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Landau like quantization of the Anandan system in a special electromagnetic field is studied.
Unlike the cases of the AC system and the HMW system, the torques of the system on the
magnetic dipole and the electric dipole don’t vanish. By constructing Heisenberg algebra, the
Landau analog levels and eigenstates on commutative space, NC space and NC phase space are
obtained respectively. By using the coherent state method, some statistical properties of such free
atom gas are studied and the expressions of some thermodynamic quantities related to revolution
direction are obtained. Two particular cases of temperature are discussed and the more simple
expressions of the free energy on the three spaces are obtained. We give the relation between the
value of σ and revolution direction clearly, and find Landau like levels of the Anandan system
are invariant and the levels between the AC system and the HMW system are interchanged
each other under Maxwell dual transformations on the three spaces. The two sets of eigenstates
labelled by σ can be related by a supersymmetry transformation on commutative space, but the
phenomenon don’t occur on NC situation. We emphasize that some results relevant to Anandan in-
teraction are suitable for the cases of AC interaction and HMW interaction under special conditions.
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1. INTRODUCTION

There are many papers to study the topological and geometrical effects of charged and neutral particles in the pres-
ence of electromagnetic fields in their quantum dynamics. One well known topological effect is the Aharonov-Bohm
(AB) effect which shows that a quantum charge circulating a magnetic flux line accumulates a quantum topological
phase and demonstrates the physical significance of magnetic vector potential.[1] The effect can be observed by
using matter-wave interferometry. Another well known quantum phase is the Aharonov-Casher (AC) phase acquired
by a neutral particle with a non-zero magnetic dipole moment, circulating a straight line of charge [2], which is a
non-dispersive quantum geometrical phase [3] and was observed experimentally in a neutron interferometer [4] and in
a neutral atomic Ramsey interferometer [5]. Its Maxwell dual phase is the He-Mckellar-Wilkens (HMW) phase which
implies that a neutral particle with a non-zero electric dipole moment moving around a line of magnetic monopoles
would accumulate a quantum phase.[6] Wei, Han and Wei proposed a practical experimental configuration to test
this effect [7], and Dowling et al proposed two other experimental schemes for it [8]. Recently, another non-dispersive
quantum geometrical phase was proposed by Anandan. It describes that a neutral particle with permanent electric
dipole moment and non-vanishing magnetic dipole moment in the presence of external magnetic and electric fields in
the relativistic and non-relativistic case accumulates a quantum phase.[9]-[11] This phase is called the Anandan phase.

The interaction of the magnetic field with a charged particle in two dimensions plays an important role in landau
quantization and quantum Hall effect. Inspired by the work of Paredes et al., proving the existence of anionic
excitation in rotating Bose-Einstein condensates [12], Ericsson and Sjöqvist used the AC interaction and developed
an analog of Landau quantization which provide the possibility of an atomic quantum Hall effect [13]. Follow-
ing these steps, Ribeiro et al. made use of the HMW interaction to generate another analog of Landau quantization.[14]

Recently, the study of physics effects on noncommutative (NC) space and noncommutative phase space has
attracted much interest.[15]-[26] There are many researches in NC quantum mechanics such as the AB effect [27]-[31],
the AC effect [32, 33], the HMW effect [14, 34], Landau levels [35]-[37], quantum Hall effect [38]-[40], and so on.
Unlike the case in usual quantum mechanics, Passos et al. have demonstrated that the AC phase, the HMW phase
and the Anandan phase are quantum geometric dispersive phases on NC space and NC phase space.[41] They
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have also obtained noncommutative Landau like quantization with the AC interaction and the HMW interaction
respectively.[42] In this letter, we will use the Anandan interaction for another analog of Landau quantization in the
non-relativistic limit on commutative space (C), NC space and NC phase space. Unlike the Landau like quantization
of the AC system and the HMW system, both torques of the Anandan system on the magnetic dipole and the electric
dipole don’t vanish. We use the coherent state method to give out the expressions of some thermodynamic quantities
related to revolution direction for the free atom gas with the Anandan interaction and discuss the free energy of the
system on two particular cases of temperature on the three spaces. By the description of atom orbits, we give the
relation between the value of σ and revolution direction. We find that Landau like levels of the Anandan system are
invariant and the levels between the AC system and the HMW system are interchanged each other under Maxwell
dual transformations on the three spaces. We think the levels of the AC system and the HMW system are similar
under the same revolution direction which is different from the point of Ribeiro et al.[14] and analyze their mistake
from the angles of revolution direction and Maxwell duality. Some difference between commutative space and NC
situation is also discussed from the supersysmmetry transformation. Some results from the Anandan system can be
restricted to the ones of the AC system and the HMW system.

