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We consider the ionization of the hydrogen molecular ion after one-, two-, and three-photon
absorption over a large range of photon energies between 9 and 40 eV in the fixed-nuclei approx-
imation. The temporal development of the system is obtained in a fully ab initio time-dependent
grid-based approach in prolate spheroidal coordinates. The alignment dependence of the one-photon
ionization amplitude is highlighted in the framework of time-dependent perturbation theory. For
one-photon ionization as a function of the nuclear separation, the calculations reveal a significant
minimum in the ionization probability. The suppressed ionization is attributed to a Cooper-type
minimum, which is similar, but not identical, to the cancellation effect observed in photoionization
cross sections of some noble-gas atoms. The effect of the nonspherical two-center Coulomb poten-
tial is analyzed. For two- and three-photon ionization, the angle-integrated cross sections clearly
map out intermediate-state resonance, and the predictions of the current computations agree very
well with those from time-independent calculations. The dominant emission modes for two-photon
ionization are found to be very similar in both resonance and off-resonance regions.

PACS numbers: 33.80.-b, 33.80.Wz, 31.15.A-

I. INTRODUCTION

As the simplest two-center one-electron molecular sys-
tem, the hydrogen molecular ion provides an ideal proto-
type for diatomic molecules, and its history traces back
to the dawn of quantum mechanics [1]. An early review of
the analytical properties for solving the two-center one-
electron Coulomb problem was given by Power [2]. Ac-
curate numerical energies of the H+

2 ion were tabulated
by Madsen and Peek over a large range of internuclear
separation [3].

With the ongoing rapid developments in intense fem-
tosecond (fs) and attosecond (as) laser technologies and
some new theoretical and computational approaches in
full dimensionality, this simplest molecule, as well as its
isotopes HD+ and D+

2 , have served as a prime testing
ground in recent years to explore fundamental processes
such as the electron localization in dissociation channels
[4, 5], the double-slit interference effect [6–8], the map-
ping of vibrational wave packets followed by Coulomb
explosion [9], and above-threshold dissociation [10, 11]
for laser wavelengths ranging from x-ray to infrared.

Due to the different characteristic time scales of the
slower nuclear motion (fs scale) and faster electronic mo-
tion (as scale), most numerical simulations for molec-
ular responses to temporal laser fields rely on the adi-
abatic Born-Oppenheimer (BO) approximation. Exer-
cising caution, however, is necessary when these sepa-
rated treatments for the electronic and nuclear degrees
of freedom are applied in practice, for example, to near-
threshold photoionization. The fixed-nuclei approxima-
tion (FNA), which neglects the coupling of the electronic
states with the nuclear motion, has also been widely em-
ployed to study electronic ionization, including the inter-
action with 800 nm infrared pulses [12, 13].

As discussed below, even within the FNA there still ex-
ist discrepancies between different numerical predictions
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FIG. 1. (Color online) Definition of the alignment angle (θN)
and the ejection angle (θ) of the photoelectron (with momen-
tum k) for coplanar geometry in molecular body frame.

for the differential cross sections (DCS) and/or integral
cross sections for multiphoton ionization. A striking ex-
ample is the angular distribution for single-photon ion-
ization of the aligned H+

2 ion at the photon energy (~ω0)
of 1.47 atomic units (a.u.) (40 eV). Very good agreement
was achieved between results from time-dependent close-
coupling (TDCC) treatments [14, 15] in spherical coor-
dinates and time-independent exterior complex scaling
(ECS) calculations [16, 17] for the parallel geometry of
θN = 0◦, where θN denotes the angle between the molec-
ular axis ζ and the polarization vector ǫ (see Fig. 1). In
other geometries with the alignment angle θN 6= 0◦, the
direct comparison of the TDCC and ECS results [14] is
questionable. The published DCS at θN = 30◦ show no-
ticeable, up to nearly 30 percent, differences between the
predictions from these two calculations [14, 17].

Another example is the angle-integrated cross section
for two-photon ionization, obtained either in the TDCC
approach or by well-established time-independent per-
turbation theory. The TDCC cross sections for two-
and three-photon absorption [18] exhibit a significant
sensitivity to the peak intensity of the laser field. The
cross sections published in [18] are generally larger than
the results of Plummer and McCann’s Floquet calcula-
tions [19], even in the perturbative regime where one
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would expect the two sets of results to agree very well.

The present work, also uses the FNA and describes
improved calculations for one-photon, two-photon, and
three-photon absorption by solving the time-dependent
Schrödinger equation (TDSE) in two-center prolate
spheroidal coordinates. The spatial “radial” (ξ) and
“angular” (η) coordinates in elliptical coordinates are
discretized through the finite-element discrete-variable
representation (FE-DVR). Using the same discretization
procedure but combining it with the time-independent
ECS approach, Rescigno, McCurdy, and co-workers very
recently considered the corresponding problem of steady-
state one- and two-photon ionization of the H+

2 ion [17,
20].

There is little doubt that this relatively simple test
case can also be solved in one-center spherical coordinates
[14, 15] and even in rectangular coordinates [21]. Never-
theless, grid-based approaches in prolate spheroidal co-
ordinates have a number of appealing advantages to por-
tray the response of diatomic molecules to laser pulses.
Our long-term goal is to develop a time-dependent grid-
based approach to handle the dynamical coupling be-
tween the electronic and nuclear motions in intense laser
fields. This will allow for calculations to proceed be-
yond the limit of the BO approximation. As discussed in
Ref. [17], it is very convenient to describe the coupling
of nuclear and electronic motions in prolate spherical co-
ordinates, since the internuclear separation appears in
the electronic kinetic-energy part of the Hamiltonian as
a scaling factor. Furthermore, all the potentials (nucleus-
nucleus and nucleus-electron interaction) are diagonal
with respect to the grid points in the DVR framework.
In the time-independent scenario, the wave functions of
bound and unbound states of the H+

2 molecule can be
produced with great accuracy in prolate spheroidal coor-
dinates. Consequently, the cross sections for multiphoton
ionization can be computed to a high degree of accu-
racy in the framework of lowest-order perturbation the-
ory (LOPT) [22]. This provides a benchmark reference
to gauge the results obtained from approximate treat-
ments, for example when using a linear combination of
atomic-orbital wave functions for the initial state and/or
two-body Coulomb functions centered at two individual
nuclei for the final continuum states.

The remainder of this paper is organized as follows.
After presenting our ab initio time-dependent formalism
for multiphoton ionization in Sec. II, a time-dependent
perturbative analysis in the framework of the first-order
approximation for single-photon ionization is outlined in
Sec. III. Results for angle-resolved differential and angle-
integrated cross sections for one-, two-, and three-photon
ionization are presented in Sec. IV. In that comparison, it
becomes clear that some of the “different” results found
in the literature differ due to varying, and often incon-
sistent, definitions used for the published cross sections.
The paper concludes with a summary and an outlook in
Sec. V.

