In partic-
ular, one can access the regime |Jz|, |J⊥| > t, which is
not possible if J ∼ t2/U . Finally, the term ∝ W , which
describes density-spin interactions, can be made nonzero
and can compete with spin-spin interactions (∝ J⊥, Jz)
and thus favor new types of spin ordering.

Parameter regimes close to the original t-J and t-J-
V -V ′ models can be achieved. In particular, to obtain
the model most similar to the t-J model, we show in
Sec. V B how to set W = 0 and Jz = J⊥ = −4V > 0.
We also show how to set W = 0, Jz = J⊥ > 0, and
V = 0.1Jz, which is expected to result in a suppression
of phase separation relative to the t-J model [59].

Being a generalization of the already highly nontrivial
t-J model (particularly beyond 1D), the Hamiltonian in
Eq. (5) is expected to give rise to very rich many-body
physics. Only a narrow range of this physics has been
studied so far. In particular, the Hamiltonians consid-
ered in Refs. [4, 5, 41–48, 50–52] are reminiscent of the
restriction of Eq. (5) to a single rotational state. The use
of more than one rotational state for manybody physics
with diatomic polar molecules has been considered be-
fore in Refs. [3, 22, 26–37, 49, 61–64]. Finally, in Ref.
[7], using density matrix renormalization group (DMRG)
[65–67], we studied the 1D phase diagram of the sim-
plest experimentally realizable regime of Eq. (5), where
V = W = Jz = 0, tm0 = tm1 = t, and the two re-
maining parameters are molecule density and J⊥/t . As
expected from the above discussion, we indeed found an
enhancement of superfluid correlations and a suppression
of phase separation relative to the usual t-J model.

Preparation of the phases can be done, for example,
by applying an additional microwave field coupling the
two dressed rotor states and performing an adiabatic pas-
sage from a state that is easy to prepare to the desired
ground state by tuning the Rabi frequency and the de-
tuning of the microwave field [33]. This extra microwave
field, which gives rise to terms proportional to

∑
j S

x
j and∑

j S
z
j (i.e. effective x̂ and ẑ magnetic fields), can also be

thought of as a way of enabling the simulation of a richer
class of models where

∑
j S

z
j is not conserved. We ex-

pect that, by analogy with Ref. [33], preparation of the
phases of interest can often be done without single-site
addressability.

Molecules in the rovibrational ground state can be
detected by converting them back to atoms [12]. Fur-
thermore, efforts towards achieving optical cycling in
molecules are under way [68, 69]. There is, thus, hope
that powerful tools for the detection of molecular phases
can be borrowed [33] from experiments with ultracold
atoms. These tools include noise-correlations in the time-
of-flight absorption imaging [70–72] and direct in-situ flu-
orescent imaging [73, 74]. In Ref. [7], the possibility of
probing the phase diagram of Eq. (5) with center-of-mass
Bloch oscillations [75, 76] is also discussed.

The model can be extended to more than two dressed
rotor states. By applying a sufficient number of mi-
crowave fields, one can achieve significant tunability of
the coefficients even in the resulting more complicated
models.

B. Effects of the nuclear degrees of freedom

Having discussed the physics of Eq. (1) in the absence
of nuclear spins, we turn in this Section to the discus-
sion of the effects of nuclear spin. One of the simplest
Hamiltonians involving nuclear degrees of freedom would
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be realized in the case of one molecule per site:

H = A
∑
i

Szi T
z
i

+
1

2

∑
i 6=j

Vdd(Ri −Rj)

[
JzS

z
i S

z
j +

J⊥
2

(S+
i S
−
j + S−i S

+
j )

]
.(6)

As in Sec. II A 1, we ignored edge effects and dropped
terms commuting with H. In this case, T zi is conserved
on each site and becomes a classical variable. It can play
the role of a tunable magnetic field at each site or the role
of tunable disorder. The parameter A can be tuned to
zero and away from zero, thus, decoupling nuclear spins
from the rotor degree of freedom and coupling them. This
tuning can be achieved, for example, by changing the
strength of the DC electric field (see Secs. III and V A).

While Eqs. (1) and (6) feature Szi T
z
i hyperfine inter-

actions, other interactions between rotor and nuclear de-
grees of freedom can also be generated. In particular,
we show in Sec. V A that a judicious choice of rotor
and nuclear states may allow for interactions of the form
ASzi T

z
i +A2T

z
i +A3T

x
i or even S+

i T
−
i +S−i T

+
i . Moreover,

by combining the Hamiltonian in Eq. (1) or in Eq. (6)
with microwave and/or radio-frequency pulses applied at
regular short intervals, one can use the Trotter approx-
imation [77] to effectively modify the hyperfine interac-
tion between Si and Ti from a simple Szi T

z
i interaction to

any desired form. With this generalization, nuclear spin
in Eq. (6) is in general no longer a classical variable. The
Hamiltonian would then describe two types of spin-1/2
species (each site having one of each): S species exhibit-
ing interactions with neighboring sites and T species not
exhibiting such interactions but interacting with S on
the same site. Such a model is reminiscent of the Kondo
lattice setup [78]. Moreover, the nuclear spin may allow
to simulate the “orbital” degree of freedom, whose inter-
play with spin (i.e. rotational) and charge (i.e. density)
degrees of freedom may enable simulations of the exotic
behavior of spin-incoherent Luttinger liquids [79], transi-
tion metal oxides [80], and iron pnictide superconductors
[81]. Finally, by using more than two nuclear spin states,
one might be able, by analogy with alkaline-earth atoms
[82, 83], to simulate exotic high-spin physics.

While most of the discussion in the present manuscript
focuses on quantum magnetism, the system also has
promising quantum information applications. Having
two outer electrons, alkali dimers have similar electronic
structure to that of alkaline-earth atoms. Thus, one may
consider extending some of the alkaline-earth quantum
information processing proposals to polar alkali dimers.
In particular, one can extend the idea of encoding quan-
tum information in the nuclear spin degrees of free-
dom from alkaline-earth atoms [84–90] to polar molecules
[56, 91–93]. In this context, by analogy with alkaline-
earth quantum register proposals [88], information stored
in the nuclear spins can be mapped via hyperfine inter-
actions (or via microwave or radiofrequency fields) onto
the rotor degree of freedom, which can then, in turn, be

used to couple different molecules. By analogy with Ref.
[88], we expect this system – particularly if more than
two nuclear spin states are involved – to be useful in gen-
erating high-fidelity many-body entangled states, such as
cluster states or squeezed states.

III. ROTATIONAL AND HYPERFINE
STRUCTURE

Having discussed in Sec. II the main features of Eq. (1),
we present in Secs. III-VI the derivation of Eq. (1) and
the ways, in which the coefficients in Eq. (1) can be con-
trolled. Since we are interested in the effects of nuclear
spin on the many-body Hamiltonian, we begin the deriva-
tion of Eq. (1) by studying in this Section the rotational
and hyperfine structure of a single molecule in the pres-
ence of a DC electric field and zero or more continuous-
wave (CW) microwave fields. The example molecules we
are considering are 40K87Rb [12] and 7Li133Cs [16].

Following Refs. [18, 19, 21, 61, 94], the single-molecule
Hamiltonian in the presence of a DC electric field and a
CW microwave field is

H = H0 +Hmw +Hhf, (7)

where

H0 = BN2 − d0E, (8)

Hmw = −d ·
(
Emwemwe

−iωmwt + c.c.
)
,

Hhf = HQ +HIN +Ht +Hsc

= −e
2∑
i=1

T 2(∇Ei) · T 2(Qi) +

2∑
i=1

ciN · Ii

−c3
√

6T 2(C) · T 2(I1, I2) + c4I1 · I2. (9)

H0 describes the rigid rotor coupled to the DC elec-
tric field. B is the rotational constant and N is the
angular momentum operator describing the rotation of
the molecule. The molecular quantization axis is chosen
to be ẑ, which is the direction of the applied DC elec-
tric field (see Fig. 1). d is the dipole moment operator,
while dp = êp · d = dC1

p(θ, φ), where d is the permanent
dipole moment of the molecule, p = 0,+1,−1, and the
spherical basis vectors are defined as ê0 = ẑ and ê±1 =

∓(x̂ ± iŷ)/
√

2 [61]. Here Ckp (θ, φ) =
√

4π
2k+1Yk,p(θ, φ),

where Yk,p are spherical harmonics, and spherical coor-
dinates (θ, φ) describe the orientation of the rotor [61].
Hmw describes the coupling of the rotor to a microwave

field with amplitude Emw, frequency ωmw, and polariza-
tion emw, which we assume to be equal to e−1, e0, or
e1, which stand, respectively, for σ−, π, and σ+ polar-
ization relative to the applied DC electric field. While
Hmw describes the action of a single microwave field, we
will consider below the possibility of applying several mi-
crowave fields, in which case Hmw would just feature the
sum of the corresponding fields.
Hhf is the hyperfine interaction [18, 94], which is com-

posed of four contributions: electric quadrupole HQ,
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spin-rotation HIN , tensor Ht, and scalar Hsc. These
Hamiltonians couple the nuclear spins I1 and I2 of the
two nuclei to N and to each other. The nuclei are num-
bered as 1 = K and 2 = Rb for 40K87Rb and 1 = Li and
2 = Cs for 7Li133Cs.

The forms of Ht and HQ warrant additional clarifica-
tion. Ht describes direct and indirect anisotropic inter-
action between the two nuclei and is a scalar product
[see Eq. (A2)] of two second-rank irreducible spherical
tensors. The first tensor, T 2(I1, I2), is the second-rank
tensor formed [see Eq. (A1)] out of I1 and I2. The second
tensor, T 2

p (C) = C2
p(θ, φ), characterizes the orientation

of the rotor and, hence, the relative position of the two
nuclei.

HQ describes the interaction between the electric
quadrupole moment of each nucleus i and the electric
field gradient at nucleus i due to the electrons and the
other nucleus. HQ is also a scalar product of two second-
rank irreducible spherical tensors. The first tensor is

T 2(Qi) = Qi
√
6

2Ii(2Ii−1)T
2(Ii, Ii), where T 2(Ii, Ii), is the

second-rank tensor formed out of Ii and where eQi is the
electric quadrupole moment of nucleus i. The second ten-
sor is T 2(∇Ei) = − qi2 T

2(C), where qi characterizes the
negative of the electric field gradient at nucleus i. The
values of all relevant molecular parameters for 40K87Rb
and 7Li133Cs are given in Table I. All matrix elements
are evaluated in Appendix A.

At E = 0, the eigenstates of H0 are |N,M〉 obey-
ing N2|N,M〉 = N(N + 1)|N,M〉 and Nz|N,M〉 =
M |N,M〉. As we increase E, states with the same M
mix to form the new eigenstates. Let us refer to the
eigenstate that adiabatically connects to |N,M〉 (as we
turn on E) as |φN,M 〉, as shown in Fig. 3(a). While
|φN,M 〉 are eigenstates of Nz with eigenvalue M , they

40K87Rb 7Li133Cs

d (Debye) 0.566 [12] 5.520 [95]
B (GHz) 1.114 [23] 5.636

B/d (kV/cm) 3.9 2.0
d2/(4πε0(0.5µm)3) (kHz) 0.39 37

I1 4 3/2
I2 3/2 7/2

(eQq)1 (kHz) 450 [23] 18.5
(eQq)2 (kHz) -1410 [23] 188
c1 (Hz) -24.1 32
c2 (Hz) 420.1 3014
c3 (Hz) -48.2 140
c4 (Hz) -2030.4 1610

TABLE I. Molecular parameters for 40K87Rb and 7Li133Cs. d
is the permanent dipole moment, B is the rotational constant,
and I is the nuclear spin. (eQq) characterizes HQ, c1 and c2
characterize HIN , c3 characterizes Ht, and c4 characterizes
Hsc. In Ii, (eQq)i, and ci=1,2, the subscript i = 1 stands for
K in KRb and for Li and LiCs, while the subscript i = 2 stands
for Rb in KRb and for Cs in LiCs. The values for 40K87Rb
and 7Li133Cs are taken from Refs. [18] and [21], respectively,
unless otherwise indicated.