This paper is organized as follows: In section 2 and 3 the Landau like quantization of a neutral atom with
permanent electric and magnetic dipole moments in a special electromagnetic field on commutative space and NC
situation is studied. In section 4 some thermodynamic properties of such free atom gas are studied and two particular
cases of temperature are discussed on commutative space, NC space and NC phase space. Some results are restricted
to the AC system and the HMW system. In section 5 we study the relation between the value of σ and revolution
direction by the coherent state, discuss the levels of the Anandan system, the AC system and the HMW system by
Maxwell duality, and analyze the mistake of Ribeiro et al. by the angles of revolution direction and Maxwell duality.
In section 6, by super-symmetric study, we give out the difference of the system between commutative space and NC
situation. Finally, in section 7 we present our conclusions.

2. LANDAU LEVELS ANALOG FOR NEUTRAL ATOMS ON COMMUTATIVE SPACE

In the non-relativistic limit, the Hamiltonian for a neutral spin-half atom possessing a non-zero electric dipole
moment d and a non-zero magnetic dipole moment u, moving in an external electromagnetic fields, can be described
by the Anandan Hamiltonian [41],

H = 1
2m [P− c−2(u×E) + c−2(d×B)]2 − uh̄

2mc2
∇ ·E+ dh̄

2mc2
∇ ·B (1)

where the terms of O(E2) and O(B2) are neglected. Considering the quantum dynamics of a particle, the Hamiltonian
in fact contains two other physical situations, the AC effect (u 6= 0 and d = 0) and the HMW effect (u = 0 and d 6= 0).
In the present problem, the kinematic momentum is Π = −ih̄∇− c−2(u×E) + c−2(d×B) and the Anandan vector
potential is defined as A = (u × E) − (d × B). Thus the associated field strength is Beff = ∇ × A. Here we
consider the atom moves in the x − y plane, and its magnetic dipole moment as well as electric dipole moment are
in the z−direction. At the same time, the electric field configuration E = ρe

2 rêφ and the magnetic field configuration
B = ρm

2 rêφ mentioned in Ref.[14] are still used. Obviously, Beff is uniform and the conditions for electrostatics and
magnetostatics are satisfied. But unlike the cases of Landau analogous quantization with the AC interaction and the
HMW interaction, both torques on the magnetic dipole and the electric dipole don’t vanish, because the atom with
momentum 〈Π〉 sees an effective magnetic field B′ ∼= B+ v×E/c and an effective electric field E′ ∼= E− v×B/c in
its own reference frame. The Hamiltonian (1) in such dipole-field configuration can be written as

H = 1
2m [(px + uρe−dρm

2c2 y)êx + (py − uρe−dρm

2c2 x)êy]
2 − (uρe−dρm)h̄

2mc2
(2)

Further, the Hamiltonian can be expressed as

H = 1
2m (px

2 + py
2) + 1

8mω
2(x2 + y2) + ω

2 (pxy − pyx)− ωh̄
2 (3)

with the cyclotron frequency ω = σ |uρe−dρm|
mc2

= uρe−dρm

mc2
where σ = ±1. Thus, the cyclotron frequencies of the AC

system and the HMW system are ωAC = σ |uρe|
mc2

= uρe

mc2
and ωHMW = σ |dρm|

mc2
= −dρm

mc2
, respectively. If we introduce
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the operators,

ax =
√

m|ω|
8h̄ (x+ 2ipx

m|ω|)− i
√

m|ω|
8h̄ (y +

2ipy

m|ω| ), a+x =
√

m|ω|
8h̄ (x− 2ipx

m|ω|) + i
√

m|ω|
8h̄ (y − 2ipy

m|ω| ),

ay = i
√

m|ω|
8h̄ (x+ 2ipx

m|ω|)−
√

m|ω|
8h̄ (y +

2ipy

m|ω| ), a+y = −i
√

m|ω|
8h̄ (x − 2ipx

m|ω|)−
√

m|ω|
8h̄ (y − 2ipy

m|ω|),

(4)