II. AB INITIO TREATMENT OF

MULTIPHOTON IONIZATION

At a fixed internuclear distance R, the wave function
of the laser-driven H+

2 system can be written as

Ψ(t) =
∑

mij

bmij (ξ, η, ϕ)C
m
ij (t) (1)

in two-center prolate spheroidal coordinates. Here the
basis bmij (ξ, η, ϕ) is defined as

bmij (ξ, η, ϕ) =
1√

2πa3(ξ2i − η2j )
fi(ξ)gj(η)e

imϕ, (2)

where a = R/2 and m is the magnetic quantum number
along the molecular axis. The above bases are normal-
ized according to 〈bmij |bm

′

i′j′〉 = δii′δjj′δmm′ , and {fi(ξ)}
and {gj(η)} are the DVR bases for ξ and η, respec-
tively. The configuration space is therefore discretized
in the FE-DVR scheme. Ref. [23] contains the technical
details regarding the implementation of the appropriate
boundary conditions in prolate spheroidal coordinates.
The time-dependent expansion coefficients {Cm

ij (t)} can
be determined by solving the TDSE effectively through
an iterative Lanzcos algorithm [24, 25], either in imag-
inary time to obtain the initial state or in real time to
propagate it.
The physical information about the ionization process

by multiphoton absorption can be extracted through the
projection of the wave packet, at the end of the time
evolution to the relevant continuum states. In prolate
spheroidal coordinates, the partial-wave expansion of the

continuum state Φ
(−)
k

(r) with momentum vector k, sat-
isfying the appropriate incoming boundary conditions, is
written as

Φ
(−)
k

(r) =
1

k

∑

ℓm

iℓe−i∆mℓ(k)Y∗
ℓ,m(k)Yℓ,m(k, η, ϕ)Π

(k)
ℓ,m(ξ),

(3)

where Yℓ,m and Π
(k)
ℓ,m(ξ) are the angular “spheroidal har-

monics” and radial functions, respectively. ∆mℓ(k) is the
two-center Coulomb phase shift. It can be determined by
normalizing the numerical solution to the known asymp-
totic behavior of the radial function,

Π
(k)
ℓ,m(ξ) → 1

ξR

√
8

π
(4)

× sin
(kR

2
ξ +

2

k
ln(kRξ)− ℓπ

2
+ ∆|m|ℓ(k)

)

as ξ → +∞. This normalizes Φ
(−)
k

(r) to a delta function

in momentum space, i.e., 〈Φ(−)
k

|Φ(−)
k′ 〉 = δ(k − k′).

Projecting the time-dependent wave function at the
end of time evolution (t = te) onto the functions in
Eq. (3) yields

〈Φ(−)
k

|Ψ(te)〉 =
1

k

∑

ℓm

(−i)ℓei∆mℓ(k)Yℓ,m(k)Fℓ,m(k), (5)
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where the partial-wave amplitude Fℓ,m(k) in the (ℓ,m)
ionization channel is given by

Fℓ,m(k) =
∑

ij

√
a3(ξ2i − η2j )Π

(k)
ℓ,m(ξi)Ξ

(k)
ℓ,m(ηj)C

m
ij (te).

(6)

Here Π
(k)
ℓ,m(ξi) and Ξ

(k)
ℓ,m(ηj) are the expansion coefficients

of the “radial” and “angular” functions in terms of the
normalized DVR {fi(ξ)} and {gj(η)} bases, respectively.
This simple expression is a direct consequence of the FE-
DVR representation. Consequently, the total ionization
probability (Pion) at t = te is obtained by collecting all
the possible ionization events:

Pion(te) =

∫ +∞

0

k2dk

∫
dΩ

∣∣〈Φ(−)
k

|Ψ(te)〉
∣∣2 (7)

=

∫
dk

dPion

dk
.

The probability density for ionization within the
momentum-space volume dk is given by

dPion

dk
=

∣∣〈Φ(−)
k

|Ψ(te)〉
∣∣2. (8)

The probability density for ionization (dPion/dΩ) of the
photoelectron scattered into the solid angle dΩ is

dPion

dΩ
=

∫
k2dk

dPion

dk
=

∫
k2dk

∣∣〈Φ(−)
k

|Ψ(te)〉
∣∣2. (9)

Equations (8) and (9) are general representations of
the probability density for ionization (with respect to
dk) and the angular distribution (with respect to dΩ)
following N -photon absorption. They are valid not only
for a weak but also for a strong field. On the other
hand, if the laser field is sufficiently weak and the in-
teraction between the laser pulse and the target does
not cause significant depletion of the initial state, then
the concept of cross sections (both angle-integrated to-
tal and angle-differential) is also applicable to describe
the ionization process. As a consequence, it is possible
to extract cross sections from a time-dependent scenario
and make a meaningful comparison with the well-defined
multiphoton-ionization cross section obtained by pertur-
bation theory. In this case, the angular distribution in
Eq. (9) can be converted to the differential cross section
dσ/dΩ for N -photon absorption, which is given by

dσ(N)

dΩ
=

(
ω0

I0

)N
1

T
(N)
eff

dPion

dΩ
=

(
ω0

I0

)N
1

T
(N)
eff

(10)

×
∫

dk

∣∣∣∣
∑

ℓm

(−i)ℓei∆mℓ(k)Yℓ,m(k)Fℓ,m(k)

∣∣∣∣
2

.

Here ω0 and I0 are the central laser frequency and the
peak intensity of the laser field, respectively. The essen-
tial ingredient is the so-called effective interaction time

for N -photon ionization, T
(N)
eff . If the pulse duration is τ

and the envelope function f(t) takes the frequently used
sine-squared form of f(t) = sin2(πt/τ), then [26]

T
(N)
eff =

∫ τ

0

dtf2N (t) =
(4N − 1)!!

(4N)!!
τ. (11)

Note that the effective interaction time is much shorter
than the pulse length, i.e., T

(N)
eff < τ , for all N -photon

absorption cases. In particular,

T
(1)
eff =

3

8
τ, T

(2)
eff =

35

128
τ, and T

(3)
eff =

77

3072
τ, (12)

respectively, for one-, two-, and three-photon absorption.

III. A PERTURBATIVE ANALYSIS OF

ONE-PHOTON IONIZATION

The time-dependent LOPT is applicable to describe
the ionization process through one-photon absorption,
if the external xuv laser field is relatively “weak”. In
this situation, the depletion of the initial state Φ0 is ne-
glected, and the time-dependent wave function of the sys-
tem driven by a temporal perturbation W (t) is written
as

Ψ(t) = Φ0e
−iE0t

+
1

i

∑

n>1

∫ t

0

dt′Wn0(t
′)ei(En−E0)t

′

Φne
−iEnt, (13)

where {En,Φn} denotes the eigenenergies and wave
functions of the field-free system, and Wn0(t

′) =
〈Φn|W (t′)|Φ0〉. The expansion in terms of the field-free
excited eigenstates can be regrouped according to the
magnetic quantum numbers of the final states. These
can be m = 0 or m = ±1 in our case, respectively, de-
pending upon the relative orientation of the ǫ and ζ axes.
In the dipole length form, the time-dependent perturba-
tion due to the temporal electric field with amplitude EA

can be recast as

W (t) =EAf(t) cos(ω0t)

[
cos θNr(0)

+
1√
2
sin θNeiϕN r(−1) − 1√

2
sin θNe−iϕN r(+1)

]
.

Here θN and ϕN denote, respectively, the polar and az-
imuthal angles of the polarization vector in the molecular
frame. Furthermore, r(0) = z and r(±1) = ∓(x± iy)/

√
2.