FIG. 3. (color online). (a) Eigenstates of H0 =
BN2 − d0E. (b-f) Level configurations employing mi-
crowaves. The effective two-level dressed rotational degree
of freedom {|m0〉, |m1〉} is (b) {|0〉,

√
a|1〉 +

√
1− a|2〉}, (c)

{|3〉,
√
a|1〉 +

√
1− a|2〉}, (d) {

√
a|0〉 +

√
1− a|1〉, |1〉}, (e)

{
√
a|0〉 +

√
1− a|1〉,

√
b|1〉 +

√
1− b|φ2,−1〉}, (f) {

√
a|2̂〉 +√

1− a|2〉,
√
b|1〉 +

√
c|1〉 +

√
1− b− c|2〉}. In figures (b-f),

red (blue) levels make up the effective dressed rotor level |m0〉
(|m1〉).

are not eigenstates of N2 (for nonzero E); instead, they
are superpositions of |N ′,M〉 for different N ′. To al-
low for a less cumbersome notation, let us also make the
following simplifying definitions illustrated in Fig. 3(a):
|N〉 ≡ |φN,0〉 and |N〉 ≡ |φN,1〉. In Sec. V B, we will also

make use of the definition |N̂〉 ≡ |φN,2〉 [see Fig. 3(a)].
The energies of |φN,M 〉 and the coefficients in the expan-
sion of |φN,M 〉 in terms of |N ′,M〉 up to any desired N
can easily be computed numerically by truncating the
Hilbert space at some other – much larger – N . The
fact that the splitting between |N,M〉 and |N + 1,M〉
increases with N ensures that for any finite E, there will
be some N above which the effect of E is negligible.

A. Hyperfine structure in the simplest level
configuration: {|m0〉, |m1〉} = {|0〉, |1〉}

There is a great variety of possibilities – especially
when microwave fields are applied – for choosing the two
rotational states to play the role of |m0〉 and |m1〉 in Eq.
(1). In order to make the explanation of the main features
of hyperfine structure clearer, we focus in this Section on
the simplest example where no microwave fields are ap-
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plied and where |m0〉 and |m1〉 correspond to the lowest
two M = 0 states: |m0〉 = |0〉 (= |φ0,0〉) and |m1〉 = |1〉
(= |φ1,0〉) [see Fig. 3(a)]. In Sec. III B, we will extend
this discussion to other level configurations.

To simplify our effective Hamiltonian, we would like to
prevent Hhf from coupling the states |0〉 and |1〉 to other
states. Therefore, we need to assume that the applied
DC field E is sufficiently large to split |1〉 from |1〉 and
|φ1,−1〉 by an amount larger than Hhf. E.g., in KRb, to
split off |1〉 from |1〉 and |φ1,−1〉 by |(eQq)2|, one needs
dE/B ≈ 0.1. Since for KRb, B/d = 4 kV/cm, these
values of dE/B are readily achievable. For LiCs, the
required value of dE/B is even lower [dE/B = 0.015]
since, for LiCs, |(eQq)2/B| is 40 times smaller. Moreover,
in LiCs, B/d is 2 times smaller, which further reduces the
required value of E.

Under these assumptions, we can simply project Hhf

on the two states |0〉 and |1〉, without worrying about the
crossterms:

Hhf ≈
∑
m=0,1

|m〉〈m|〈m|Hhf|m〉. (10)

To understand the consequences of Eq. (10), let us
follow the procedure similar to that in Ref. [21] and
discuss what happens to different terms in Hhf when
we take the expectation value in a given rigid rotor
state. 〈m|HIN |m〉 = 0 for both states since these are
both M = 0 states and, therefore, give 〈m|N|m〉 = 0.
〈m|Hsc|m〉 = Hsc is unchanged since it does not involve
rigid rotor coordinates. Considering HQ and Ht, we have
[using Eqs. (A14,A20)]

〈HQ〉 = 〈P2(cos θ)〉
2∑
i=1

(eqQ)i
3(Izi )2 − Ii(Ii + 1)

4Ii(2Ii − 1)
, (11)

〈Ht〉 = c3〈P2(cos θ)〉
(

1

2
(I+1 I

−
2 + I−1 I

+
2 )− 2Iz1 I

z
2

)
.(12)

Here P2(cos θ) = C2
0 (θ, φ) is the 2nd degree Legendre

polynomial. T 2
0 (Qi) acts on the i’th nucleus. We have

used Eq. (A1) to get explicit expressions for T 2
0 (Ii, Ii)

and T 2
0 (I1, I2). These expressions can also be obtained

from Eqs. (A15,A21).
Following Refs. [18, 22], we define the uncoupled basis,

in which the two nuclear spin angular momenta are not
coupled, and the coupled basis, in which they are coupled
to form I = I1+I2. The matrix elements are evaluated in
Appendix A in both bases. We notice that Hsc and 〈Ht〉
are diagonal in the coupled basis, while 〈HQ〉 is diagonal
in the uncoupled basis. In Fig. 4, we plot 〈m|P2(cos θ)|m〉
for m = 0, 1, 3 as a function of dE/B. An interesting
“magic” point occurs at dE/B = 2.55: 〈0|P2(cos θ)|0〉 =
〈1|P2(cos θ)|1〉 = 0.18, i.e. the hyperfine structure in |0〉
and |1〉 is exactly the same. dE/B = 2.55 means 10
kV/cm for KRb and 5 kV/cm for LiCs, so this point is not
easy to access, but it could be useful for both quantum
simulation and quantum computation applications as the
point of decoupling of the nuclear and rotational degrees

of freedom. As we can see in Fig. 4, similar “magic”
points occur for the pairs of states {|0〉, |3〉} and {|1〉, |3〉}
at dE/B < 10.

Even if we are not at a “magic” point, where nuclear
spin decouples from two rotor states |0〉 and |1〉, the hy-
perfine structure is still relatively easy to understand.
HQ competes with Hsc to determine whether the un-
coupled or the coupled basis is a good basis. Since in
KRb (LiCs), (eQq)2 is 3 (2) orders of magnitude larger
than c4, 〈m|Hhf|m〉 is almost diagonal in the uncou-
pled basis, provided 〈m|P2(cos θ)|m〉 > 10−3(10−2). For
example, the only place in the range of dE/B values
shown in Fig. 4 where this condition breaks down for |0〉
(|1〉) is near dE/B = 0(5), where 〈m|P2(cos θ)|m〉 goes
through zero. As pointed out in Ref. [21], at these points,
〈m|Hhf|m〉 = Hsc. Focusing for the moment on small
values of dE/B, we find that in KRb (LiCs) Hsc is dom-
inant over HQ in |0〉 for dE/B < 0.1(0.5). On the other
hand, we found above that we need dE/B > 0.1(0.015)
to split |1〉 away from |1〉 by an amount larger than HQ.
Thus, near dE/B = 0, there is a narrow range of dE/B
for LiCs and no such range for KRb, where |1〉 is suf-
ficiently split from |1〉, but Hsc still dominates the |0〉
hyperfine structure. This observation supports the state-
ment that for almost all values of dE/B, 〈m|Hhf|m〉 is
dominated by HQ, while other hyperfine terms act as a
perturbation. Therefore, in Figs. 5(a,b), we show the
eigenvalues of 〈HQ〉/〈P2(cos θ)〉 for KRb and LiCs, re-
spectively. From Eq. (11), we see that these eigenvalues

are
∑2
i=1(eqQ)i

3(Mi)
2−Ii(Ii+1)

4Ii(2Ii−1) , where Mi is the magnetic

quantum number of nucleus i.
Hsc and Ht can then be treated as a perturbation:

Hsc + 〈Ht〉+ 〈HIN 〉 = (c4 − 2c3〈P2(cos θ)〉)Iz1 Iz2
+
(c4

2
+
c3
2
〈P2(cos θ)〉

)
(I+1 I

−
2 + I−1 I

+
2 ). (13)

Here Iz1 I
z
2 is diagonal in the uncoupled basis and just

shifts the energies slightly. The flip-flop term I+1 I
−
2 +

I−1 I
+
2 changes (M1,M2) by (1,−1) or by (−1, 1). This

term is important provided the energy difference between
the two states it connects is smaller than the flip-flop
strength. For a typical value of 〈P2(cos θ)〉 ∼ 0.1 (see
Fig. 4), the smallest relevant splitting in 〈HQ〉 for KRb

2 4 6 8 10

0.1

0.2

0.3

0.4

FIG. 4. (color online). 〈m|P2(cos θ)|m〉 = 〈m|C2
0 (cos θ)|m〉

as a function of dE/B for m = 0 (red), m = 1 (blue), and
m = 3 (green).
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is between (M1,M2) = (0, 1/2) and (1,−1/2) [red circles
in Fig. 5(a)] and is equal to about 1 kHz. Since c4 in
KRb is ≈ −2 kHz, a few of the states in Fig. 5(a) will get
mixed by Hsc + 〈Ht〉, but for most states the uncoupled
basis stays a good basis. The situation is similar in LiCs,
where the smallest relevant nonzero splitting in 〈HQ〉 is
between (1/2,1/2) and (3/2,-1/2). For 〈P2(cos θ)〉 ∼ 0.1,
this splitting is equal to ∼ 1 kHz, which is comparable
to c4 = 1.6 kHz. An additional feature in LiCs is that
〈HQ〉 has degenerate states (-1/2,1/2) and (1/2,-1/2) [red
circles in Fig. 5(b)] that get mixed by the flip-flop term.

It is worth pointing out that the application of a mag-
netic field can help in defining the uncoupled basis as a
good basis, as is done in current experiments [23]. For
example, this knob can be used to make the above dis-
cussed flip-flops off-resonant or to decouple the nuclear
spins when 〈P2(cos θ)〉 is small. In particular, this allows
one to decouple the nuclear spins from each other in state
|0〉 even at small DC electric fields [23].

B. Hyperfine structure in other level
configurations

In the previous Section [Sec. III A], we described the
hyperfine structure in the simplest configuration of rota-
tional levels: {|m0〉, |m1〉} = {|0〉, |1〉}. In this Section,
we extend this discussion to other configurations of rota-
tional levels.

−4 −3 −2 −1 1 2 3 4

−400

−200

200

400

− 3
2 − 1

2
1
2

3
2

−40

−20

20

40

60

FIG. 5. (color online). Eigenvalues (in kHz) of
〈HQ〉/〈P2(cos θ)〉 for KRb (a) and LiCs (b). The horizon-
tal axis is the magnetic quantum number M1 (for the K nu-
cleus in KRb and for the Li nucleus in LiCs), while |M2| is
indicated separately for each group of levels. The two red
circles indicate (M1, |M2|) = (0, 1/2) and (1, 1/2) in (a) and
(M1, |M2|) = (−1/2, 1/2) and (1/2, 1/2) in (b).

Even without microwave fields, a great variety of possi-
bilities exist for choosing rotational states to prepare the
effective rotor degree of freedom that is featured in Eq.
(1). One could, for example, choose, instead of states
{|0〉, |1〉}, the states {|1〉, |3〉}, which, as we will see in
Sec. VI, may have some advantages over the former.