where they satisfy Heisenberg algebraic relations

[ai, aj] = 0, [a+i , a
+
j ] = 0, [ai, a

+
j ] = δij , i, j = x, y, (5)

the Hamiltonian becomes

H = h̄|ω|
2 (a+x ax + a+y ay + 1) + h̄σ|ω|

2 (a+y ay − a+x ax)− σ|ω|h̄
2 . (6)

Therefore, the eigenvalues of H are

Enx,ny
= h̄|ω|

2 (nx + ny + 1) + h̄σ|ω|
2 (ny − nx)− σ|ω|h̄

2 , (7)

where non-negative integers nx, ny are the eigenvalues of the number operators a+x ax, a
+
y ay, respectively. The corre-

sponding eigenstates are

|nx, ny〉 =
1

√

nx!ny!
(a+x )

nx(a+y )
ny |0, 0〉, (8)

where |0, 0〉 is the vacuum of H . Thus, the levels for the AC system and the HMW system are

EAC
nx,ny

=
h̄|ωAC |

2
(nx + ny + 1) +

h̄σ|ωAC |
2

(ny − nx)−
σ|ωAC |h̄

2
(9)

and

EHMW
nx,ny

=
h̄|ωHMW |

2
(nx + ny + 1) +

h̄σ|ωHMW |
2

(ny − nx)−
σ|ωHMW |h̄

2
(10)

respectively.

3. LANDAU LEVELS ANALOG FOR NEUTRAL ATOMS ON NC PHASE SPACE AND NC SPACE

In order to maintain the Bose-Einstein statistics in NC quantum mechanics, non-commutativity of both space-space
and momentum-momentum may be necessary.[26] We need to consider physical problems on this space, NC phase
space, where the coordinates x̂i and momentums p̂i satisfy the following relations:

[x̂i, x̂j ] = iΘij, [p̂i, p̂j] = iΘ̄ij , [x̂i, p̂j ] = ih̄δij , (11)

where the elements of the antisymmetric matrices {Θij} and {Θ̄ij} are very small and represent space-space non-
commutativity and momentum-momentum non-commutativity. The static Schrödinger equation on NC phase space
is usually expressed as

H(x, p) ∗ ψ = Eψ, (12)

where H(x, p) is the Hamiltonian of the usual quantum system and a star product (Moyal-Weyl product) is defined
by

(f ∗ g)(x, p) = e
i

2α2 Θij∂
x
i ∂

x
j + i

2α2 Θ̄ij∂
p
i ∂

p
j f(x, p)g(x, p) = f(x, p)g(x, p) +

i

2α2
Θij∂

x
i f∂

x
j g

∣

∣

xi=xj
+

i

2α2
Θ̄ij∂

p
i f∂

p
j g

∣

∣

pi=pj
.

(13)
By replacing the star product by the general ordinary product and shifting coordinates xi and momentums pi with
[18]

xi −→ x̂i = αxi − 1
2h̄αΘijpj ,

xi −→ p̂i = αpi +
1

2h̄α Θ̄ijxj ,
(14)
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the Schrödinger equation can be written as

H(αxi −
1

2h̄α
Θijpj , αpi +

1

2h̄α
Θ̄ijxj)ψ = Eψ. (15)

Here α is a scaling constant related to the non-commutativity of phase space and satisfies the relation θθ̄ = 4α2(1 −
α2)[43]. So the Hamiltonian of the system on NC phase space can be written as

H = 1
2m [((αpx + 1

2h̄α θ̄y) +
uρe−dρm

2c2 (αy + 1
2h̄αθpx))êx + ((αpy − 1

2h̄α θ̄x)−
uρe−dρm

2c2 (αx − 1
2h̄αθpy))êy]

2 − (uρe−dρm)h̄
2mc2

,
(16)

where we set Θxy = θ and Θ̄xy = θ̄. After organization, the Hamiltonian can be written as