Equation (13) can then be rewritten as

Ψ(t) = Φ0e
−iE0t + EA cos θNΦ(m=0)(t)

+
1√
2
EA sin θNeiϕNΦ(m=−1)(t)

+
1√
2
EA sin θNe−iϕNΦ(m=1)(t). (14)
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The three components Φ(m=0,±1)(t) of the wave func-
tion are formally related to the unperturbed eigenstates
through

Φ(m)(t) =
1

i

∑

n>1

〈Φ(m)
n |r(m)|Φ0〉Φ(m)

n

×
∫ t

0

dt′f(t′) cos(ω0t
′)ei(En−E0)t

′

e−iEnt. (15)

From Eqs. (14) and (15), the dependence of the wave
function on the amplitude of the electric field (EA) and
the orientation (θN , ϕN ) can be completely factored out
in the limit of LOPT. After the separation, the resulting
components introduced in Eq. (15) only depend on the
laser parameters through the temporal function f(t), but
they are independent of EA and the orientation angles.
Note that this conclusion not only holds for one-electron
but also for multi-electron atoms and molecules.
The ionization amplitude can then be calculated by

projecting onto the ungerade continuum state (Φu
k
). We

obtain

〈Φu
k
|Ψ(t)〉 =EA cos θNP

(m=0)
Σu

(k)

+
1√
2
EA sin θNeiϕNP

(m=−1)
Πu

(k)

+
1√
2
EA sin θNe−iϕNP

(m=1)
Πu

(k) (16)

where k is the momentum of the photoelectron,

P
(m=0)
Σu

(k) = 〈Φu
k
|Φ(m=0)(t)〉, and P

(m=±1)
Πu

(k) =

〈Φu
k
|Φ(m=±1)(t)〉, respectively. Comparison with the gen-

eral ab initio formalism given in Eq. (5) reveals that

1

k

∑

ℓ

(−i)lei∆0ℓ(k)Yℓ,0(k)Fℓ,0(k)

=EA cos θNP
(m=0)
Σu

(k), (17)

and

1

k

∑

ℓ

(−i)ℓei∆1ℓ(k)Yℓ,±1(k)Fℓ,±1(k)

=
1√
2
EA sin θNe∓iϕNP

(m=±1)
Πu

(k) (18)

for the cases in which the LOPT is a suitable approxi-
mation.
This indicates that only Fℓ,m(k) depends on EA and

the orientation (θN , ϕN ), and it suggests that another
separation may be carried out. We therefore define

Fℓ,0(k) = EA cos θNFℓ,0(k) (19)

and
Fℓ,±1(k) = EA

1√
2
sin θNe∓iϕNFℓ,±1(k), (20)

in which the reduced momentum distributions Fℓ,m(k)
no longer contain any dependence on the laser param-
eters (EA, θN , ϕN ). This can be understood from the

fact that in LOPT the expansion coefficients CM
ij (t)

are proportional to EA cos θN or EA sin θNei±ϕN , de-
pending on m = 0 or m = ±1. We have Fℓ,0(k) =
EAFℓ,0(k) for the parallel geometry (θN = 0◦), while

Fℓ,±1(k) = EAe
∓iϕNFℓ,±1(k)/

√
2 for the perpendicular

case (θN = 90◦). As a consequence of the above consid-
erations, for an arbitrary geometry (0◦ 6 θN 6 90◦) and
arbitrary angle ϕN in the region [0, 2π],

∣∣Fℓ,0(k, θN , ϕN )
∣∣2 = cos2 θN

∣∣Fℓ,0(k, θN = 0◦, ϕN )
∣∣2
(21)

and

∣∣Fℓ,±1(k, θN , ϕN )
∣∣2 = sin2 θN

∣∣Fℓ,±1(k, θN = 90◦, ϕN )
∣∣2.
(22)

Using Eqs. (21) and (22) in the scheme of LOPT, the
differential cross section for one-photon ionization can be
written as

dσ

dΩ
=
ω0

I0

1

T
(1)
eff

∫ kmax

0

dk

∣∣∣∣ cos θN
∑

ℓ

(−i)ℓei∆0ℓ(k)Yℓ,0(k)Fℓ,0(k)

+
1√
2
sin θNe−iϕN

∑

ℓ

(−i)ℓei∆1ℓ(k)Yℓ,−1(k)Fℓ,−1(k)

+
1√
2
sin θNeiϕN

∑

ℓ

(−i)lei∆1ℓ(k)Yℓ,1(k)Fℓ,1(k)

∣∣∣∣
2

.

(23)

A similar expression for the DCS was used in Ref. [27]
in the “weak-field” limit, which is essentially a first-order
approximation. The total angle-integrated cross section
is therefore given by

σ(θN ) =
ω0

I0

Pion(θN )

T
(1)
eff

(24)

=
ω0

I0

1

T
(1)
eff

∫ kmax

0

dk

[
cos2 θN

∣∣Fℓ,0(k)
∣∣2

+sin2 θN
(∣∣Fℓ,−1(k)

∣∣2 +
∣∣Fℓ,1(k)

∣∣2)
]
.

The ionization probability at the end of pulse is given by

Pion(θN ) =

∫ kmax

0

dk

[
cos2 θN

∣∣Fl,0(k)
∣∣2 (25)

+ sin2 θN
(∣∣Fℓ,−1(k)

∣∣2 +
∣∣Fℓ,1(k)

∣∣2)
]
.

The above ionization probability can be rewritten as

Pion(θN ) = cos2 θNP
‖
ion + sin2 θNP⊥

ion, (26)

where P
‖
ion and P⊥

ion are the ionization probabilities,

P
‖
ion =

∫ kmax

0

dk
∣∣Fℓ,0(k)

∣∣2 (27)
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in the parallel geometry and

P⊥
ion =

∫ kmax

0

dk
(∣∣Fℓ,−1(k)

∣∣2 +
∣∣Fℓ,1(k)

∣∣2) (28)

in the perpendicular geometry, respectively. Equa-
tion (26) is the same as Eq. (31) of Ref. [28], which was
obtained for a time-independent scenario. This demon-
strates that the ionization events are rotationally sym-
metric with respect to the molecular axis. Physically, in
LOPT, the ionization probability and therefore the in-
tegral cross section for an arbitrary geometry (θN , ϕN )
can be simply obtained as a linear combination of ioniza-
tion probabilities in the parallel and perpendicular ge-
ometries, where the weighting factors are simple trigono-
metric functions. Equations (23) and (24) reveal how
the DCS depends on the orientation of the linear polar-
ization axis through the angles θN and ϕN . Averaging
over the entire solid angle (4π), the DCS for unpolarized
laser fields is given by

dσavg

dΩ
=

1

3

dσ(‖)

dΩ
+

2

3

dσ(⊥)

dΩ
. (29)

Here dσ‖/dΩ and dσ⊥/dΩ are the differential cross sec-
tions in the parallel and perpendicular geometries, re-
spectively. This also means that σavg = [σ(‖) + 2σ(⊥)]/3
for the total integral cross sections. The factors of 1/3
and 2/3 are the statistical weights of the Σu and Πu sym-
metries.
For the one-photon ionization of the H+

2 ion, it is pos-
sible to use the standard time-independent formalism to
compute the DCS. For a given photon energy (ω0), the
momentum (k) of the photoelectron, and the polariza-
tion axis (ǫ), the time-independent DCS in the length
gauge is given by

dσ

dΩ
= 4π2αω0k

∣∣∣∣〈Φ
(−)
k

(r)
∣∣ǫ · r

∣∣Φ0(r)〉
∣∣∣∣
2

, (30)

where α ≈ 1/137 is the finestructure constant. The
continuum states are again normalized according to

〈Φ(−)
k

|Φ(−)
k′ 〉 = δ(k − k′) in momentum space. The pro-

late spheroidal coordinate system enables a very accurate
treatment of both the initial bound and final continuum
state, thus providing the opportunity to carry out a self-
consistent examination of the DCSs from both the time-
dependent and time-independent formulations.