One could also consider {|m0〉, |m1〉} = {|0〉, |1〉} or
{|m0〉, |m1〉} = {|1〉, |1〉} as the effective rotor degree of
freedom. In order to avoid the coupling of |1〉 to |φ1,−1〉
by HQ and Ht (and later by the dipole-dipole interac-
tion), we can apply, for example, a σ−-polarized mi-
crowave field coupling |φ1,−1〉 to |φ2,−2〉 that would shift
the state |φ1,−1〉. Once this is done, Hhf can be projected
on each of the two states as in Eq. (10). Another impor-
tant difference will be the fact that 〈1|N|1〉 = ẑ 6= 0, so
that 〈1|HIN |1〉 =

∑
i ciI

z
i . This term will contribute to

〈1|Hhf|1〉 in Eq. (13). Being diagonal in the uncoupled
basis, the term 〈1|HIN |1〉 will just slightly shift the lev-
els obtained after diagonalizing 〈1|HQ|1〉. This term may
provide an extra control knob. In particular, in LiCs, c2
is about twice the value of the scalar coupling c4 and
will, thus, play an important role for nuclear spin states
that are nearly degenerate under 〈HQ〉. In addition to
being a control knob, HIN may also give rise to some
complications. Specifically, the point where 〈1|P2|1〉 is
equal to 〈1|P2|1〉 is, in fact, not an exact magic point for
the two states (i.e. the two hyperfine structures do not
perfectly match) due to the HIN term. However, first, ci
are rather small (a few orders of magnitude smaller than
the dominant quadrupolar term - see Table I). Second,
〈1|HIN|1〉 can vanish exactly for Iz1 = Iz2 = 0, which can-
not happen for our isotopes but is, in general, possible.
Third, one can slightly adjust the value of the DC electric
field from the one that gives 〈1|P2|1〉 = 〈1|P2|1〉 in such
a way that some (but not all) desired nuclear spin states
have the same relative energies in |1〉 and |1〉.

The application of microwave fields allows to gain bet-
ter control over the effective Hamiltonian [22, 27–29, 31–
33, 37, 49, 61–64]. In this Section, we consider two exam-
ples of microwave control. In the first example, proposed
in Ref. [33], we couple states |1〉 and |2〉 with a linearly
polarized microwave [Fig. 3(b)]. We assume that the mi-
crowave field is sufficiently weak that it can be treated
within the rotating-wave approximation and that its off-
resonant couplings on other transitions can be ignored.
Furthermore, we assume that the microwave Rabi fre-
quency Ω = Emw〈2|d0|1〉 is much larger than the hyper-
fine structure splittings, so that all hyperfine transitions
are addressed equally. In principle, weak microwave fields
coupling individual nuclear spin levels can also be used to
implement quantum magnetism with polar alkali dimers
[23, 27, 28]; however, for simplicity, we will not discuss
this case in the present manuscript. In KRb, a Rabi
frequency spanning all hyperfine levels (of order a few
MHz) requires a microwave intensity of a few W/cm2,
which is achievable in the laboratory. In LiCs, which has
a 10 times larger dipole moment and 10 times smaller
hyperfine splittings, the required microwave intensity is
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104 times smaller. The two requirements of staying off-
resonant with other rotor transitions (and staying within
the rotating-wave approximation) but at the same time
addressing all hyperfine levels can easily be achieved since
in KRb (LiCs) the splitting between the rotor levels ∼ B
is 3 (4) orders of magnitudes larger than the largest hy-
perfine constant (eQq)2 (see Table I).

The application of the microwave field will produce, in
the rotating frame, two dressed states [63]. One of them
will form the state |m1〉 =

√
a|1〉 +

√
1− a|2〉, where we

assumed for simplicity real positive coefficients and where
a can be controlled by the amplitude and detuning of the
microwave field. Projecting Hhf on the subspace spanned
by |m0〉 = |0〉 and |m1〉, we obtain the following form of
the hyperfine interaction

Hhf ≈ |0〉〈0|〈0|Hhf|0〉+

+|m1〉〈m1|(a〈1|Hhf|1〉+ (1− a)〈2|Hhf|2〉).(14)

Notice that 〈1|Hhf|2〉 does not contribute since, in our
rotating frame, it is rapidly oscillating. The discussion
of the {|m0〉, |m1〉} = {|0〉, |1〉} configuration then ap-
plies with the change that 〈1|Hhf|1〉 is replaced with
a〈1|Hhf|1〉 + (1 − a)〈2|Hhf|2〉. One advantage of this
configuration over the {|0〉, |1〉} configuration is that, for
a given choice of the DC electric field, the magic point
where 〈0|P2|0〉 = a〈1|P2|1〉 + (1 − a)〈2|P2|2〉 may be ac-
cessed by tuning a. At this magic point, the nuclear and
rotational degrees decouple, as discussed above.

The second example involving microwave fields that we
consider in this Section involves the application of a σ+

microwave field near resonance with the |0〉 − |1〉 tran-
sition. We pick one of the two rotating-frame dressed
states |m0〉 =

√
a|0〉+

√
1− a|1〉 as one of the two effec-

tive rotor states and state |m1〉 = |1〉 as the other [Fig.
3(d)]. In contrast to the microwave-free {|0〉, |1〉} config-
uration, in this example, we can safely ignore the state
|φ1,−1〉 assuming the dressed state |m0〉 is shifted by the
applied microwave sufficiently far away from the state
|φ1,−1〉. If |m0〉 is too close in energy to |φ1,−1〉, then
|φ1,−1〉 can be shifted away using a separate microwave
field coupling it, for example, to |φ2,−2〉. Projecting the
hyperfine Hamiltonian onto |m0〉 and |1〉, we obtain the
same Hamiltonian as in Eq. (14) except states |0〉, |1〉,
and |2〉 get replaced with states |1〉, |0〉, and |1〉, respec-
tively.

Of course, numerous other coupling schemes are also
possible. For example, one can apply two microwave
fields acting on two different transitions and use one
dressed state from each transition as the basis. One can
even consider appling more microwave fields, as we will
do in Sec. V B. The above discussion of the hyperfine
structure can be readily extended to these cases.

IV. OPTICAL POTENTIAL AND TENSOR
SHIFTS

As discussed in Refs. [22, 28, 31, 61, 96], a rigid rotor
placed into an optical lattice experiences level shifts –
called tensor shifts – that depend on the internal state of
the rotor. In this Section, we summarize the derivation
of tensor shifts from Ref. [61], consider ways to control
these shifts, and discuss the effects of these shifts on our
Hamiltonian.

Following Ref. [61], we consider an off-resonant light
field Eopt(R, t) = Eopt(R)e−iωt + c.c.. We recall that
we use the X-Y -Z coordinates to describe the 2D optical
lattice, which lies in the X-Y plane, while the x-y-z co-
ordinates will have ẑ along the applied DC electric field
(see Fig. 1). In the present Section, we will ignore the
hyperfine structure – we will put together the optical
potential and the hyperfine structure in Sec. V. The AC
Stark shift Hamiltonian acting on a rigid rotor describing
the ground electronic and vibrational state of a molecule
is then

Hopt(R) = −Eopt(R)∗ · α̂(ω) ·Eopt(R), (15)

where

α̂(ω) = α⊥(ω) (16)

+[α||(ω)− α⊥(ω)]
∑
p,p′

(−1)pC1
−p(θ, φ)C1

p′(θ, φ)êp ⊗ ê∗p′ .

Here (θ, φ) are the spherical coordinates of the rotor.
α||(ω) and α⊥(ω) are dynamical polarizabilities at fre-
quency ω parallel and perpendicular to the rotor axis.
Due to the difference in matrix elements and in the en-
ergy difference between states contributing to the two
polarizabilities, α|| and α⊥ are generally different giving
rise to the term ∝ [α||(ω) − α⊥(ω)] describing a rotor-
state-dependent shift [second line in Eq. (16)].

We suppose that Eopt(R) = E(R)
∑1
p=−1 βpêp, where∑

p βpêp is a unit vector (i.e.
∑
p |βp|2 = 1) describing the

polarization of the light, which, for simplicity, we assume
to be spatially uniform. We then find

Hopt(R) = −|E(R)|2
[2α⊥(ω) + α||(ω)

3

+[α||(ω)− α⊥(ω)]

2∑
p=−2

γpC
2
p(θ, φ)

]
, (17)

where γ±2 = −
√

2
3β
∗
∓1β±1, γ±1 = 1√

3
(β∗0β±1 − β∗∓1β0),

γ0 = |β0|2 − 1
3 .

We now recall that we will be working at DC electric
fields that are large enough to separate the rotor states
of interest from all the other states by a shift larger than
the hyperfine interaction strength (& 1 MHz). In the
cases where the state |1〉 is involved, we assume that a
microwave field acting on |1〉 itself or on |φ1,−1〉 splits
the two by a similarly large shift. Since 1 MHz is greater
than typical optical lattice potential strength (10 − 100



12

kHz), the lattice potential is too weak to induce tran-
sitions between the rotor levels, and we can therefore
just evaluate Hopt in each rotor state. Moreover, any
|m〉 = |φN,M 〉 (with any M) is an eigenstate of Nz, so,
for p 6= 0, 〈m|C2

p(θ, φ)|m〉 = 0. Therefore, for such states
|m〉, we get the microwave-free optical potential

Hopt(R) = −|E(R)|2
[
α0(ω) +

+α2(ω)
∑
m

〈m|P2(cos θ)|m〉|m〉〈m|
]
, (18)

where

α0(ω) =
2α⊥(ω) + α||(ω)

3
,

α2(ω) = [α||(ω)− α⊥(ω)]

(
|β0|2 −

1

3

)
. (19)

The dependence of tensor polarizability α2(ω) on β0 is
in direct analogy with the corresponding dependence in
atomic tensor polarizabilities [97, 98].

In the case where a microwave field is applied, the
optical potential can be computed as follows. For the
{|m0〉, |m1〉} = {

√
a|0〉 +

√
1− a|1〉, |1〉} configuration

[Fig. 3(d)], the optical lattice potential is

Hopt(R) = −|E1(R)|2
[
α0(ω1) + α2(ω1)

(
|1〉〈1|〈1|P2|1〉

+|m0〉〈m0|(a〈0|P2|0〉+ (1− a)〈1|P2|1〉)
)]
. (20)

Up to a relabeling of states, a similar expression holds
for the {|0〉,

√
a|1〉+

√
1− a|2〉} configuration [Fig. 3(b)].

By changing the frequency and the polarization of the
applied light and by using several [28, 61] laser beams at
different frequencies or polarizations, one can control the
strength of the tensor shift relative to the scalar shift. In
particular, it is often convenient to have a lattice that
is independent of the rotor state. One can envision the
following avenues for achieving this.

First, as already pointed out in Ref. [96], for any pair of
states m and m′, the tensor shift vanishes at the “magic”
points in Fig. 4, where 〈m|P2(θ)|m〉 = 〈m′|P2(θ)|m′〉 [see
Eq. (18)]. We recall that these are the same points where
the nuclear spins and the rotor degree of freedom decou-
ple. In the case where a microwave field is applied, one
has an extra control knob to arrive at the “magic” point
for the two states of interest. For the example consid-
ered in Eq. (20), the microwave Rabi frequency and de-
tuning can be used to control a to obtain a lattice that
is the same for states |m0〉 and |1〉, which happens when
a〈0|P2|0〉+ (1− a)〈1|P2|1〉 = 〈1|P2|1〉.

Second, by analogy with “magic” frequencies for
atomic levels [97, 98] and for vibrational molecular lev-
els [99], one may look for a “magic” frequency ω, for
which α||(ω) = α⊥(ω), in which case α2(ω) would van-
ish. However, the search for such a “magic” frequency
may be significantly complicated by the requirement to
keep spontaneous emission low [100].

Third, as already pointed out in Ref. [96], α2(ω) would
also vanish if one chooses a polarization, such that |β0|2 =
1/3. For example, a linear polarization making an angle

cos−1(1/
√

3) with the z-axis (i.e. with the DC electric
field) would work.

Fourth, one may use two laser beams [28, 61] that
have α2 of opposite signs. Assuming these beams can be
made to have the same spatial profile (which can be done,
for example, with holographic techniques [101] or angled
beams [102]), their relative intensities can be adjusted in
such a way that the combined tensor shift vanishes.

Finally, if α2 of opposite sign is difficult to achieve,
as long as α2/α0 is different for the two lasers, one can
choose the two lasers (on the example of 1D) to have
spatial profiles E2

1 cos2(XK) and E2
2 sin2(XK), respec-

tively (for some wavevector K). By tuning the relative
intensities of the two lasers, one can achieve E2

1α2(ω1) =
E2

2α2(ω2) (where ω1 and ω2 are the laser frequencies),
which would allow to make the tensor shift spatially in-
dependent [cos2(XK) + sin2(XK) = 1]. The spatially
independent shift can then be treated as a slight modifi-
cation to the internal structure. While this last solution
described a 1D lattice, three 1D lattices can be combined
into a 3D lattice provided their frequencies differ slightly,
so that the lattices do not interfere.