H = 1
2M (px

2 + py
2) + 1

8Mω̄2(x2 + y2) + ω̄
2 (pxy − pyx)− (uρe−dρm)h̄

2mc2
(17)

where the modified mass is

M = m(α+ (uρe−dρm)θ
4αh̄c2 )−2 (18)

and the modified cyclotron frequency is

ω̄ = 2σ
m

| (α+ (uρe−dρm)θ
4αh̄c2 )( θ̄

2αh̄ + (uρe−dρm)α
2c2 ) |= 2

m
(α+ (uρe−dρm)θ

4αh̄c2 )( θ̄
2αh̄ + (uρe−dρm)α

2c2 ). (19)

For the AC system and the HMW system, the modified masses and cyclotron frequencies are

MAC = m(α+ uρeθ
4αh̄c2 )

−2, ω̄AC = 2σ
m

| (α+ uρeθ
4αh̄c2 )(

θ̄
2αh̄ + uρeα

2c2 ) |= 2
m
(α+ uρeθ

4αh̄c2 )(
θ̄

2αh̄ + uρeα
2c2 ) (20)

and

MHMW = m(α− dρmθ
4αh̄c2 )

−2, ω̄HMW = 2σ
m

| (α− dρmθ
4αh̄c2 )(

θ̄
2αh̄ − dρmα

2c2 ) |= 2
m
(α− dρmθ

4αh̄c2 )(
θ̄

2αh̄ − dρmα
2c2 ). (21)

Similarly we can define the creation and annihilation operators as

āx =
√

M|ω̄|
8h̄ (x+ 2ipx

M|ω̄|)− i
√

M|ω̄|
8h̄ (y +

2ipy

M|ω̄| ), ā+x =
√

M|ω̄|
8h̄ (x− 2ipx

M|ω̄| ) + i
√

M|ω̄|
8h̄ (y − 2ipy

M|ω̄|),

āy = i
√

M|ω̄|
8h̄ (x+ 2ipx

M|ω̄| )−
√

M|ω̄|
8h̄ (y +

2ipy

M|ω̄| ), ¯̄a+y = −i
√

M|ω̄|
8h̄ (x− 2ipx

M|ω̄|)−
√

M|ω̄|
8h̄ (y − 2ipy

M|ω̄| ).

(22)

Thus, the Hamiltonian on NC phase space becomes the following form

H = h̄|ω̄|
2 (ā+x āx + ā+y āy + 1) + h̄σ|ω̄|

2 (ā+y āy − ā+x āx)− (uρe−dρm)h̄
2mc2

. (23)

The energy eigenvalues and the corresponding eigenstates are

En̄x,n̄y
= h̄|ω̄|

2 (n̄x + n̄y + 1) + h̄σ|ω̄|
2 (n̄y − n̄x)− (uρe−dρm)h̄

2mc2
(24)

and

|n̄x, n̄y〉 =
1

√

n̄x!n̄y!
(ā+x )

n̄x(ā+y )
n̄y |0, 0〉. (25)

The levels for the AC system and the HMW system are

EAC
n̄x,n̄y

=
h̄|ω̄AC |

2
(n̄x + n̄y + 1) +

h̄σ|ω̄AC |
2

(n̄y − n̄x)−
uρeh̄

2mc2
(26)

and

EHMW
n̄x,n̄y

=
h̄|ω̄HMW |

2
(n̄x + n̄y + 1) +

h̄σ|ω̄HMW |
2

(n̄y − n̄x) +
dρmh̄

2mc2
. (27)

When θ̄ = 0, it leads α = 1[43] and the phase space becomes the NC space where only momentum-momentum is
commutative. The energy eigenvalues (24), (26) and (27) become

En̄′
x,n̄

′
y
= h̄|ω̄′|

2 (n̄′
x + n̄′

y + 1) + h̄σ|ω̄′|
2 (n̄′

y − n̄′
x)− (uρe−dρm)h̄

2mc2
, (28)
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EAC
n̄′
x,n̄

′
y
=
h̄|ω̄′

AC |
2

(n̄′
x + n̄′

y + 1) +
h̄σ|ω̄′

AC |
2

(n̄′
y − n̄′

x)−
uρeh̄

2mc2
, (29)