IV. RESULTS AND DISCUSSION

A. Energy levels of the H+
2 ion

The FE-DVR technique in prolate spheroidal coordi-
nates developed in this work is a high-precision repre-
sentation for one-electron, two-center problems. The ξ
coordinate was typically truncated at ξmax = 400. How-
ever, for pulses as long as 20 fs, a much larger exten-
sion with ξmax = 1020 was employed. The ξ coordinate

was decomposed into 2 finite elements in the inner re-
gion (1 < ξ 6 5) and 78-198 finite elements (depend-
ing on ξmax) in the outer region (5 6 ξ 6 ξmax). Each
element contained 10 Gauss-Radau or Gauss-Lobatto
points. The η coordinate for these calculations is dis-
cretized by introducing 15 Gauss-Legendre points in a
single finite element. At the equilibrium distance of
R = 2.0 bohr, the electronic energy of the initial 2Σ+

g

state obtained by solving the TDSE in imaginary time
was −1.10263421448942 a.u., in excellent agreement with
the benchmark value of Madsen and Peek [3].

B. One-photon ionization

In Table I, the applicability of Eq. (26) is exam-
ined at a variety of peak intensities from “weak” field
(1012 W/cm2) to “strong” field (1015 W/cm2) for a fixed
ten-cycle pulse. At a sufficiently weak field, the ionization
probability follows the prediction of Eq. (26) very accu-
rately. When the peak intensity of the field increases, the
agreement between Eq. (26) and the ab initio calculation
gradually deteriorates. The validity of Eq. (26) relies
on the assumption of a negligible depletion of the initial
state at the end of the pulse in lowest-order perturbation
theory.
Figure 2 shows the numerical results for the cases

m = 0 and m = −1 with ϕN = 0◦, thereby illustrating
the validity of Eqs. (21) and (22) at the photon energy
of 1.47 a.u. and a peak intensity of 1013 W/cm2. The
excellent agreement with the scaling rules established in
Eqs. (21) and (22) indicates that the laser field of 1013

W/cm2 essentially falls into the weak-field regime for
this photon energy. The figure also shows the relative
contributions from different ionization channels. For the

TABLE I. Ionization probabilities for the aligned H+
2 ion.

P
(a)
ion and P

(b)
ion are the ionization probabilities at the end of

the laser pulse, obtained from the ab initio calculation and
Eq. (26), respectively. A sine-squared laser pulse with ten op-
tical cycles at the central photon energy of 1.47 a.u. (40 eV)
was used. [n] means 10 raised to the nth power.

θN P
(a)
ion P

(b)
ion P

(a)
ion P

(b)
ion

1012 W/cm2 1013 W/cm2

0◦ 2.330[−6] 2.330[−5]

30◦ 9.987[−6] 9.987[−6] 9.987[−5] 9.985[−5]

60◦ 2.530[−5] 2.530[−5] 2.530[−4] 2.530[−4]

90◦ 3.296[−5] 3.295[−4]

1014 W/cm2 1015 W/cm2

0◦ 2.327[−4] 2.304[−3]

30◦ 9.980[−4] 9.965[−4] 9.911[−3] 9.770[−3]

60◦ 2.526[−3] 2.524[−3] 2.484[−2] 2.470[−2]

90◦ 3.288[−3] 3.217[−2]
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FIG. 2. (Color online) (a) the functions |Fℓ,m(k, θN )|2 and

| cos θNF‖
ℓ,m(k)|2 for m = 0 [c.f. Eq. (21)]; (b) the functions

|Fℓ,m(k, θN )|2 and | sin θNF⊥
ℓ,m(k)|2 for m = −1 [c.f. Eq. (22)].

ℓ = 1, 3 and θN = 30◦ in both (a) and (b). A laser pulse with
sine-squared envelope, a peak intensity of 1013 W/cm2, and a
central photon energy of 1.47 a.u. was used. The pulse time
duration is 10 optical cycles.

aligned molecule with 0◦ < θN < 90◦, final continuum
states of the 2Σu and 2Πu symmetries are accessible. For
the 2Σu channel, the contribution to the ionization prob-
ability from (ℓ,m) = (3, 0) is larger than that from (1, 0),
while for the 2Πu channel the contribution from (1,−1)
dominates significantly over that from (3,−1). Note that
all the contributions from different ionization channels
are centered at the momentum of 0.86 a.u. Correspond-
ingly, the kinetic energy of the photoelectron is 0.367
a.u. (≃ 10 eV). This is equivalent to the available excess
energy after the absorption of one photon with energy
1.47 a.u.

Figure 3 shows the angle-resolved differential cross sec-
tions at the photon energy of 1.47 a.u. The DCSs in
the time-dependent treatment were extracted by using a
10-cycle laser pulse of peak intensity 1013 W/cm2. The
current time-dependent and time-independent DCSs are
in excellent agreement with each other. Results from
another recent calculation by Della Picca et al. [29, 30]

who applied the same time-independent formalism as our
Eq. (30), are also shown. Their DCSs strongly support
the present calculations. TDCC results [15] are shown in
Fig. 3, whenever such a comparison is possible (θN = 0◦

and 90◦).
The DCSs in the parallel geometry are all in excellent

agreement with each other, but the TDCC result in the
perpendicular geometry is significantly smaller than ours,
The difference between the two calculations is partly due
to the fact that the TDCC results of Ref. [15], both in the
parallel and perpendicular geometries, are unweighted.
In Ref. [14], on the other hand, the TDCC result for the
DCS in the parallel geometry was weighted, while the
DCS in the perpendicular geometry was still unweighted.
This will be discussed in more detail in Eq. (34) below.
For the intermediate cases, the three sets of available

results, namely the TDCC results of Ref. [14], the DCSs
predicted in Refs. [16, 17], and our present numbers, are
not directly comparable. Although by no means obvi-
ous, the present investigations revealed that apparently
different definitions were used for the angle-resolved dif-
ferential cross sections. In Ref. [14], the Σu amplitude

was multiplied by a factor of
√
1/3, while no factor was

used for the Πu amplitude. On the other hand, both the
Σu and Πu amplitudes were pre-multiplied by

√
1/3 and√

2/3, respectively, in the ECS calculations [16, 17].
We will now demonstrate that for a fixed alignment

angle θN , there exists a simple relationship between the
DCSs for two particular emission angles, θ = 0◦ and 90◦.
For a given emission angle Ω = (θ, ϕ) of the photoelectron
we have from Eq. (30) that

dσ(θN )

dΩ
= sin2 θN

dσ(⊥)

dΩ
+ cos2 θN

dσ(‖)

dΩ
(31)

+2 sin θN cos θN Re
[
〈Φ(−)

k
|x|Φ0〉〈Φ(−)

k
|z|Φ0〉

]
.