V. DERIVATION OF THE HAMILTONIAN

In this Section, we use the results of Secs. III and IV to
derive the Hamiltonian in Eq. (1) and to show how var-
ious terms in this Hamiltonian can be tuned. We recall
that, as shown in Fig. 1, the molecules are confined to the
X-Y plane and are subject to a 2D optical lattice in that
plane. We also recall that a DC electric field of strength
E is applied in the direction ẑ that makes a polar angle
Θ0 with the Z-axis and has an azimuthal angle Φ0 in the
X-Y plane. The system is then described by five one-
body Hamiltonians and one two-body Hamiltonian. The
five one-body Hamiltonians are [18, 19, 21, 61, 94]

H0 = BN2 − d0E, (21)

Hmw = −d ·
(
Emwemwe

−iωmwt + c.c.
)
, (22)

Hhf = HQ +HIN +Ht +Hsc, (23)

Hopt = −Eopt(R)∗ · α̂(ω) ·Eopt(R), (24)

Hkin =
p2

2Mm
. (25)

The molecules are assumed to be in the electronic and
vibrational ground state. Hkin describes the kinetic en-
ergy, and Mm is the mass of the molecule (subscript m
here stands for the word molecule to avoid confusion with
the magnetic quantum numbers M).

The two-body Hamiltonian for molecules 1 and 2 is
given by the dipole-dipole interaction

Hdd =
1

4πε0R3

[
d(1) · d(2) − 3(R̂ · d(1))(R̂ · d(2))

]
.(26)
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Here d(j) is the dipole moment of molecule j and R =
RR̂ is the vector connecting the two molecules.

From Table I, we see that the KRb system has a con-
venient separation of energy scales, which we have al-
ready used in Secs. III and IV: H0 ∼ B ∼ 1 GHz,
Hhf ∼ HQ ∼ 500 kHz, Hopt + Hkin ∼ 10 − 100 kHz,
Hdd ∼ d2/(4πε0R

3) ∼ 1 kHz (where we assume a typi-
cal separation R ∼ 0.5µm between two neighboring sites
of an optical lattice). As discussed in Sec. III, we also
choose Hmw to have an energy scale significantly below
H0 and significantly above Hhf. Therefore, the Hamilto-
nians can be treated in order of decreasing energy scale.

In the case of LiCs, dipole-dipole interactions [see Ta-
ble I] are typically on the same order or even stronger
than the optical potential. In that case, the physics
changes and involves such effects as Wigner crystalliza-
tion [56, 62]. Wigner crytallization has the exciting po-
tential of bringing the molecules closer together (for ex-
ample, if the optical lattice is not present) and producing
strong internal-state-dependent interactions. However,
the study of such models involves the phonon modes [56]
and is beyond the scope of the present work. Therefore,
in the present Section, we assume that we either work
with KRb or that the rotational levels of LiCs are cho-
sen in such a way [for example, using states |1〉 and |3〉
at small DC fields (see Fig. 7) or employing microwaves]
that dipole-dipole interactions are much weaker than the
optical potential.

A. Derivation of the Hamiltonian for the simplest
level configuration: {|m0〉, |m1〉} = {|0〉, |1〉}

To derive the Hamiltonian in Eq. (1), let us begin in
this Section with the simplest case where no microwave
fields are applied and where we restrict ourselves to rotor
states |m0〉 = |0〉 (= |φ0,0〉) and |m1〉 = |1〉 (= |φ1,0〉).
We will consider other level configurations in Sec. V B.

The diagonalization of H0 +Hhf +Hmw was discussed
in Sec. III. In particular, we showed that for a generic
DC electric field, the hyperfine structure in |0〉 and |1〉 is
almost diagonal in the uncoupled basis. Therefore, if we
would like to ignore the nuclear spin, one way to do this
is to prepare all molecules in a nuclear spin state that is
an eigenstate of both 〈0|Hhf|0〉 and 〈1|Hhf|1〉. The hy-
perfine energy can slightly change the energy difference
between |0〉 and |1〉, but the total number of molecules in
|0〉 and the total number of molecules in |1〉 will be sepa-
rately conserved, making the precise value of the energy
difference between |0〉 and |1〉 unimportant. Another way
to ignore the nuclear spin is to use the “magic” point at
which the hyperfine structure of |0〉 and |1〉 is exactly
the same, in which case one does not even have to pre-
pare all molecules in the same nuclear state to observe
nuclear-spin-independent dynamics.

To include the nuclear spin into our dynamics in a min-
imal way, we pick two nuclear spin states | ↑〉 and | ↓〉
that are eigenstates of both 〈0|Hhf|0〉 and 〈1|Hhf|1〉. This

can easily be done since, for a generic DC electric field,
the two hyperfine structure Hamiltonians are almost di-
agonal in the same (uncoupled) basis [see Sec. III]. In the
second quantized notation, we can, thus, write

H0 +Hhf →
∑
mσ

Emσnmσ, (27)

where nmσ is the number of molecules in internal state
m(= 0, 1), σ(=↑, ↓).

We now consider Hopt + Hkin. We suppose that the
molecules are confined to the lowest band of a 2D lat-
tice in the X-Y plane with the third direction Ẑ frozen
out. As discussed in Sec. IV, |0〉 and |1〉 will generi-
cally feel lattices of different strength, so that Hopt =∑
m=0,1 |m〉〈m|Vm(R). We can then expand the molec-

ular operator Ψmσ(R) in (real) Wannier functions as
Ψmσ(R) =

∑
j wjm(R)cjmσ, where j sums over sites in

the X-Y plane. Here wjm(R) = wm(R − Rj), where
Rj is the position of site j in the 2D lattice. Absorbing
zero-point energy into Eq. (27), Hopt +Hkin can then be
rewritten as

Hopt +Hkin → −
∑
〈i,j〉mσ

tm

[
c†imσcjmσ + h.c.

]
, (28)

where the sum 〈i, j〉 is taken over all nearest neigh-
bor pairs and where the tunneling amplitudes are tm =
−
∫
d3Rwim(R)[−∇2/(2Mm)+Vm(R)]wjm(R) for i and

j nearest neighbors. For simplicity, we assumed that tun-
neling amplitudes are the same for all nearest neighbor
pairs.

We now consider Hdd. Since both |0〉 and |1〉 are M =
0 states, Hdd (extended to many molecules) simplifies to
[see Eqs. (A25-A27)]

Hdd =
1

2

∑
i 6=j

Vdd(Ri −Rj)d
(i)
0 d

(j)
0 . (29)

In second quantized notation, and keeping only the
terms that conserve the total number of molecules in
state m (for each m), Hdd can be rewritten as

Hdd=
1

2

∑
σσ′

∫
d3Rd3R′Vdd(R−R′) (30)

×
{∑
mm′

µmµm′Ψ†mσ(R)Ψ†m′σ′(R
′)Ψm′σ′(R′)Ψmσ(R)

+µ2
01

[
Ψ†0σ(R)Ψ†1σ′(R

′)Ψ0σ′(R′)Ψ1σ(R) + h.c.
]}

,

where µmm′ = 〈m|d0|m′〉 is the transition dipole moment
between |m〉 and |m′〉 and where µm = 〈m|d0|m〉 is the
dipole moment of state |m〉. The presence of nonzero
dipole moments µ0 and µ1 is expected since |0〉 and |1〉
are eigenstates of the rigid rotor Hamiltonian in the pres-
ence of a DC electric field. One should keep in mind that
certain values of dE/B may give rise to terms that do not
conserve the total number of molecules in state |m〉: for
example, at dE/B ≈ 3.24, the energy difference between
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|0〉 and |1〉 is equal to the energy difference between |1〉
and |2〉 ≡ |φ2,0〉, and dipole-dipole interactions can reso-
nantly turn two molecules in state |1〉 into a molecule in
state |0〉 and a molecule in state |2〉. We assume, how-
ever, that we avoid such accidental degeneracies.

Expanding Ψmσ(R) in Wannier functions, we obtain

Hdd =
1

2

∑
j1j2j3j4
mm′σσ′

∫
d3Rd3R′Vdd(R−R′)

×wj1m(R)wj2m′(R′)wj3m′(R′)wj4m(R)

×µmµm′c†j1mσc
†
j2m′σ′cj3m′σ′cj4mσ

+

[
1

2

∑
j1j2j3j4
σσ′

∫
d3Rd3R′Vdd(R−R′)wj10(R)wj21(R′)

×wj30(R′)wj41(R)µ2
01c
†
j10σ

c†j21σ′cj30σ′cj41σ + h.c.

]
. (31)

Here the hardcore constraint means that j1 6= j2 and
j3 6= j4. We now make two approximations: (1) the
extent of w is much smaller than the distance between
the sites, and (2) only terms where i ≡ j1 = j4 6= j ≡
j2 = j3 contribute. These approximations allow to take
Vdd(Ri −Rj) outside of the integral. The result is

Hdd =
1

2

∑
i 6=j

Vdd(Ri −Rj)

×

[∑
mm′

µmµm′nimnjm′ +
J⊥
2

(S+
i S
−
j + S−i S

+
j )

]
, (32)

where J⊥ = 2µ2
01

(∫
d3Rwi0(R)wi1(R)

)2
. Interestingly,

the presence of tensor shifts, thus, does not affect the co-
efficients of nimnjm′ because the Wannier functions are
always normalized. The only effect of tensor shifts is,
thus, a slight reduction of J⊥ from its tensor-shift-free
value of 2µ2

01. The latter makes perfect intuitive sense:
the matrix element is reduced due to reduced overlap.
One can view this effective modification of µ01 as an ex-
tra control knob. In the remainder of Sec. V, however,
we will assume for simplicity that all rotor states feel
the same optical potential; tensor shifts can easily be in-
cluded by analogy with the above example and will lead
to similarly reduced matrix elements. Expressing nim
in terms of ni and Szi , we find that Eq. (32) is equiva-

lent to Hdd in Eq. (1) with V = (µ0+µ1)
2

4 , W =
µ2
0−µ

2
1

2 ,

and Jz = (µ0 − µ1)2. In Appendix B, we calculate cor-
rections to the approximations made to arrive at Eq.
(32). While these corrections lead to interesting effects,
such as interaction-assisted tunneling, these corrections
are small. It is worth pointing out that at an electric
field of dE/B = 0.1, which we need to prevent Hhf from
coupling |1〉 to |1〉 and |φ1,−1〉 and to decouple the nu-
clei in state |0〉, µ2

01/µ
2
0 ≈ 300. This means that at this

value of dE/B, the values of V , W , and Jz are negli-
gible compared to J⊥, making the V = W = Jz = 0

model studied in Ref. [7] applicable. In row #1 of Table
II, we collect the values of V , W , Jz, and J⊥ (for the
case of no tensor shifts) and list the main features of the
{|m0〉, |m1〉} = {|0〉, |1〉} scheme.