EHMW
n̄′
x,n̄

′
y

=
h̄|ω̄′

HMW |
2

(n̄′
x + n̄′

y + 1) +
h̄σ|ω̄′

HMW |
2

(n̄′
y − n̄′

x) +
dρmh̄

2mc2
, (30)

respectively. Here

ω̄′ =
σ

mc2
|(1 + (uρe − dρm)θ

4h̄c2
)(uρe − dρm)| = 1

mc2
(1 +

(uρe − dρm)θ

4h̄c2
)(uρe − dρm), (31)

ω̄′
AC =

σ

mc2
|(1 + uρeθ

4h̄c2
)uρe| =

uρe
mc2

(1 +
uρeθ

4h̄c2
), (32)

ω̄′
HMW =

σ

mc2
|(1− dρmθ

4h̄c2
)dρm| = −dρm

mc2
(1− dρmθ

4h̄c2
). (33)

When θ = θ̄ = 0, the results return to the cases of general quantum mechanics (7), (9) and (10).

4. THERMODYNAMICS ON NC SITUATION

Up to now, we can obtain Landau like levels of the Anandan system for a given σ on commutative space, NC
space and NC phase space. Glauber has discussed the coherent states of a harmonic oscillator in detail.[44] Using
the coherent state method, we can know the quantum information of the system. Like free electron gas related to
Landau problems, we will study some thermodynamical properties of such free atom gas with Anandan interaction.
The normalized coherent state of the system on NC phase space is defined as

|zx, zy〉 = Exp[−1

2
(|zx|2 + |zy|2)]Exp[zxā+x + zyā

+
y ]|0, 0〉 (34)

where zx, zy are complex parameters. The mean coordinates of the state |zx, zy〉 related to σ is given by

r̄σ=−1 = (Re[Az∗x(t) +B(−izy)], Im[Az∗x(t) +B(−izy)]),

r̄σ=1 = (Re[Az∗x +B(−izy(t))], Im[Az∗x +B(−izy(t))]),
(35)

where A = α
√

2h̄
M|ω̄| − θ

2α

√

M|ω̄|
2h̄ , B = α

√

2h̄
M|ω̄| +

θ
2α

√

M|ω̄|
2h̄ and z∗x(t) = z∗xe

i|ω̄|t, zy(t) = zye
−i|ω̄|t. Here we consider a

two-dimensional system with radiusR ≫ A,B. The partition function of the system on NC phase space is Z = Tre−
H
kT

in the standard way. For σ = −1 the partition function can be written as

Z = 1
π2

∫

d2zxd
2zy〈zx, zy|e−

1
kT

[ h̄|ω̄|
2 (2ā+

x āx+1)− (uρe−dρm)h̄

2mc2
]|zx, zy〉

= 4
A2 e

− 1
kT

( h̄|ω̄|
2 − (uρe−dρm)h̄

2mc2
) ∫ |z′x||zy|Exp[|

z′
x

A
|2(e− h̄|ω̄|

kT − 1)]d|z′x|d|zy|
(36)

Like Ref.[45], we exclude the coherent states with the mean coordinates outside the size and sum over the other states.
Because R ≫ A,B and the exponential falls off rapidly with |z′y|, we can integrate |z′y| from zero to infinity safely.
The result is

Z =
R2

2Sinh[ h̄|ω̄|
2kT ]

e
(uρe−dρm)h̄

2mc2kT

(α
√

2h̄
M|ω̄| +

θ
2α

√

M|ω̄|
2h̄ )2

. (37)

So for σ = −1 the free energy of the system is

F = −nkT lnZ = −nkT ln[ R2

2Sinh[ h̄|ω̄|
2kT

]

e
(uρe−dρm)h̄

2mc2kT

(α
√

2h̄
M|ω̄|

+ θ
2α

√

M|ω̄|
2h̄ )2

]. (38)
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By using the same way, we can obtain the free energy for σ = 1

F = −nkT ln[ R2

2Sinh[ h̄|ω̄|
2kT

]

e
(uρe−dρm)h̄

2mc2kT

(α
√

2h̄
M|ω̄|

− θ
2α

√

M|ω̄|
2h̄ )2

]. (39)