Unlike the total cross section (or the ionization probabil-
ity), a simple decomposition of the DCS in terms of par-
allel and perpendicular components does not exist due
to the interference term. However, this term vanishes at
θ = 0◦ and θ = 90◦ (with respect to the molecular axis)
where the DCSs are simply given as a linear combination
of the DCSs in the parallel and perpendicular geometries.
Specifically,

dσ(θN )

dΩ
= sin2 θN

dσ(⊥)

dΩ
+ cos2 θN

dσ(‖)

dΩ
. (32)

The ratio between the DCSs at θ = 90◦ and 0◦,

D(θN ) ≡DCS(90◦, θN )

DCS(0◦, θN )
(33)

=
sin2 θNDCS(⊥)(90◦) + cos2 θNDCS(‖)(90◦)

sin2 θNDCS(⊥)(0◦) + cos2 θNDCS(‖)(0◦)
,

is readily obtained from the relevant DCSs in the paral-
lel and perpendicular geometries. This provides a conve-
nient consistency test for the correctness of the calculated
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FIG. 3. (Color online) The angle-resolved differential cross section of the aligned H+
2 ion in the molecular body frame at the

central photon energy of 1.47 a.u. The alignment angle (θN ) and ejection angle (θ) are defined in Fig. 1. The present time-
dependent calculations (TDSE, solid line) were performed with a sine-squared envelope of the laser pulse at a peak intensity
of 1013 W/cm2 and a time duration of 10 optical cycles. The dashed lines represent the current time-independent results from
perturbation theory, while the dot-dashed lines correspond to the time-independent results in prolate spheroidal coordinates of
Della Picca et al. [29] (θN = 0◦ and 90◦) and [30] (θN = 30◦ and 60◦). Finally, the dotted lines (only for θN = 0◦ and θN = 90◦)
represent the TDCC results obtained in one-center spherical coordinates [15]. The angular distribution patters shown in polar
coordinates correspond to the present time-dependent results. The nuclear separation distance is 2.0 bohr, and 1 kb = 10−21

cm2.

– and measured – DCSs in arbitrary alignment geome-
tries.
In the above equations, we did not explicitly introduce

the statistical weights for parallel (1/3) and perpendic-
ular (2/3) geometries. Numerical tests confirmed that
the present results satisfy the requirement of Eq. (32).
In some references [16, 17], the statistical weights were
explicitly multiplied into the results for the DCSs. This
“weighted” DCS,

dσ̃(‖)

dΩ
=

1

3

dσ(‖)

dΩ
and

dσ̃(⊥)

dΩ
=

2

3

dσ(⊥)

dΩ
. (34)

was apparently shown in Fig. 5 of Ref. [16] for θN = 0◦

and 90◦. Comparison of the “weighted” DCSs of the
current calculations and those of Ref. [16] show fairly
satisfactory agreement.
In the general case, for example at θN = 30◦ or 60◦,

we noticed that the published results of Ref. [16] can-

not be represented by Eq. (32), even after multiplying
them by an overall factor independent of the emission
angle. The DCS results in Ref. [16] are apparently not
based on the standard definition of angle-resolved differ-
ential cross sections. Further numerical “experiments”
then showed that replacing ǫ · r = z cos θN + x sin θN
by

√
1/3 z cos θN +

√
2/3x sin θN produced a “modified”

DCS, dσ̃/dΩ, given by

dσ̃

dΩ
=4π2αω0k

∣∣∣∣〈Φ
(−)
k

(r)
∣∣
√

1

3
z cos θN

+

√
2

3
x sin θN

∣∣Ψ0(r)〉
∣∣∣∣
2

. (35)

This is equivalent to introducing additional factors of√
1/3 and

√
2/3 into the Σu and Πu amplitudes. As

shown in Fig. 4, excellent agreement between our “mod-
ified” results and those reported in Refs. [16, 17] is ob-
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FIG. 4. (Color online) The “weighted” angle-resolved differential cross section [c.f. Eq. (35)] of the aligned H+
2 ion at the central

photon energy of 1.47 a.u. The solid lines (TDSE) represent the current time-dependent calculations with a sine-squared laser
pulse of peak intensity 1013 W/cm2 and a time duration of 10 optical cycles. The dashed lines are the current time-independent
results from perturbation theory, and the dot-dashed lines correspond to the time-independent ECS results in prolate spheroidal
coordinates [17]. The nuclear separation distance is 2.0 bohr.

tained. A feature of the “modified” DCS is that the re-
sulting total cross section obtained after integrating over
the emission angles and averaging over the alignment ori-
entations, have the statistical weight factors of 1/3 and
2/3 automatically built in. However, the usefulness of the
definition for intermediate cases, including θN = 30◦ or
60◦, is specious and has resulted in significant confusion
in the literature.

Figure 5 exhibits the momentum density of the ioniza-
tion probability, dPion/dk, in terms of the parallel (k‖)
and perpendicular (k⊥) momentum components, in the
plane formed by the molecular axis and the polariza-
tion vector. Essentially, dPion/dk is the two-dimensional
representation of the angular distributions. Even at
θN = 30◦, the angular distribution is strongly bent to-
ward the perpendicular direction. For θN > 30◦, there-
fore, the photoelectron is predominantly emitted along
the direction of the polarization vector. The mode of
parallel emission is only important close to the parallel
geometry for one-photon ionization.

Figure 5 reveals that in the parallel geometry (θN =

0◦) the photoelectron cannot be ejected in the plane per-
pendicular to the molecular axis. This rigorous selection
rule demonstrates that the emission mode in the perpen-
dicular plane is strictly forbidden in the parallel geom-
etry. This can be understood from the nodal structure

of the final continuum state Φ
(−)
k

(r) with m = 0 and
ungerade parity. For the momentum k lying in that nor-

mal plane, we have Φ
(−)
−k

(r) = Φ
(−)
k

(−r) = −Φ
(−)
k

(r).

At the same time, Φ
(−)
−k

(r) = Φ
(−)
k

(r) since there is no
azimuthal-angle dependence for the Σ continuum state
[c.f. Eq. (3)]. Consequently, the normal plane is a nodal

plane on which Φ
(−)
k

(r) = 0.

In the perpendicular geometry (θN = 90◦) a different
emission mode is observed. Due to the symmetry in the
Πu channel, the electron once again cannot be ejected
along the direction of the molecular axis in the normal
geometry. This emission pattern is different from that
in the parallel geometry. For θN = 0◦, the forbidden
directions of emission form a plane normal to the ǫ (or
ζ) axis. In the case of θN = 90◦, however, the emis-
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0 1 2 3 4 5 6

FIG. 5. (Color online) Single-photon ionization probability
density dPion/dk in the ǫ-ζ plane for various alignment angles
(θN ): (a) 0◦, (b) 30◦, (c) 60◦, and (d) 90◦. The molecular
axis is orientated vertically. k‖ and k⊥ are the parallel and
perpendicular components of momentum k, respectively, with
respect to the molecular axis. The laser parameters are the
same as in Fig. 3. The classical momentum is shown as the
dashed circle with a momentum radius of 0.86 a.u. The linear-
scale color bar is given in 10−4 per momentum in a.u.

sion mode of the photoelectron is forbidden only along a
particular line, namely the ζ axis, rather than an entire
(normal) plane. In the intermediate cases, where θN is
neither 0◦ nor 90◦, the ionization channels are therefore
mixtures from the Σu and Πu symmetries. This leads
to the forbidden plane or line observed in the parallel or
perpendicular geometries to be smeared out.