Let us now simplify the internal state Hamiltonian in

Eq. (27). Using the definition nimσ = c†imσcimσ, Eq. (27)
can be rewritten as

H0 +Hhf →
∑
imσ

Emσnimσ. (33)

We will use conservation laws to simplify this expression.
In particular, our Hamiltonian conserves the total num-
ber of 0 molecules (n0 = n0↑ + n0↓), the total number
of 1 molecules (n1 = n1↑ + n1↓), the total number of
↑ molecules (n↑ = n0↑ + n1↑), and the total number of
↓ molecules (n↓ = n0↓ + n1↓). Only three out of these
four quantities are independent since the first two and
the last two quantities both sum to the total number of
molecules. Thus, subtracting from the final Hamiltonian
constant quantities that commute with it, the only rele-
vant internal-state Hamiltonian will be

H0 +Hhf → A
∑
i

1

4
(ni0↑ − ni0↓ − ni1↑ + ni1↓)

= A
∑
i

Szi T
z
i , (34)

where we assumed that there is at most one molecule per
site. Here

A = (E0↑ − E0↓)− (E1↑ − E1↓)

≈ (〈0|P2(cos θ)|0〉 − 〈1|P2(cos θ)|1〉)

×
2∑
i=1

3(eqQ)i
4Ii(2Ii − 1)

[(Mi)
2 − (M ′i)

2], (35)

where the last approximation is made provided HQ dom-
inates the hyperfine structure and where | ↑〉 = |M1,M2〉
and | ↓〉 = |M ′1,M ′2〉. We see thus that A can be tuned
with a significant degree of flexibility. In particular, Fig.
4 shows that 〈0|P2(cos θ)|0〉−〈1|P2(cos θ)|1〉 can be tuned
by adjusting dE/B. On the other hand, Fig. 5(a) shows

(on the example of KRb) that
∑2
i=1

3(eqQ)i
4Ii(2Ii−1) [(Mi)

2 −
(M ′i)

2] can be adjusted between 12 kHz [e.g. (M ′1,M
′
2) =

(0, 1/2) and (M1,M2) = (1, 1/2)] and ∼ 1 MHz.
Let us now briefly discuss the possibility of obtaining

more complicated interaction terms between Si and Ti

than the simple ASzi T
z
i in Eq. (34). First, it is possible

to get a Hamiltonian of the form ASzi T
z
i +A2T

z
i +A3T

x
i .

In the case of one molecule per site in the absence of
tunneling, such a Hamiltonian still conserves Szi as the
original ASzi T

z
i Hamiltonian but no longer conserves T zi .

The term T xi can be obtained by working in the regime
when the term I+1 I

−
2 + I−1 I

+
2 in Eq. (13) couples the two

chosen spin states and is not negligible. Whenever T xi
is not negligible, the term A2T

z
i arrises naturally fol-

lowing a derivation similar to that leading to Eq. (34).
Second, it is also possible to obtain terms of the form
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S+
i T
−
i +S−i T

+
i . Such terms allow one to exchange S and

T excitations within the same molecule. We can obtain
such terms by using, for example, states |1〉 and |φ1,−1〉
as the two rotor states. In that case HQ and Ht can
cause transitions between these two levels while at the
same time changing Iz1 + Iz2 by 2.

B. Derivation of the Hamiltonian for other level
configurations

In the previous Section [Sec. V A], we derived the
Hamiltonian in Eq. (1) for the simplest level configu-
ration: {|m0〉, |m1〉} = {|0〉, |1〉}. In this Section, we
show how the coefficients V , W , Jz, and J⊥ in Eq. (1)
can be controlled by choosing other level configurations,
including those configurations that involve one or more
microwave fields.

The results are summarized in Table II. The
microwave-free {|1〉, |3〉} scheme (#2 in Table II) has
the same form of the dipole-dipole coefficients as the
{|0〉, |1〉} scheme. However, it has two important fea-
tures that distinguish it from the {|0〉, |1〉} scheme: the
transition dipole moment between |1〉 and |3〉 vanishes
for E = 0, and the permanent dipole moments of states
|1〉 and |3〉 point in the same direction at small fields E.
This may help stabilize the system against chemical re-
actions (see Sec. VI) and may help reduce the strength
of dipole-dipole interactions in LiCs below the strength
of the optical lattice potential, which is necessary for the
applicability to LiCs of the treatment that we present.

To calculate the coefficients V , W , Jz, and J⊥ in the
{|0〉, |1〉} scheme (#3 in Table II), we have to extend Eq.
(29) to account for the fact that d+ and d− now play a
role (recall that d± = e±1 ·d). However, energy conserva-
tion still forces the conservation of total Nz of the two in-
teracting molecules, thus, making sure that T 2

p (d(i),d(j))
contributes only for p = 0 [see Eq. (A25)]. Therefore,

according to Eq. (A26), d
(i)
0 d

(j)
0 in Eq. (29) should be re-

placed with d
(i)
0 d

(j)
0 + 1

2 (d
(i)
+ d

(j)
− +d

(i)
− d

(j)
+ ). Projecting on

the states |0〉 and |1〉 and ignoring off-resonant terms, we
obtain

d
(i)
0 d

(j)
0 +

1

2

(
d
(i)
+ d

(j)
− + d

(i)
− d

(j)
+

)
≈(

|0〉i〈0|iµ0 + |1〉i〈1|iµ1

) (
|0〉j〈0|jµ0 + |1〉j〈1|jµ1

)
+

[
−
µ2
01

2
|01〉〈10|+ h.c.

]
. (36)

Here µm = 〈m|d0|m〉, µ01 = 〈0|d−|1〉, and |mm′〉 means
that molecule i (j) is in state |m〉 (|m′〉). From now on,
we will use the natural notation that µmm′ = 〈m|dp|m′〉
is the transition dipole moment between |m〉 and |m′〉
computed using dp for the appropriate p. The interac-
tion in Eq. (36) has the same form as the corresponding
interaction for the {|0〉, |1〉} scheme except µ2

01 is replaced
with −µ2

01
/2. This minus sign comes from the physical

effect that two dipoles rotating in the x-y plane give an
averaged interaction that is equal to negative one-half of
the interaction for two dipoles pointing in the ẑ direction
[63]. Therefore, this level scheme allows to change the
sign of J⊥ relative to the {|0〉, |1〉} scheme. The resulting
values for V , W , Jz, and J⊥ are listed in row #3 of Table
II.

To calculate the coefficients V , W , Jz, and J⊥ in
the {|m0〉, |m1〉} = {|0〉,

√
a|1〉+

√
1− a|2〉} scheme [Fig.

3(b); #4 in Table II], we again ignore off-resonant terms.

Projecting d
(i)
0 d

(j)
0 onto states |0〉, |1〉, and |2〉, we obtain

d
(i)
0 d

(j)
0 ≈ (|0〉i〈0|iµ0 + |1〉i〈1|iµ1 + |2〉i〈2|iµ2)

×(|0〉j〈0|jµ0 + |1〉j〈1|jµ1 + |2〉j〈2|jµ2)

+(µ2
01|01〉〈10|+ µ2

02|02〉〈20|+ µ2
12|12〉〈21|+ h.c.). (37)

Projecting this on states |0〉 and |m1〉, we arrive at

d
(i)
0 d

(j)
0 + 1

2 (d
(i)
+ d

(j)
− + d

(i)
− d

(j)
+ ) =

∑
p

Bp|mpmp〉〈mpmp|

∑
p,q

ApAq|mpmq〉〈mpmq|+
J⊥
2

(|m0m1〉〈m1m0|+h.c.),(38)

where p, q ∈ {0, 1} and where the values of Ap, Bp, and
J⊥ are listed in row #4 of Table II. Although in the

present configuration, 1
2 (d

(i)
+ d

(j)
− + d

(i)
− d

(j)
+ ) does not con-

tribute and B0 = 0, we wrote Eq. (38) in this more gen-
eral form to be able to describe all other configurations
below. Ap can be thought of as an effective dipole mo-
ment of state |mp〉, while Bp gives the contribution to the
interaction from the transition dipole moments between
the rotor states that make up |mp〉. Comparing Eq. (29)
to Eq. (5), we can read off V = [(A0 +A1)2 +B0 +B1]/4,
W = (A2

0 +B0−A2
1−B1)/2, Jz = (A0−A1)2 +B0 +B1.

These expressions hold generally and are listed at the
top of Table II. The two tuning parameters (dE/B and
a) can be used, for example, to set W = 0 and Jz = J⊥.
In particular, at (dE/B, a) = (1.25, 0.74), we get W = 0,
Jz = J⊥ = 0.36d2 and V = 0.1Jz. Setting W = 0 and
Jz = J⊥ brings Eq. (5) into a form similar to the SU(2)-
symmetric t-J-V model [59] extended to long-range in-
teractions. Moreover, as we have noted in Sec. II A 2, the
value of V = 0.1Jz is expected to result in a suppression
of phase separation relative to the original t-J model, in
which V = −Jz/4 [8].

To find expressions for V , W , Jz, and J⊥ in the con-
figuration {|m0〉, |m1〉} = {

√
a|0〉 +

√
1− a|1〉, |1〉} [Fig.

3(d); #5 of Table II], we project the resonant terms of

d
(i)
0 d

(j)
0 + 1

2 (d
(i)
+ d

(j)
− +d

(i)
− d

(j)
+ ) onto states |1〉, |0〉, and |1〉

to obtain

d
(i)
0 d

(j)
0 +

1

2
(d

(i)
+ d

(j)
− + d

(i)
− d

(j)
+ ) ≈

(|1〉i〈1|iµ1 + |0〉i〈0|iµ0 + |1〉i〈1|iµ1)

×(|1〉j〈1|jµ1 + |0〉j〈0|jµ0 + |1〉j〈1|jµ1)

+(µ2
01|01〉〈10| −

µ2
01

2
|01〉〈10| −

µ2
11

2
|11〉〈11|+ h.c.). (39)
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Expressions for V , W , Jz, J⊥
V = [(A0 +A1)2 +B0 +B1]/4
W = [A2

0 +B0 −A2
1 −B1]/2

Rotor states used Jz = (A0 −A1)2 +B0 +B1 Special features

#1 |m0〉 = |0〉 V = (µ0 + µ1)2/4 - Simplest.
|m1〉 = |1〉 W = (µ2

0 − µ2
1)/2 - At small dE/B, V ≈W ≈ Jz ≈ 0 and J⊥ > 0,

Fig. 3(a) Jz = (µ0 − µ1)2 yielding the dipolar t-J⊥ Hamiltonain [7].
J⊥ = 2µ2

01

#2 |m0〉 = |1〉 V = (µ1 + µ3)2/4 - At small dE/B, µ1µ3 > µ2
13, which may help

|m1〉 = |3〉 W = (µ2
1 − µ2

3)/2 stabilize the system against chemical reactions
Fig. 3(a) Jz = (µ1 − µ3)2 (see Sec. VI).

J⊥ = 2µ2
13

#3 |m0〉 = |0〉 V = (µ0 + µ1)2/4 - Simplest configuration with J⊥ < 0.
|m1〉 = |1〉 W = (µ2

0 − µ2
1
)/2 - A microwave field is required to shift |φ1,−1〉

Fig. 3(a) Jz = (µ0 − µ1)2 out of resonance with |1〉.
J⊥ = −µ2

01

#4 |m0〉 = |0〉 A0 = µ0 - At (dE/B, a) = (1.25, 0.74), W = 0,
|m1〉 =

√
a|1〉+

√
1− a|2〉 A1 = aµ1 + (1− a)µ2 Jz = J⊥ = 0.36d2, and V = 0.1Jz, making

Fig. 3(b) B0 = 0 Eq. (5) similar to the SU(2)-symmetric
B1 = 2µ2

12a(1− a) t-J-V model, which exhibits suppressed phase
J⊥ = 2(µ2

01a+ µ2
02(1− a)) separation [59].

#5 |m0〉 =
√
a|0〉+

√
1− a|1〉 A0 = aµ0 + (1− a)µ1 - J⊥ = 0 can be achieved at any dE/B by

|m1〉 = |1〉 A1 = µ1 adjusting a.
Fig. 3(d) B0 = −µ2

01
a(1− a) - Jz < 0 can be achieved.