If we set u 6= 0 and d = 0, we can obtain the free energy of the AC system on NC phase space,

F = −nkT ln[ R2

2Sinh[
h̄|ω̄AC |

2kT
]

e
uρeh̄

2mc2kT

(α
√

2h̄
MAC |ω̄AC |

+ θ
2α

√

MAC |ω̄AC |

2h̄ )2
] for σ = −1, (40)

and

F = −nkT ln[ R2

2Sinh[
h̄|ω̄AC |

2kT
]

e
uρeh̄

2mc2kT

(α
√

2h̄
MAC |ω̄AC |−

θ
2α

√

MAC |ω̄AC |

2h̄ )2
] for σ = 1. (41)

If we set u = 0 and d 6= 0, we can obtain the free energy of the HMW system on NC phase space,

F = −nkT ln[ R2

2Sinh[
h̄|ω̄HMW |

2kT
]

e
−dρmh̄

2mc2kT

(α
√

2h̄
MHMW |ω̄HMW |

+ θ
2α

√

MHMW |ω̄HMW |

2h̄ )2
] for σ = −1, (42)

and

F = −nkT ln[ R2

2Sinh[
h̄|ω̄HMW |

2kT
]

e
−dρmh̄

2mc2kT

(α
√

2h̄
MHMW |ω̄HMW |

− θ
2α

√

MHMW |ω̄HMW |

2h̄ )2
] for σ = 1. (43)

Further, by restricting θ, θ̄, we can obtain the free energies on NC space and commutative space for the Anandan
system, the AC system and the HMW system.
(1). High Temperature Approximation

For the Anandan system where |uρe − dρm| is not very small, the free energy for σ = −1 on NC phase space can
be expressed by

F−1 = F 0
−1 + F θ

−1 + F θ̄
−1 (44)

where

F 0
−1 = −nkT ln[mR2|ω|e−

h̄|ω|
2kT Csch[ h̄|ω|α2

2kT
]

4h̄α2 ],

F θ
−1 = kmnT |ω|θ

4h̄α2 − 1
8Coth[

h̄|ω|α2

2kT ]mn|ω|2θ,

F θ̄
−1 = knT θ̄

h̄m|ω|α2 − Coth[ h̄|ω|α2

2kT
]nθ̄

2m .

(45)

In the calculation, we only consider the first order modification from space-space non-commutativity and momentum-
momentum non-commutativity and ignore the interaction between them. Similarly, we can obtain for σ = 1

F1 = F 0
1 + F θ

1 + F θ̄
1 (46)

where

F 0
1 = −nkT ln[mR2|ω|e

h̄|ω|
2kT Csch[ h̄|ω|α2

2kT
]

4h̄α2 ],

F θ
1 = −kmnT |ω|θ

4h̄α2 + 1
8Coth[

h̄|ω|α2

2kT ]mn|ω|2θ,

F θ̄
1 = − knT θ̄

h̄m|ω|α2 +
Coth[ h̄|ω|α2

2kT
]nθ̄

2m .

(47)

In high temperature approximation, the free energy on NC phase space is

F−1 = Tkn(ln[ 1
T
]− ln[kmR2

2h̄2α4 ]) +
h̄n|ω|

2 + 1
T
(nh̄

2|ω|2α4

24k − h̄mn|ω|3α2θ

48k − nh̄|ω|α2θ̄

12km ),

F1 = Tkn(ln[ 1
T
]− ln[kmR2

2h̄2α4 ])− h̄n|ω|
2 + 1

T
(nh̄

2|ω|2α4

24k + h̄mn|ω|3α2θ

48k + nh̄|ω|α2θ̄

12km ).