Next we examine the effect of the molecular size on the
ionization process. Figure 6 shows the ionization proba-
bility as a function of the internuclear distance R at two
fixed photon energies, ~ω0 = 1.50 and 1.18 a.u. Even for
one-photon ionization, the ionization probability shows
an unexpected behavior with increasing separation dis-
tance. This probability is relatively small at the equilib-
rium distance of 2.0 bohr. There are two enhanced ion-
ization peaks at smaller and larger separation distances,
depending on the photon energy. Since the central pho-
ton energies are far less than the ionization threshold of
2.0 a.u. in He+, the ionization probability should be neg-
ligibly small in the atomic limit (R → 0). Classically,
the ionization channel is open only if R & 0.92 bohr for
~ω0 = 1.50 a.u., and R & 1.70 bohr for ~ω0 = 1.18
a.u. Therefore, the opening of the ionization channel is

1.18 a.u., 5 o.c.
1.18 a.u., 10 o.c.
1.50 a.u., 5 o.c.
1.50 a.u., 10 o.c.
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FIG. 6. (Color online) Ionization probabilities (left scale)
for H+

2 in laser pulses at photon energies of 1.50 and 1.18
a.u. for time durations of 10 and 5 cycles. The molecular axis
is chosen along the polarization vector. The peak intensity
is 1014 W/cm2. The electronic energy (dot-dot-dashed line)
versus R is shown on the right scale.

responsible for the peaks observed around 1.0 bohr for
the photon energy of 1.50 a.u. and 1.6 bohr for 1.18 a.u.
Figure 6 also indicates that the stretched H+

2 ion has a
higher probability to be ionized. This is clearly visible for
the photon energy of 1.18 a.u at R ≃ 4.5 bohr. Around
its equilibrium distance, on the other hand, a minimum
develops between these two ionization peaks.
To understand the mechanism behind the suppressed

ionization probability at small internuclear separation,
consider the dipole transition moment between the initial
ground state (Φ0) and the momentum-normalized contin-

uum state (Φ
(k)
ℓ,0 ),

Mℓ,0 =

∫
d3rΦ

(k)∗
ℓ,0 (r)zΦ0(r), (36)

in the parallel geometry. Here the wave function of the
continuum state in the channel ℓ is given by

Φ
(k)
ℓ,0 (r) =

1

k
Π

(k)
ℓ,0 (ξ)Yℓ,0(k, η, ϕ). (37)

The ionization probability at the end of the laser pulse
is essentially determined by the sum of the squared tran-
sition amplitudes in the ionization channels. Figure 7
depicts the contributions of the transition moments from
several channels at the photon energy of 1.50 a.u. Ap-
parently, M1,0 changes sign at R = 1.78 bohr, while
M3,0 and M5,0 keep their signs in the current region of
R between 1.0 and 4.5 bohr. Consequently, the partial-
wave cross section in the (ℓ,m) = (1, 0) channel vanishes
at R = 1.78 bohr. After taking the contributions from
other channels, mostly (3, 0), into account, this results
in a double-peak structure with a nonzero minimum at
R ≈ 1.78 bohr in k

∑
ℓ |Mℓ,0|2, and therefore in the ion-

ization probability.
From the symmetry analysis, the enhanced peak

around R ≃ 1.0 bohr originates essentially from the
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FIG. 7. (Color online) Transition moments (left scale) in the
parallel geometry from the channels ℓ = 1, 3, and 5 at the pho-
ton energy of 1.50 a.u. The total squared contribution from
all three channels is shown on the right scale (solid curve).
The vertical dashed line indicates the R value where M1,0

vanishes.

spherical component of the Coulomb potential. How-
ever, the nonspherical characteristics of the potential in
the molecule manifests itself through an enhanced ion-
ization probability from the channel (3, 0) at a larger nu-
clear separation. This shows a strong molecular effect
even in single-photon absorption. Overall, the transition
moment reproduces fairly well both the positions of the
peak and the minimum observed in the ionization proba-
bility. Regarding the relative strengths of the two peaks,
the ionization probability of Fig. 6 and the transition mo-
ment of Fig. 7 are not exactly the same. The two peaks in
the ionization probability have nearly the same strength
for a 10-cycle pulse, while the transition moment shows
a much stronger peak at R ≃ 1.0 bohr than at R ≃ 4.0
bohr. This difference is related to the pulse length. If
the pulse contains more cycles, the peak at R = 1.0 bohr
is further enhanced in a manner that approaches what is
observed in the transition moment.

To get a deeper insight into the sensitivity of the ion-
ization probability to the nuclear separation, we now con-
sider the integrals involved in Mℓ,0. The part of the in-
tegrand related to the initial state always concentrates in
the region near the nuclei, even after integrating over the
angular parts. Note that in the case of a fixed photon
energy, a change in R also causes a change in the momen-
tum (k) of the photoelectron: a larger R yields a larger k.
The attractive Coulomb potential pulls the radial diffu-
sive wave functions of the continuum states significantly
toward the nuclear region in the present “combination”
of R and k, as displayed in Fig. 8 for the channel (1, 0).
With increasing R, therefore, the first negative loop in
the continuum-state wave function causes a cancellation
of the contribution from the region near the nuclei, thus
resulting in a sign change around R ≃ 1.78 bohr.

This cancellation effect in the transition moment is
similar to the well-known and well-studied Cooper mini-
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FIG. 8. (Color online) Radial wave functions in the transition
moment M1,0. The nuclear separations are (a) 1.0, (b) 1.78,
and (c) 4.0 bohr, respectively. The photon energy is 1.5 a.u.

Dashed lines: ξΠ
(k)
ℓ0 (ξ)/

√
k. Dot-dashed lines: the initial wave

function after integrating over the angular part. Solid lines:
the product of the dashed and dot-dashed curves. Also note
the nonzero values of the wave functions on the left boundary
(ξ = 1).

mum in the photoionization cross sections of some atoms
[31]. However, the H+

2 molecular ion exhibits a notice-
able difference compared to the ground states of noble-
gas atoms. The sign change in the transition moment
only happens in those atoms that have radial nodes in
the ground state (e.g., Ar(3p)6), but not in a nodeless
ground state (e.g., Ne(2p)6). This rule of thumb does
not hold even for the simplest molecule, as observed here.
Although the initial Σ+

g ground state of the H+
2 ion is

nodeless, a sign change of the transition moment in the
dominant channel is still observed when we vary the nu-
clear separation. Both constructive or destructive con-
tributions to the transition moments, and therefore the
cancellation effect, are sensitive to the detailed overlap
between the initial and the continuum states.