B1 = 0 - V < 0 can be achieved.
J⊥ = 2aµ2

01 − (1− a)µ2
11

#6 |m0〉 = |3〉 A0 = µ3 - Jz = 0 and J⊥ = 0 lines intersect in (dE/B, a)
|m1〉 =

√
a|1〉+

√
1− a|2〉 A1 = aµ1 + (1− a)µ2 space at (dE/B, a) = (2.6, 0.92). So if

Fig. 3(c) B0 = 0 we write Jz = |J | cosψ and J⊥ = |J | sinψ,
B1 = −a(1− a)µ12 arbitrary ψ can be achieved around that point.
J⊥ = 2aµ2

13 − (1− a)µ2
32

#7 |m0〉 = a|0〉+
√

1− a|1〉 A0 = aµ0 + (1− a)µ1 - At (dE/B, a, b) = (1.7, 0.33, 0.81), W = 0 and
|m1〉 = b|1〉+

√
1− b|φ2,−1〉 A1 = bµ1 + (1− b)µ2 Jz = J⊥ = −4V = 0.089d2, making Eq. (5)

Fig. 3(e) B0 = −a(1− a)µ2
01

very similar to the standard t-J model [8].
B1 = −b(1− b)µ2

12

J⊥ = 2abµ2
01 − a(1− b)µ2

02

−(1− a)bµ2
11

#8 |m0〉 =
√
a|2̂〉+

√
1− a|2〉 A0 = aµ2̂ + (1− a)µ2 - The manifolds V = 0, W = 0, Jz = 0,

|m1〉 =
√
b|1〉+

√
c|1〉 A1 = bµ1 + cµ1 + (1− b− c)µ2 and J⊥ = 0 intersect in (dE/B, a, b, c) space

+
√

1− b− c|2〉 B0 = −a(1− a)µ2
2̂2

at (dE/B, a, b, c) = (2.97, 0.059, 0.56, 0.38).
Fig. 3(f) B1 = −bcµ2

11
− c(1− b− c)µ2

21
Full control over V , W , Jz, and J⊥ is

+2b(1− b− c)µ2
12 achievable around that point.

J⊥ = 2(1− a)cµ2
21
− (1− a)bµ2

21

−(1− a)(1− b− c)µ2
22
− acµ2

2̂1

TABLE II. The expressions for the dipole-dipole interaction coefficients for several different level configurations. For config-
urations #1 through #3, the coefficients V , W , Jz, and J⊥ are listed directly. For other configurations, we instead list the
expressions for A0, A1, B0, B1, and J⊥; the expressions for V , W , and Jz can be computed from Ap and Bp using the formulas
provided at the top of the table. While the presented expressions for the interaction coefficients assume no tensor shifts, the
effect of tensor shifts is straightforward to include. Some notable features of each configuration are noted in the last column,
while a more detailed discussion is provided in the text.

We note that terms that do not conserve the total M still
do not contribute since they are all highly off-resonant
(energy non-conserving). In particular, this assumes,
that the microwave field is strong enough that |m0〉 is
not resonant with |φ1,−1〉 (or that |φ1,−1〉 is shifted away
using a separate microwave field coupling it, for exam-
ple, to |φ2,−2〉). Limiting the internal states of the two
molecules to |m0〉 and |1〉, we arrive at Eq. (38) with

the values of Ap, Bp, and J⊥ listed in row #5 of Table
II. The minus signs featured in the expressions for J⊥
and Jz (when compared to the {|0〉,

√
a|1〉 +

√
1− a|2〉}

configuration - #4 in Table II) allow to set J⊥ = 0
at any dE/B, as well as set Jz and/or J⊥ to be neg-
ative. In particular, if one writes Jz = |J | cosψ and
J⊥ = |J | sinψ, then the ability to achieve any value of
ψ would imply full controllability over Jz and J⊥ and,
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hence, over Eq. (4). And indeed, in a similar configura-
tion {|m0〉, |m1〉} = {|3〉,

√
a|1〉 +

√
1− a|2〉} [Fig. 3(c);

#6 in Table II], by tuning a and E, one can achieve
any value of ψ. In particular, in the plane defined by
dE/B and a, the Jz = 0 and J⊥ = 0 lines cross at
(dE/B, a) = (2.6, 0.92), so that all values of ψ (and
hence all four combinations of the signs of Jz and J⊥) can
be achieved just by going around that point in a circle.
While this proves that any value of ψ can be achieved,
the resulting values of |J | could be rather small; how-
ever, it is important to emphasize that for any desired
ψ, there is almost certainly a different level configuration
that gives a larger |J |.

To achieve an even larger degree of control, one can
apply two microwave fields. For example [Fig. 3(e); #7
in Table II], one microwave field can be used to create
a dressed state |m0〉 = a|0〉 +

√
1− a|1〉, while another

microwave field can be used to create a dressed state
|m1〉 = b|1〉 +

√
1− b|φ2,−1〉. Following the same pro-

cedure as for other level schemes, we arrive at the ex-
pressions for Ap, Bp and J⊥ listed in row #7 of Table
II. In particular, with (dE/B, a, b) = (1.7, 0.33, 0.81), we
obtain W = 0, Jz = J⊥ = −4V = 0.089d2. As we have
noted in Sec. II A 2, these values of W , V , Jz, and J⊥
make our model very similar to the original t-J model,
except the interactions are long-range. Other configu-
rations with two microwave fields can, of course, also
be used to obtain other interesting combinations of co-
efficients or, possibly, to increase the overall interaction
strength relative to this example.

Finally, full controllability can be achieved with three
microwave fields. In that case, we will have four con-
trol knobs (three microwave fields and the magnitude of
the applied DC electric field), which can allow for the
full control over the four constants V , W , Jz, and J⊥.
In particular, consider the example [Fig. 3(f); #8 in Ta-

ble II] where the two dressed states are |m0〉 =
√
a|2̂〉 +√

1− a|2〉 and |m1〉 =
√
b|1〉+

√
c|1〉+

√
1− b− c|2〉. To

achieve controllability over a, we can apply a σ− field on
the |2̂〉 − |2〉 transition. At dE/B = 2.97 (see below),
this transition has frequency 0.3B and a sizable transi-
tion dipole moment µ2̂2 = −0.13d. Alternatively, one

can use a Raman pair of microwaves to couple |2̂〉 and

|2〉 via |3̂〉 ≡ |φ3,2〉, in which case the transition dipole
moments are stronger (µ2̂3̂ = 0.37d and µ3̂2 = 0.53d) and
the transition frequencies are larger (∼ 6B). To achieve
controllability over b and c, we can apply a σ− field on the
|1〉−|1〉 transition (or on the |1〉−|2〉 transition) and a π
field on the |1〉 − |2〉 transition. In this configuration, we
find that the four manifolds V = 0, W = 0, Jz = 0, and
J⊥ = 0 all intersect at dE/B = (2.97, 0.059, 0.56, 0.38).
Specifically, to set V = W = Jz = J⊥ = 0, it is sufficient
to set A1 = B1 = A2

0 + B0 = J⊥ = 0, which is the pro-
cedure we followed. Therefore, in a small sphere in the
4-dimensional (dE/B, a, b, c) space around the intersec-
tion point of the four manifolds V = 0, W = 0, Jz = 0,
and J⊥ = 0, one can achieve any value of V , W , Jz,
and J⊥ up to an overall positive prefactor. While this

example proves full controllability, the actual magnitude
of the interaction could be small in this case; however, it
is important to emphasize that for any desired relation-
ship between V , W , Jz, and J⊥, there is almost certainly
a different level configuration and a different choice of
microwave fields that gives stronger interactions.

The examples presented here (Table II) are just a very
small fraction of what is possible. In particular, we would
like to emphasize that even for the relationships of V , W ,
Jz, and J⊥ that we consider, configurations other than
the ones we present can likely be used to achieve a larger
overall interaction strength. Similarly, the search for the
optimal configuration for any given experimental labora-
tory can take into account the laboratory’s constraints
on the strength of the DC field, on the microwave inten-
sity, and on the range of available microwave frequencies.
When designing a configuration to achieve some desired
relationship between V , W , Jz, and J⊥, various caveats
can be followed to streamline the search. As one sim-
ple example of such a caveat, one can ensure that some
transition dipole moments vanish exactly by using states
whose Nz eigenvalues differ by more than one. This way,
one can, for example, set J⊥ = 0 independently of the
strength of the applied DC field.

VI. STABILITY AGAINST CHEMICAL
REACTIONS

We now turn to the discussion of stability of our system
against chemical reactions. For some species of diatomic
polar molecules, two absolute (electronic, vibrational, ro-
tational, hyperfine) ground state molecules cannot react
to form homonuclear dimers [103, 104]. In that case, one
may be able to remove the hard-core constraint and con-
sider Hamiltonians with finite elastic on-site interaction
(see e.g. Ref. [26, 52]). However, even for these molecules,
excited states might react [103]. Moreover, the currently
available molecules, KRb and LiCs, both have exother-
mic reactions to form homonuclear dimers. Therefore, in
order to avoid these chemical reactions, it is important
to ensure that two molecules never sit on the same site.
There are several ways to prevent two molecules from
sitting on the same site. First, one can rely on strong
dipole-dipole repulsion. Specifically, if we use a 2D ge-
ometry in the X-Y plane or a 3D geometry with Ẑ tun-
neling shut off, and if we further suppose that the electric
field direction ẑ is near Ẑ, then, at least for the ground
rotational state, dipole-dipole repulsion can play the role
of a hard-core constraint for molecules when they hop in
the X-Y plane [62]. One may expect that this repulsion-
induced stability also applies to some situations where
two rotational states are populated. We will discuss this
possibility below. Second, sufficiently strong attraction
between two molecules that sit on the same site should
also be able to prevent two molecules from hopping onto
the same site by energy conservation, similar to the ex-
periments on repulsively bound pairs [105]. Finally, if re-
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action rates [103] are really large, one can also try relying
on the quantum Zeno effect to provide the hard-core con-
straint [106, 107]. Therefore, if strong attraction and/or
the quantum Zeno effect are sufficient to provide stability
(i.e. strong repulsion is not necessary), our models can be
extended to the full 3D geometry with tunneling allowed
along all three directions.

Let us make an estimate for the suppression of
chemical reactions caused by the quantum Zeno effect.
Let w(X) be the 1D Wannier function for the poten-
tial V0 sin2(KX), where K = 2π/λ and λ = 1064
nm [14]. We can then compute the tunneling ampli-

tude t = −
∫
dXw(X)

[
− 1

2m
d2

dX2 + V0 sin2(KX)
]
w(X −

λ/2) and the on-site chemical reaction rate Γ =

κ3D
[∫
dXw4(X)

]3
[108], where we take the 3D loss rate

κ3D = 2× 10−10 cm3/s from Fig. 2B of Ref. [24] (which
is of the same order of magnitude as the theoretical pre-
dictions of Ref. [109]). We plot t and Γ in Fig. 6 as
a function of V0/ER, where we used the recoil energy
ER = ~2K2/(2Mm) ≈ (2π)1.4 kHz for mass Mm of KRb
(recall that ~ = 1). We see that as we increase V0/ER
from 5 to 30, Γ/2π grows from 900 Hz to 5 kHz, while
t/2π drops from 90 Hz to 0.6 Hz. Therefore, t � Γ is
satisfied for all the values of V0 considered, and we can
compute the effective loss rate t2/Γ [108], with the re-
sult shown in Fig. 6. We see that even at V0 = 5ER,
t2/Γ ≈ (2π)9 Hz, which is already sufficiently slow to
allow for an experiment to be carried out. The effective
loss rate falls rapidly to even lower values as we increase
V0/ER dropping below 1 mHz at V0/ER = 30. In partic-
ular, this means that the simplest {|0〉, |1〉} configuration
at small dE/B, which gives rise to the Jz = V = W = 0
model studied in Ref. [7], should be stabilized by the
quantum Zeno effect, despite the fact that it is not stabi-
lized by repulsive dipole-dipole interactions (see below).