(48)
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Further, if we restrict the values θ, θ̄ and α, we can get the free energies on NC space and commutative space,
respectively,

FNC Space
−1 = Tkn(ln[ 1

T
]− ln[kmR2

2h̄2 ]) + h̄n|ω|
2 + 1

T
(nh̄

2|ω|2

24k − h̄mn|ω|3θ
48k ),

FNC Space
1 = Tkn(ln[ 1

T
]− ln[kmR2

2h̄2 ])− h̄n|ω|
2 + 1

T
(nh̄

2|ω|2

24k + h̄mn|ω|3θ
48k )

(49)

and

FC Space
−1 = Tkn(ln[ 1

T
]− ln[kmR2

2h̄2 ]) + h̄n|ω|
2 + 1

T

nh̄2|ω|2

24k ,

FC Space
1 = Tkn(ln[ 1

T
]− ln[kmR2

2h̄2 ])− h̄n|ω|
2 + 1

T

nh̄2|ω|2

24k

(50)

(2). Zero Temperature Limit

According to Eqs. (38)and(39), if we consider T → 0, we will find the free energy on NC phase space is

F−1 → h̄n|ω|
2 + h̄n|ω|α2

2 − 1
8mn|ω|2θ − nθ̄

2m ,

F1 → − h̄n|ω|
2 + h̄n|ω|α2

2 + 1
8mn|ω|2θ + nθ̄

2m .

(51)

The results on NC space and commutative space are

FNC Space
−1 → h̄n|ω| − 1

8mn|ω|2θ,

FNC Space
1 → 1

8mn|ω|2θ
(52)

and

FC Space
−1 → h̄n|ω|,

FC Space
1 → 0.

(53)

Here we emphasize the two points for the two particular cases of the temperature. (i)The free energy of the Anandan
system can be restricted to the expressions of the AC system and the HMW system by making the replacement
|ω| → |ωAC | and |ω| → |ωHMW | respectively; (ii) For a given σ, the free energies have some difference among NC
phase space, NC space and commutative space which may provide some clues to verify the presence of NC situation
in future. For example, the free energy tends to zero for σ = 1 on commutative space in zero temperature limit, but
this phenomenon doesn’t occur on NC situation.

5. REVOLUTION DIRECTION AND MAXWELL DUALITY

As we know, a coherent state represents a way that is as close as possible to classical localization. In the sections
above. we introduced the sign σ which describes the revolution direction of the corresponding classical motion in
fact. Here we use the most classical quantum state, the coherent state, to clearly catch the revolution direction σ.
The mean coordinates of the state |zx, zy〉 related to σ is given by Eq.(35). For σ = −1, the wave packet centroid
of the coherent state |zx, zy〉 moves anticlockwise with the radius |Az∗x| and the frequency |ω̄|. For σ = 1, it moves
clockwise with the radius |Bzy|and the same frequency |ω̄|. So here σ = −1 describes anticlockwise revolution and
σ = 1 describes clockwise revolution, which is all right for the Anandan system, the AC system and the HMW system
on commutative space, NC space and NC phase space.

On any given space among commutative space, NC space and NC phase space, for a given revolution direction,
Landau like levels of the Anandan system are invariant and the levels between the AC system and the HMW system
become each other under Maxwell dual transformations,

ρe → ρm, d→ u,
ρm → −ρe, u→ −d. (54)
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This result can be explained by the invariance of the Anandan Hamiltonian and the interchangeablity between the
AC Hamiltonian and the HMW Hamiltonian under Maxwell dual transformations on the corresponding space. Thus
Landau like levels of the AC system and the HMW system are similar under the same revolution direction. In
Ref.[14], Ribeiro et al. think that Landau like levels of the HMW system have the same form as the levels of the
AC system with the opposite direction. But that’s not true. For example, in terms of their paper, the AC system
(uρe > 0) and the HMW system (dρm < 0) should have the same form of the levels and opposite directions. But
in fact the cases of uρe > 0 and dρm < 0 describe the same revolution direction as shown in the movement of the
wave packet centroid of the coherent state |zx, zy〉 for σ = 1 above. The reason of the mistake is that the definition
of the cyclotron frequencies in their paper break Maxwell duality. However, in our paper, the cyclotron frequencies

ωAC = σ |uρe|
mc2

= uρe

mc2
and ωHMW = σ |dρm|

mc2
= −dρm

mc2
will change each other under Maxwell dual transformations.