The Cooper minimum in the H+
2 ion is also observ-

able at a fixed equilibrium distance, but only at higher
photon energies (& 200 eV) [32]. The suppressed and/or
enhanced ionization probabilities discussed here in the
FNA could have a far-reaching consequence in the photo-
ionization process [33] when the nuclear motion is simul-
taneously coupled to the electronic motion in a practical
treatment beyond the FNA.
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C. Two-photon ionization

Figures 9 and 10 display the total angle-integrated
(statistically weighted) two-photon cross section for pho-
ton energies from 0.5 to 1.0 a.u. for the parallel geometry
and from 0.55 to 1.0 a.u. for the perpendicular geome-
try, respectively. The present two-photon results are ex-
tracted by projecting the time-evolved wave packet onto
the continuum states. We use various time scales from
1 fs to 20 fs to compute the cross sections. This may
require larger computational grids (ξmax) to fit the elec-
tron’s temporal motions. For the longest time scale of
20 fs, the grid was larger than 1000 bohr. With the ben-
efit of prolate spheroidal coordinates and long pulses, it
is possible to map out the intermediate-state resonance
structure, which was not observed in TDCC predictions
[18].

A few features are worth further discussion. First, in
the parallel geometry, the shortest pulse of ∼ 1 fs is not
sufficient to satisfactorily produce the absolute magni-
tude of the cross section. Not only are the resonance
structures missing, but the calculated total cross sec-
tions are far too large even in the nonresonant region,
for example, between 0.6 to 0.8 a.u. Results that are di-
rectly comparable to steady-state, time-independent cal-
culations, can only be obtained if the laser pulse lasts at
least 5 fs. The cross sections in the nonresonant region
are already converged when such a 5 fs pulse is used.
With increasing pulse length and hence reduced band-
width of the photon energies, the resonance peaks and
dips narrow and gradually approach the cross sections
obtained from the time-independent approach, in which
the laser field interacts with the target electron practi-
cally for an “infinitely” long time.

Second, classically, regardless of the relative orienta-
tion, the two-photon ionization channel is only open if
the photon energy is larger than 0.55 a.u. For the 1 fs
pulse, even at ~ω0 = 0.52 a.u. there is still a noticeable
signal of the two-photon ionization. This is due to the
large bandwidth of the 1 fs pulse. The uncertainty of
∆ω0 = 0.26 a.u. in the photon-energy domain results in
possible two-photon ionization. This also explains the
observed sharper edge induced by the laser pulses for
the longer time scale. The two resonance peaks observed
in the current energy regime (c.f. Fig. 9) are related to
the intermediate one-photon absorption in the manifold
of the Σu symmetry. The calculated excitation energies
from the ground 1sσg state to the second 3pσu and third
4pσu states are 0.847221 and 0.965321 a.u., respectively.
In the fixed-nuclei approximation, these two intermediate
resonance states manifest themselves through enhanced
resonance peaks observed in the total cross sections as
a function of photon energy. When the photon energy
matches the energy gap of 0.435100 a.u. between the ini-
tial 1sσg and the first 2pσu state, an enhanced resonance
peak should also be observed. However, it does not corre-
spond to two-photon ionization since the photon energy is
below the threshold for two-photon ionization. Instead,

it is related to the three-photon ionization process dis-
cussed in the next section.
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FIG. 9. (Color online) The statistically weighted angle-

integrated two-photon cross section [σ̃(2), see Eq. (34)] in the
parallel geometry. A sine-squared laser pulse with peak inten-
sity of 1013 W/cm2 was used. The cross section of Apalategui
et al. [34] obtained in LOPT is also shown (solid line). The
threshold for two-photon ionization is indicated by a vertical
stripe at the photon energy of 0.55 a.u.
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FIG. 10. (Color online) The statistically weighted angle-

integrated two-photon cross section [σ̃(2), see Eq. (34)] in
the perpendicular geometry. A sine-squared laser pulse with
peak intensity of 1013 W/cm2 was used. The cross section of
Apalategui et al. [34] obtained in LOPT is also shown (solid
line).

Turning to the perpendicular geometry, only the inter-
mediate πu states can be detected through two-photon
ionization. There are three resonance peaks observed
in the photon energy range from 0.55 to 1.0 a.u. Our
ab initio electronic energies are −0.428772, −0.200865,
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and −0.126199 a.u., respectively, for the 2pπu, 3pπu, and
4fπu states. These three states are therefore responsible
for the resonance peaks observed at the photon energies
of 0.674, 0.902, and 0.976 a.u. At the same photon en-
ergy, the total two-photon cross section in the perpen-
dicular geometry is generally, though not always, larger
than the cross section for the parallel geometry.

The H+
2 ion clearly exhibits different behavior related

to the intermediate resonance states with different sym-
metries. Apparently, both dips and peaks are observed
in the parallel geometry (c.f. Fig. 9), while only en-
hanced peaks are seen in the perpendicular geometry
(c.f. Fig. 10). For very different magnitudes of the total
cross sections in the resonance and off-resonance regions,
Fig. 11 examines a possible energy dependence of the
angular distributions (the shape of the differential cross
section) by two-photon absorption at the pulse duration
of 10 fs. In the parallel geometry, one of the photon
energies chosen is 0.7 a.u., i.e., far away from resonant
regions, while the other two photon energies are 0.823
and 0.854 a.u., respectively, corresponding to a dip and
a peak in the resonance region. Three photon energies,
0.674, 0.8, and 0.902 a.u. were chosen for the perpendic-
ular geometry.

The dominant structures in the angular distributions
are essentially insensitive to the photon energies. The
two-lobe pattern along the direction of laser polarization
is the dominant emission mode for both off-resonant and
resonant photon energies in both the parallel and per-
pendicular geometries. Due to the even parity of the
two-photon exit channel (Σg) in the parallel geometry,
however, we observe that ejection of a photoelectron in
the normal (to the ǫ axis) plane is not forbidden any-
more, although the cross section is much smaller than in
the dominant peaks. Interestingly, the angular distribu-
tion at the off-resonance photon energy, ~ω0 = 0.7 a.u.,
shows a relatively enhanced emission mode in the nor-
mal plane, compared to those for resonant photon ener-
gies (c.f. Fig. 11 b). When the light is polarized at right
angle with respect to the molecular axis, we observe a
similar behavior of the angular distribution at the angle
of 90◦ in the molecular frame: the off-resonance photon
energy (0.8 a.u.) shows an enhanced peak compared to
the resonant energies (0.674 and 0.902 a.u.) (c.f. Fig. 11
d).