It is also important to verify that two molecules on
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103

FIG. 6. (color online). The tunneling amplitude t (dashed red
line), the on-site chemical reaction rate Γ (solid cyan line), the
effective loss rate t2/Γ (dashed blue line), nearest-neighbor
chemical reaction rate Γ2 (solid magenta line), and imaginary
part Γ3 (solid green line) of the tunneling amplitude between
two occupied sites as a function of V0/ER, where ER is the
recoil energy and where V0 is the amplitude of the lattice.
The vertical axis is in Hz. We use λ = 1064 nm.

neighboring sites would not decay directly due to the
overlap of their Wannier functions. To do this, we com-
pute the nearest-neighbor chemical reaction rate Γ2 =

κ3D
[∫
dXw4(X)

]2 ∫
dXw2(X)w2(X − λ/2). As we can

see from Fig. 6, as we increase V0/ER from 5 to 30,
Γ2/2π drops from 2 Hz to 0.1 mHz, making it negligi-
bly small. We also see that up to V0/ER ≈ 30, t2/Γ is
larger than Γ2 and, thus, determines the total loss rate.
By analogy with the interaction-assisted tunneling dis-
cussed in Appendix B, we can also compute the quan-

tity Γ3 = −κ3D
[∫
dXw4(X)

]2 ∫
dXw3(X)w(X − λ/2),

which can be thought of as the imaginary part of the tun-
neling amplitude between two occupied sites. As we can
see from Fig. 6, Γ3 is smaller than t, and, in particular,
much smaller than Γ. Therefore, we expect the Γ3 pro-
cess to be suppressed in a way similar to the suppression
of tunneling t between two occupied sites.

Let us also make a rough estimate for the strength
of dipole-dipole interactions for two molecules confined
to a single site. Taking the dipole moment d of KRb
and a typical distance of 50 nm between two molecules
confined to the same site, we get an interaction energy
Eint = d2/(4πε0(50 nm)3) ∼ (2π)400 kHz, which is much
larger than the tunneling amplitude t shown in Fig. 6. In
fact, this interaction energy is even larger than the on-
site chemical reaction rate Γ. Therefore, strong dipole-
dipole interactions may further suppress the tunneling
of molecules between two occupied sites, thus, further
reducing the loss due to chemical reactions. However,
a more elaborate calculation [103], which is beyond the
scope of this paper, is required to fully understand this
effect.

Although the quantum Zeno effect and dipole-dipole
attraction may allow to stabilize the system (as we have
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FIG. 7. (color online). (a) Permanent (solid lines) and transi-
tion (dashed lines) dipole moments in units of d. (b) Stability
curves in units of d2. The system is stabilized via repulsive
dipole-dipole interactions when the plotted quantity is posi-
tive.
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just described), let us, nevertheless, estimate the stabil-
ity conditions, assuming we want to rely solely on strong
repulsive dipole-dipole interactions. Since each molecule
can be in one of two rotational states, we must ensure
repulsion for any two-molecule internal state, which will
significantly restrict the range of parameters at which
stability is achieved purely by repulsive interactions. Let
us begin by considering the simplest {|0〉, |1〉} configu-
ration (#1 in Table II). The terms in Eq. (31) with
j1 = j2 = j3 = j4 are the ones that give rise to the
hardcore constraint. To ensure dipole-dipole repulsion
between two molecules independently of their internal
state, two conditions should be satisfied. First, the angle
Θ0 that the DC electric field makes with the Z-axis must
be smaller than sin−1(1/

√
3) to ensure that Vdd(R) > 0

for any vector R in the X-Y plane [see Fig. 1]. Sec-
ond, we have to require that the term in square brack-
ets in Eq. (32) is positive for any two-molecule internal
state. This requirement reduces to a single condition:
µ0µ1 > µ2

01, where we have assumed J⊥ = 2µ2
01 (i.e.

no tensor shifts). Physically, this condition ensures that

the two-molecule singlet state (|0〉|1〉 − |1〉|0〉)/
√

2 has
positive energy. The same analysis can be done for the
{|1〉, |3〉} configuration (#2 in Table II) and yields the
stability condition µ1µ3 > µ2

13. In Fig. 7(a), we show
the permanent and transition dipole moments that play
a role in these two configurations; and in Fig. 7(b), we
plot the stability curves µ0µ1−µ2

01 and µ1µ3−µ2
13, whose

positive values show the regions of stability. We see that,
in the {|0〉, |1〉} configuration, stability is achieved for
dE/B > 6, while, in the {|1〉, |3〉} configuration, it is
achieved for 0 < dE/B < 3.9. The condition dE/B > 6
requires large electric fields [E > 24(12) kV/cm for KRb
(LiCs)]. Therefore, it may be easier experimentally to
achieve stability in the {|1〉, |3〉} configuration than in the
{|0〉, |1〉} configuration. The two features of the {|1〉, |3〉}
configuration that allow it to be stable at small DC elec-
tric fields are: (1) the fact that µ1 and µ3 point in the
same direction at small DC fields and (2) the fact that
µ13 = 0 for E = 0. We also note that the use of tensor
shifts to reduce J⊥ may allow one to extend the stability
range to lower dE/B for some configurations, such as the
{|0〉, |1〉} configuration. We also point out that the sta-
bility range for the {|1〉, |3〉} configuration conveniently
includes the “magic” point for these two states in Fig. 4
(dE/B ≈ 1.7). Finally, we note that the analysis in the
present Section can be readily extended to the case when
microwave fields are applied.

VII. CONCLUSION

We derived the t-J-V -W model that governs the be-
havior of polar alkali dimers in an optical lattice. In
particular, we showed how microwave fields can be used
to make the coefficients of the Hamiltonian fully tunable.
We also described how nuclear spins and the associated
hyperfine interactions can be used to endow the model

with another highly controllable (orbital) degree of free-
dom. The peculiar and highly tunable features of the
model, such as long-range anisotropic interactions and
the hyperfine interactions with the nuclear spin, should
make the system an invaluable resource for studying ex-
otic manybody phenomena and for providing insights
into strongly correlated condensed matter systems.

One feature of the models considered in the present
manuscript is that, for two nearest-neighbor molecules in
an optical lattice with 0.5µm spacing [14], dipole-dipole
interactions are relatively weak (0.4 kHz for KRb and 37
kHz for LiCs). It would, thus, be convenient to bring
the molecules closer. First, although the structure of
molecules is more complicated than that of atoms, and
inelastic photon scattering rate could vary drastically as
one tunes the wavelength of the lattice laser [110], we
believe that lattice spacing down to 200-300 nm will be
possible. This would increase the dipole-dipole interac-
tion strength by an order of magnitude. Another promis-
ing way to achieve closely spaced molecules is to consider
molecular Wigner crystals [56, 62], which will be the sub-
ject of future studies.

Several other extensions of the present work may be
particularly fruitful. For example, it is straightforward
to extend the Hamiltonian in Eq. (1) to more than two
dressed rotational states and, thus, emulate spin S >
1/2. One can also consider level configurations, in which
dipole-dipole interaction terms that do not conserve the
total Nz of the two interacting molecules contribute [p 6=
0 in Eq. (A25)] and generate a larger variety of angular
dependences in the interaction than that present in Vdd
[Eq. (2)]. Interaction terms of the form S+

i S
+
j can also

be generated if one uses degenerate dressed states |m0〉
and |m1〉 allowing one to access, for example, spin models
beyond the XXZ model.

Furthermore, while this manuscript is mainly focused
on quantum simulation applications of the system, ap-
plications to quantum computation – particularly in the
context of storing quantum information in the nuclear
spins [56, 91–93] – can be readily envisioned. By anal-
ogy with similar proposals for alkaline-earth atoms [88],
alkali dimers in an optical lattice may be used, for exam-
ple, to generate many-body entangled states with appli-
cations to precision measurements and to measurement-
based quantum computation. Finally, as another possible
extension of the present work, we expect that, by anal-
ogy with Ref. [33], which treats Rydberg atoms and polar
molecules on equal footing, our ideas should be extend-
able to Rydberg atoms.
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Appendix A: Matrix elements

In this Appendix, we first present some formulas that
are useful for evaluating the internal structure of the
molecules, their interaction with optical and microwave
fields, as well as their dipole-dipole interaction with each
other. We then use these formulas to evaluate matrix el-
ements of the internal molecular Hamiltonian, as well as
of the dipole-dipole interaction between two molecules.

Closely following Ref. [94] for most of this Appendix,
let T k1p1 (A1) be a tensor of rank k1 with components p1
which operates on angular momentum J1. Similarly, let
T k2p2 (A2) be a tensor of rank k2 with components p2 which
operates on angular momentum J2. We assume that J1

and J2 commute. We can define the tensor product of
T k1(A1) and T k2(A2) as

T kp (A1,A2) =
∑
p1

T k1p1 (A1)T k2p−p1(A2)(2k + 1)1/2

×
(
k1 k2 k
p1 p− p1 −p

)
(−1)−k1+k2−p, (A1)

where the 2× 3 matrix in parentheses is the 3-j symbol.
For k1 = k2 = k, we can also define the scalar product of
T k1(A1) and T k2(A2) as

T k(A1) · T k(A2) =
∑
p

(−1)pT kp (A1)T k−p(A2). (A2)

Notice that for k = 1, the spherical and Cartesian scalar
products agree: T 1(A1) · T 1(A2) = A1 ·A2.

If J1 and J2 couple to form J, we have the follow-
ing formulas for the reduced matrix elements (reduced
matrix elements use symbol || instead of | and have no
dependence on the component indices such as p1, p2, and
p):

〈J1, J2, J ||T k1(A1)||J ′1, J ′2, J ′〉 = δJ2,J′
2
(−1)J

′+J1+k1+J2

×
√

(2J+1)(2J ′+1)

{
J ′1 J ′ J2
J J1 k1

}
〈J1||T k1(A1)||J ′1〉,(A3)

〈J1, J2, J ||T k2(A2)||J ′1, J ′2, J ′〉 = δJ1,J′
1
(−1)J+J1+k2+J

′
2

×
√

(2J+1)(2J ′+1)

{
J ′2 J ′ J1
J J2 k2

}
〈J2||T k2(A2)||J ′2〉,(A4)

〈J1, J2, J ||T k(A1,A2)||J ′1, J ′2, J ′〉 =

×
√

(2J + 1)(2J ′ + 1)(2k + 1)

 J J ′ k
J1 J ′1 k1
J2 J ′2 k2


×〈J1||T k1(A1)||J ′1〉〈J2||T k2(A2)||J ′2〉. (A5)

Here the 2 × 3 matrix in curly braces is the 6-j symbol,
and the 3× 3 matrix in curly braces is the 9-j symbol.

The Wigner-Eckart theorem allows to compute matrix
elements of T kp (A), operating on angular momentum J,
in terms of reduced matrix elements:

〈J,M |T kp (A)|J ′,M ′〉 = (−1)J−M
(

J k J ′

−M p M ′

)
×〈J ||T k(A)||J ′〉. (A6)

Three particularly useful sets of reduced matrix ele-
ments are

〈J ||T 1(J)||J ′〉 = δJ,J ′ [J(J + 1)(2J + 1)]1/2, (A7)

〈J ||T 2(J,J)||J ′〉 = δJ,J ′
J(2J − 1)√

6

(
J 2 J
−J 0 J

)−1
(A8)

for any angular momentum J (in particular, for N) and

〈N ||T k(C)||N ′〉 = (−1)N [(2N + 1)(2N ′ + 1)]1/2

×
(
N k N ′

0 0 0

)
, (A9)

where T kp (C) = Ckp (θ, φ).
We will now use Eqs. (A1-A9) to evaluate matrix ele-

ments of the internal molecular Hamiltonian, as well as
of the dipole-dipole interaction between two molecules.
In Ref. [18], which we follow together with Ref. [94] to
compute the matrix elements, three kinds of bases are
used. Since we work in the regime where it is sufficient
to take the expectation value of Hhf in a given eigenstate
of H0, we will use only two basis sets, as in Ref. [22]:

|NMM1M2〉 (uncoupled), (A10)

|NMIMI〉 (coupled). (A11)

In both bases, the rotor state |NM〉 is decoupled from the
nuclear spin states |I1M1〉 and |I2M2〉. The coupled basis
couples the two nuclear spins and uses |IMI〉, where I =
I1+I2, while in the uncoupled basis M1 and M2 magnetic
quantum numbers of the two nuclear spins are used. We
will use the two bases whenever the operator that is being
considered acts on the nuclear spins. Otherwise – if the
operator acts only on the rotor degree of freedom – we
will simply use the basis |NM〉.