6. SUPERSYMMETRY

Now, we have known landau like levels of the Anandan system on commutative space, NC space and NC phase space
can be all divided into two classes labelled by the revolution direction σ. In this section we will utilize supersymmetry
to study the difference of the system between commutative space and NC situation by transforming the Hamiltonian
(16) again. We introduce the new annihilation and creation operators

b̂′ = 1√
2Mh̄|ω̄|

(
∏

x+iσ
∏

y),

b̂′
+
= 1√

2Mh̄|ω̄|
(
∏

x −iσ
∏

y),
(55)

where
∏

x = px + 2c2θ̄+2α2h̄(uρe−dρm)
4α2h̄c2+(uρe−dρm)θ y and

∏

y = py − 2c2θ̄+2α2h̄(uρe−dρm)
4α2h̄c2+(uρe−dρm)θ x. Thus the Hamiltonian (16) can be

expressed as

H = h̄|ω̄|(b̂′+b̂′ + 1
2 )−

h̄σ|ω|
2 . (56)

On commutative space, |ω̄| becomes |ω|, and b̂′ becomes b̂ where b̂ = 1√
2mh̄|ω|

(px + uρe−dρm

2c2 y + iσpy − iσ uρe−dρm

2c2 x).

So the Hamiltonian on this space is

HC = h̄|ω|(b̂+b̂+ 1
2 − σ

2 ). (57)

Here we introduce fermionic annihilation and creation operators d̂, d̂+ and suppose the eigenvalue of [d̂, d̂+] is σ. Thus

the Hamiltonian HC can be expressed as HC = h̄|ω|(b̂+b̂+ d̂+d̂). The supercharge can be defined as

Q =
√

h̄|ω|b̂d̂+ (58)

which together with the Hamiltonian HC close the surperalgebra

Q2 = (Q+)2 = 0, HC = {Q, Q+}. (59)

The extended Fock states can be defined as |nb, nd, κ〉 where nb, nd are the eigenvalues of the number operators b̂+b̂,

d̂+d̂ and κ is a good quantum number. These eigenstates can be related by the good supersymmetry transformation

|nb − 1, 1, κ〉 = 1√
Enb

Q|nb, 0, κ〉, |nb + 1, 0, κ〉 = 1√
Enb+1

Q+|nb, 1, κ〉 (60)

and

Q|0, 0, κ〉 = Q+|0, 0, κ〉 = 0, (61)

where Enb
is the energy eigenvalues of the states |nb, 0, κ〉, |nb − 1, 1, κ〉 and Enb+1 is the ones of the states |nb, 1, κ〉,

|nb + 1, 0, κ〉. According to the Hamiltonian (56), the energy eigenvalues on NC phase space is

En′,σ = h̄|ω̄|(n′ +
1

2
)− h̄σ|ω|

2
(62)
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where n′ is the eigenvalue of the number operator b̂′
+
b̂′. And the corresponding eigenstates are |n′, κ′〉σ where κ′ is

a good quantum number. Obviously, for different σ, the energy eigenvalues are not equal, that is, En′
1,1

6= En′
2,−1.

Thus the two sets of eigenstates labelled by σ can not be related by a supersymmetry transformation on NC phase
space. The phenomenon also exists on NC space. The difference resulted from supersymmetry between commutative
space and NC situation also occurs for the AC system and the HMW system.

6. CONCLUSION

In this letter we study the Anandan system in a special electromagnetic field, where we find unlike the cases
of the AC system and the HMW system the torques on the magnetic dipole and the electric dipole don’t vanish.
We obtain the Landau analog levels and eigenstates on commutative space, NC space and NC phase space. We
study some statistical properties of such free atom gas with the Anandan interaction and present the expressions
of some thermodynamic quantities related to revolution direction. Some simple formulae of the free energy in two
cases of temperature on the three spaces are also obtained. Some difference of the free energy among NC phase
space, NC space and commutative space may provide us some clues to verify the presence of NC situation in future.
The relation between the value of σ and revolution direction is presented clearly. We find Landau like levels of the
Anandan system are invariant and the levels between the AC system and the HMW system become each other under
Maxwell dual transformations on the three spaces. And point the mistake of Ribeiro et al., Landau like levels of
the HMW system have the same form as the levels of the AC system with the opposite direction. We find the two
sets of eigenstates labelled by σ can be related by a supersymmetry transformation on commutative space, but the
phenomenon don’t occur on NC situation. Some results relevant to the AC system and the HMW system are also
obtained by restricting the magnetic dipole and the electric dipole.
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