Recall that the time period of the first vibrational state
in H+

2 is about 15 fs. On the time scale of 10 fs, there-
fore, the nuclear vibrational motions in the Σg,u states
may play a role in modulating the angular distributions
of the photoelectron. Based on the calculations of Selstø
et al [35] in the parallel geometry, it is not surprising
that including the nuclear vibrational motion along the
molecular axis does not change the emission mode, ex-
cept for the enhanced magnitudes of angular distribu-
tions. Frozen in its rotational ground state, the nuclear
vibrational motion is unrelated to the spatial symmetry
of the photoelectron. In this respect, it is expected that
the identical conclusion be valid for other alignment con-

(a) (b)

(c) (d)

FIG. 11. (Color online) Angular distributions for two-photon
ionization of the H+

2 ion. The time duration of the laser pulse
is 10 fs. The panels (a) and (b) are for the parallel geometry
at the photon energies of 0.7 (solid), 0.823 (dashed), and 0.854
(dotted) a.u. The panels (c) and (d) are for the perpendicular
geometry at the photon energies of 0.674 (solid), 0.8 (dashed),
and 0.902 (dotted) a.u. The radii of the outer circles corre-
spond to (a) 2.0 × 10−52, (b) 0.4 × 10−52, (c) 1.75 × 10−53,
and (d) 0.28× 10−53 cm4 s/sr, respectively. In order to com-
pare the shapes of the curves, the results in the resonance
region were multiplied by sets of scale factors (f0.823, f0.854)
for the panels (a) and (b), and (f0.674, f0.902) for the panels
(c) and (d). These factors were: (a) and (b): (12.5, 0.75);
(c) and (d): (7.0 × 10−4, 4.3 × 10−2). The panels (b) and
(d) are enlargements of the distributions shown in (a) and (c)
near the center. Note the small loop structure perpendicular
to the main loop, which for the perpendicular geometry only
appears for the photon energy of 0.823 a.u.

figurations. Observation of photoelectron emission in the
normal plane is in qualitative agreement with the predic-
tion of Ref. [35]. In contrast, these emission patterns at
the angle of 90◦ are negligibly small in both the parallel
and perpendicular geometries in Ref. [20].

Figures 12 and 13 depict the ionization-probability
density for two-photon absorption, dPion/dk, in momen-
tum space. If the pulse duration is sufficiently short (e.g.,
10 cycles), the parallel geometry may have a similar or
even larger ionization probability than the perpendicu-
lar case. However, the situation changes when the H+

2

ion is exposed to a laser field with a longer interaction
time, as shown for the case of a 0.90 a.u. (24.5 eV) pho-
ton energy in Fig. 13. Longer pulses and weak fields are
apparently needed to approach converged cross sections.
The aligned H+

2 ion shows a sensitive response to laser
pulses with respect to the time duration. This illustrates
the alignment effect. The time-duration effect of the laser
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0 2 4 6 8 10

FIG. 12. (Color online) Two-photon ionization probability
density dPion/dk in the ǫ-ζ plane for various alignment an-
gles (θN ): (a) 0◦, (b) 30◦, (c) 60◦, and (d) 90◦. The molecular
axis is orientated vertically. k‖ and k⊥ are the parallel and
perpendicular momentum components, respectively, with re-
spect to the molecular axis. The central photon energy is
0.90 a.u., and the sine-squared pulse with peak intensity of
1013 W/cm2 lasts for 10 optical cycles. The classical momen-
tum is shown as the dashed circle with the momentum radius
of 1.18 a.u. The linear-scale color bar is given in 10−7 per
momentum in a.u.

pulse clearly manifests itself through the alignment of the
diatomic molecular axis with respect to the polarization
direction.

D. Three-photon ionization

Figure 14 shows the total cross section (unweighted)
for three-photon absorption for photon energies from
0.35 to 0.5 a.u. Again, the results are compared with
the predictions of time-independent perturbation theory
[22]. We converted the angle-integrated cross sections
given in units of cm6/W2 from Ref. [22] to the units of
cm6s2 through σ(3)(cm6s2) = 1.9 × 10−35σ(3)(cm6/W2)
for three-photon ionization.
The channel of three-photon ionization is open if ~ω0 >

0.37 a.u. In the time-dependent treatment, the very nar-
row resonance peak around 0.37 a.u. near the threshold
can only be identified when using a long pulse (at least
15 fs), while the resonance peaks at 0.46 and 0.50 a.u.
are not observable on the present time scale. Clearly, the
three-photon ionization process shows an even more com-

0 5 10 15 20

FIG. 13. (Color online) Same as Fig. 12, but the laser pulse
lasts for 30 optical cycles. The linear-scale color bar is given
in 10−6 per momentum in a.u.

plicated resonance behavior than the two-photon case.
The first peak at a photon energy of 0.37 a.u. corresponds
to a two-photon-intermediate resonance in three-photon
ionization. Since the energy of the first excited 2sσg state
is −0.36087 a.u., two-photon absorption at 0.37 a.u. hits
the 2sσg state and therefore causes the system to be res-
onantly populated in this state. Similarly, for the peak
at 0.486 a.u., the intermediate 4dσg state is resonantly
excited first and then ionized by subsequent two-photon
absorption.
At the photon energy of 0.435 a.u., however, the reso-

nance peak is due to a combination of contributions from
two ionization paths. A photon of energy 0.435 a.u. can
hit the excited 2pσu state, and then ionization happens
after another two-photon absorption. At the same time,
the system can also be excited to the 3dσg state by two-
photon absorption before being ionized after absorbing
one more photon. These two paths add coherently, and
they manifest themselves as an overlap, resulting in a
single but wider than usual resonance peak in the cross
section.

V. SUMMARY AND OUTLOOK

As an initial step to develop a fully ab initio, non-
perturbative computational approach to understand the
intricate molecular response to temporal laser fields from
ultrafast attosecond to femtosecond time scales, we inves-
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FIG. 14. (Color online) Angle-integrated three-photon cross

section [σ(3), no statistical factor was multiplied] in the par-
allel geometry for a number of different pulse lengths. The
peak intensity of the sine-squared pulse is 1013 W/cm2. The
cross sections of Baik et al. [22] obtained in LOPT are also
shown (solid line).

tigated the one-, two-, and three-photon ionization of the
hydrogen molecular ion in the fixed-nuclei approxima-
tion. The current situation regarding the published DCS
results for one-photon ionization was clarified and up-
dated. Accurate benchmark results for the angle-resolved
differential cross sections have therefore been established
for the H+

2 molecular ion.
For one-photon ionization, a reduction in the ionization

probability was observed at a specific internuclear sep-
aration distance, in fact near the equilibrium distance.
This result can be explained as a consequence of the
transition amplitude in the dominant ionization chan-
nel changing its sign. This is the same mechanism that
causes the Cooper minima observed in photoionization
of some atoms. Resonance-enhanced peaks in the angle-

integrated cross sections for two- and three-photon ion-
ization were also analyzed.
While the effect of nuclear motion was neglected in the

present work, we are currently working on a program to
include the nuclear degree of freedom into our ab ini-

tio treatment of the molecular dynamics, both adiabat-
ically and nonadiabatically. In addition to the electron
coordinates, discretizing the entire problem including the
nuclear separation, or expansion in terms of potential
energy curves in the Born-Oppenheimer approximation,
promise an elaborate depiction of twisted motions on a
varying time scale. As discussed previously [36], effects
of the nuclear motion already show some signals even
in one- or two-photon ionization. The Cooper-type mini-
mum should also have a significant influence on the angu-
lar distributions. While beyond the scope of the present
work, we plan to study this is more detail in the future,
since it would need to be accounted for in calculations
with variable internuclear distance.
Most importantly, the nuclear motion could dramati-

cally affect observable quantities, such as the spectra for
above-threshold ionization in infrared laser fields on a
femtosecond time scale [37]. Incorporating the nuclear
motion ab initio will allow us to analyze the experimen-
tal spectra of dissociative kinetic-energy release in H+

2

and D+
2 [38], which have not yet been explained in a

satisfactory way by models with reduced dimensions. In-
cluding the effect of moving nuclei even in the simplest
H+

2 molecule might also shed additional light on the more
complicated double photoionization process in H2.
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