We begin by computing the matrix elements of H0 [Eq.
(8)]. Noting that N2 acts only on the rotor degree of
freedom, we have

〈NM |N2|N ′M ′〉 = δNN ′δMM ′N(N + 1). (A12)

To evaluate the matrix elements of d0, we note that
dp = T 1

p (d) = êp · d = dC1
p(θ, φ) for all 3 values of

p = 0,±1. Thus, for evaluating the DC Stark shift −d0E
and the dipole-dipole interaction between two molecules,
we need the matrix elements of C1

p(θ, φ). For evaluat-
ing the quadrupole hyperfine interaction and the ten-
sor hyperfine interaction, we need the matrix elements
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of C2
p(θ, φ). Let us, thus, evaluate the matrix elements

of Ckp (θ, φ) for general k. Using Eqs. (A6,A9), we have

〈NM |Ckp (θ, φ)|N ′M ′〉 = (−1)M [(2N + 1)(2N ′ + 1)]1/2

×
(

N k N ′

−M p M ′

)(
N k N ′

0 0 0

)
. (A13)

We now compute the matrix elements of Hhf [Eq. (9)].
We begin with HQ. Using the form of HQ in Eq. (9),
the definitions of T 2(∇Ei) and T 2(Qi), and Eq. (A2),
we have

HQ =
∑
p,i

(−1)pC2
p(θ, φ)

√
6(eqQ)i

4Ii(2Ii − 1)
T 2
−p(Ii, Ii),(A14)

where i sums over the two nuclei. Since we have already
evaluated the matrix elements of C2

p(θ, φ), it remans to

list the matrix elements of T 2
p (Ii, Ii). Using Eqs. (A6,A8),

in the uncoupled basis, they are

〈Mi|T 2
p (Ii, Ii)|M ′i〉 =

Ii(2Ii − 1)√
6

×(−1)Ii−Mi

(
Ii 2 Ii
−Mi p M ′i

)(
Ii 2 Ii
−Ii 0 Ii

)−1
.(A15)

Using Eqs. (A6,A3,A4,A8), in the coupled basis, they are

〈IMI |T 2
p (Ii, Ii)|I ′M ′I〉 =

×(−1)I−MI+I1+I2 [(2I + 1)(2I ′ + 1)]1/2
Ii(2Ii − 1)√

6

×
(

I 2 I ′

−MI p M ′I

)(
Ii 2 Ii
−Ii 0 Ii

)−1
×
{
Ii I

′ Ij
I Ii 2

}{
(−1)I

′
if i = 1

(−1)I if i = 2
, (A16)

where j = 2(1) if i = 1(2).
To compute the matrix elements of HIN , it is sufficient

[by Eq. (A2)] to compute the matrix elements of N and
Ii. Using Eqs. (A6,A7), we find that the matrix elements
of N are

〈NM |T 1
p (N)|N ′M ′〉 = δN,N ′(−1)N−M

(
N 1 N ′

−M p M ′

)
×[N(N + 1)(2N + 1)]1/2. (A17)

The matrix elements of Ii in the uncoupled basis are
[using Eqs. (A6,A7)]

〈Mi|T 1
p (Ii)|M ′i〉 = (−1)Ii−Mi

(
Ii 1 I ′i
−Mi p M ′i

)
×[Ii(Ii + 1)(2Ii + 1)]1/2. (A18)

In the coupled basis, they are [using Eqs. (A6,A3,A4,A7)]

〈IMI |T 1
p (Ii)|I ′M ′I〉=−(−1)I−MI+I1+I2

(
I 1 I ′

−MI p M ′I

)
×[(2I + 1)(2I ′ + 1)]1/2

{
Ii I

′ Ij
I Ii 1

}
[Ii(Ii + 1)(2Ii + 1)]

1
2

×
{

(−1)I
′

if i = 1
(−1)I if i = 2

, (A19)

where j = 2(1) if i = 1(2).
We now turn to Ht. Using Eq. (A2),

Ht = −c3
√

6
∑
p

(−1)pC2
−p(θ, φ)T 2

p (I1, I2). (A20)

Thus, since we have already evaluated the matrix ele-
ments of C2

p , it remains to evaluate the matrix elements

of T 2
p (I1, I2). In the uncoupled basis, they are [using Eqs.

(A1,A18)]

〈M1M2|T 2
p (I1, I2)|M ′1M ′2〉 = (−1)I1−M1+I2−M2−p

×[5I1(I1 + 1)(2I1 + 1)I2(I2 + 1)(2I2 + 1)]1/2

×
1∑

p1=−1

(
1 1 2
p1 p− p1 −p

)(
I1 1 I1
−M1 p1 M ′1

)
×
(

I2 1 I2
−M2 p− p1 M ′2

)
. (A21)

In the coupled basis, they are [using Eqs. (A6,A5,A7)]

〈IMI |T 2
p (I1, I2)|I ′M ′I〉 = (−1)I−MI [5(2I + 1)(2I ′ + 1)]

1
2

×[I1(I1 + 1)(2I1 + 1)I2(I2 + 1)(2I2 + 1)]1/2

×
(

I 2 I ′

−MI p M ′I

) I I ′ 2
I1 I1 1
I2 I2 1

 . (A22)

Finally, the matrix elements of Hsc in the uncoupled
basis are [using Eqs. (A2,A18)]

〈M1M2|Hsc|M ′1M ′2〉 = c4(−1)I1−M1+I2−M2

×[I1(I1 + 1)(2I1 + 1)I2(I2 + 1)(2I2 + 1)]
1
2

×
1∑

p=−1
(−1)p

(
I1 1 I1
−M1 p M ′1

)(
I2 1 I2
−M2 −p M ′2

)
.(A23)

In the coupled basis, they are (|I1 − I2| ≤ I ≤ I1 + I2 is
assumed)

〈IMI |Hsc|I ′M ′I〉 = c4δII′δMIM ′
I

×1

2
[I(I + 1)− I1(I1 + 1)− I2(I2 + 1)]. (A24)

We conclude this Appendix by presenting a conve-
nient expression for dipole-dipole interaction between
molecules 1 and 2 separated by R = (R, θ′, φ′), where
θ′ and φ′ are the spherical angles of R in the x-y-z coor-
dinate system, which is defined with respect to the direc-
tion ẑ of the applied DC electric field. This expression
is:

Hdd = −
√

6

4πε0R3
T 2(C) · T 2(d(1),d(2))

= −
√

6

4πε0R3

2∑
p=−2

(−1)pT 2
−p(C)T 2

p (d(1),d(2)),(A25)

where T 2
p (C) = Ckp (θ′, φ′) =

√
4π

2k+1Yk,p(θ
′, φ′) and

where we used Eq. (A2). In the present manuscript, we
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only use the p = 0 component, for which [using Eq. (A1)]

T 2
0 (d(1),d(2)) =

1√
6

(
d
(1)
− d

(2)
+ + 2d

(1)
0 d

(2)
0 + d

(1)
+ d

(2)
−

)
,(A26)

T 2
0 (C) =

1

2
(3 cos2 θ′ − 1). (A27)

It is easy to see from Fig. 1 that cos θ′ = R̂ · ẑ =
sin Θ0 cos(Φ− Φ0).

Appendix B: Interaction-Assisted Tunneling

In this Appendix, we analyze the small corrections to
the two approximations made to arrive at Eq. (32). The
two approximations were: (1) the extent of the Wannier
function w is much smaller than the distance between
the sites, and (2) only terms involving two sites and con-
serving the number of molecules on each site contribute.
Making the second approximation, corrections to the first
approximation lead to the replacement of Vdd(Ri −Rj)
in Eq. (32), when i and j are close to each other, with a
more complicated dependence on i, j and on the internal
state of the molecules at i and j. However, even the sep-
aration of nearest neighbor sites (∼ 500 nm) is typically
much larger than the extent of Wannier functions in a
deep lattice (∼ 50 nm).

Corrections to the second approximation result in
interaction-assisted tunneling. Interaction-assisted tun-
neling corresponds to the terms in Eq. (31) where j4 = j1,
while j2 and j3 are nearest neighbors not equal to j1.
Terms where j2 and j3 are not nearest neighbors are
much smaller. Terms where j2 = j3 while j1 and j4
are nearest neighbors are identical to the case we are de-
scribing, giving an overall factor of 2. Another factor of
2 comes from the fact that 〈j2, j3〉 counts each nearest-
neighbor pair only once. The resulting Hamiltonian is
approximately equal to (the subscript in Hiat stands for
interaction-assisted tunneling)

Hiat = 2
∑
j1σ

′

〈j2, j3〉6=j1

{
µ2
01

[
V⊥(j1, j2, j3)S†j1c

†
j21σ′cj30σ′ + h.c.

]

+
∑
mm′

µmµm′Vmm′(j1, j2, j3)nj1mc
†
j2m′σ′cj3m′σ′

}
, (B1)

where

V⊥(j1, j2, j3) =

∫
d3Rd3R′Vdd(R−R′)

×wj10(R)wj11(R)wj21(R′)wj30(R′),

Vmm′(j1, j2, j3) =

∫
d3Rd3R′Vdd(R−R′)

×w2
j1m(R)wj2m′(R′)wj3m′(R′). (B2)

Physically, the interaction-assisted tunneling means that
the presence of a molecule on site j1 assists in a “tun-
neling” of a molecule from site j3 to site j2. In the term

proportional to Vmm′ , this “tunneling” does not change
the internal states of the two molecules, while in the term
proportional to V⊥, it is accompanied by an exchange of
a rotational excitation between the two molecules. Let
us compare the magnitude of the tunneling amplitude t
to the magnitude of the interaction-assisted tunneling.
In the deep-lattice limit, the tunneling amplitude t in
a 1D potential V0 sin2(KX) (where K = 2π/λ), is re-
duced relative to the recoil energy ER = ~2K2/(2Mm) by

a factor porportional to exp
(
−2
√
V0/ER

)
[111]. Since

interaction-assisted tunneling also involves an overlap of
Wannier functions on neighboring sites, we may expect it
to fall off similarly with increasing V0. At the same time,
the reference energy scale for interaction-assisted tunnel-
ing is Edd = d2/(4πε0(λ/2)3), the strength of dipole-
dipole interaction between nearest-neighbor sites. For
KRb with λ = 1064 nm [14], ER ≈ (2π)1.4 kHz > Edd ≈
(2π)0.3 kHz, so we may expect the interaction-assisted
tunneling to be smaller than the usual tunneling.

To be more precise, in Fig. 8, we compare the magni-
tude of interaction-assisted tunneling to the usual tun-
neling. Let w(X) be the 1D Wannier function for
the potential V0 sin2(KX). For the case when the
(X,Y ) coordinates of the three sites are (in units of
a = λ/2) j1 = (0, 0), j2 = (1, 0), and j3 = (2, 0),
we estimate the amplitude of interaction-assisted tun-

neling as V1 = −
∫ 5a/2

a/2
dX d2

4πε0X3w(X − a)w(X − 2a).

We do not integrate from X = −∞ to avoid inte-
grating over the singularity of the 1/X3 potential at
X = 0, which is unphysical and stems from the fact
that 1/X3 interaction breaks down at small X. For
the case j1 = (0, 1), j2 = (0, 0), and j3 = (1, 0), we
estimate the amplitude of interaction assisted tunneling

as V2 =
∫∞
−∞ dX d2

4πε0(a2+X2)3/2
w(X)w(X − a). Solving

numerically for w(X) and for the tunneling amplitude
t, assuming the mass and dipole moment of KRb and
λ = 1064 nm, in Fig. 8, we plot V1, V2, and t as a
function of V0/ER. We see that for the presented val-
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FIG. 8. (color online). The tunneling amplitude t (solid red
line) and interaction-assisted tunneling amplitudes V1 (dashed
blue line) and V2 (dotted green line) as a function of V0/ER,
where ER is the recoil energy and where V0 is the amplitude
of the lattice. The vertical axis is in Hz. We use λ = 1064
nm and the mass and permanent dipole moment of KRb.
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ues of V0/ER, the interaction-assisted tunneling is at
least 10 times weaker than the usual tunneling ampli-

tude t, which confirms our expectations and allows to
ignore interaction-assisted tunneling.
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