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Abstract

In this paper we analyze the condition for complete population inversion by a chirped pulse over a
finite duration. The nonadiabatic transition probability is mapped in the two dimensional parameter
space of coupling strength and detuning amplitude. Asymptotic forms of the probability are derived by
the interference of nonadiabatic transitions for sinusoidal and triangular pulses. The qualitative difference
between the maps for the two types of pulses is accounted for. The map is used for the design of stable
inversion pulses under specific accuracy thresholds.

1 Introduction

Population transfer between energy levels with time-dependent coupling has been studied for many decades.
From the pioneering works on the linear-crossing model by Landau [1] and Zener [2] to the adiabatic rapid
passage in magnetic resonance [3], it has been shown in many literatures that with a slow level crossing the
state follows instantaneous energy eigenstate adiabatically. In the adiabatic limit where the level crossing
is infinitely slow, a complete population inversion of a two-level system can be realized, provided that the
energy eigenstates are switched by the time-dependent coupling. For faster level crossings, the population
inversion can be incomplete due to nonadiabatic transitions. We denote the probability for not making the
desired adiabatic transition as Pnad.

Most literatures on level crossing models investigated single population transfers, which could be modelled
by infinite-time processes. Transition of finite duration has been studied by, eg., Vitanov and Garraway [4],
Bateman and Freegarde [5]. In a recent laser experiment by Miao et. al. [6], helium atoms subject to
a sequence of counterpropagating chirped light pulses underwent multiple adiabatic rapid passages. The
coherent exchange of momentum between pairs of counterpropagating light pulses produced large optical
forces. The optical force was proportional to the population transfer over each light pulse. The application
of periodic light pulses make it necessary to use finite-time level crossing models to calculate the population
transfer. The nonadiabatic transition probability Pnad for various finite-time level crossing models was
studied numerically in Ref. [7], and an approximate formula for Pnad was derived using a perturbation
method in Ref. [8]. It was shown in Ref. [8] that the distributions of Pnad for finite-time models in the
parameter space of the Hamiltonian were qualitatively different from those for infinite-time models, such as
the Landau-Zener model and the Demkov-Kunike model [9].
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The general form of a time-dependent Hamiltonian for a two-level system (see Ref. [10]) is,

H0(t) =
~

2

(

δ(t) Ω(t)
Ω(t) −δ(t)

)

. (1.1)

If we take the electric dipole interaction between the light and atoms as an example, in the frame that
rotates at the frequency of the light field, δ(t) would be the detuning of the light frequency from the atomic
resonance, and Ω(t) would be the Rabi frequency [11]. In an infinite-time model, the transition is from
t = −∞ to t = ∞, and the coupling Ω(t) never vanishes. For example, in the Landau-Zener (LZ) model,

Ω(t) = b, δ(t) = at; (1.2)

and in the Demkov-Kunike (DK) model,

Ω(t) = Ω0sech(
πt

2τ
), δ(t) = δ0 tanh(

πt

2τ
). (1.3)

In a finite-time pulse model, the transition is from t = −T/2 to t = T/2, where T is the duration of the
coupling. We denote the maximums of δ(t) and Ω(t) by δ0 and Ω0 respectively. The constant pulse model,
or the finite Landau-Zener model, in which

Ω(t) = Ω0, δ(t) = δ0
2t

T
, (1.4)

has been studied extensively by Vitanov and Garraway [4]. In this paper, we will study pulses that continu-
ously vanish at the beginning and the end of the finite duration. Typical examples are the sinusoidal pulse
model [6],

Ω(t) = Ω0 cosωmt, δ(t) = δ0 sinωmt, (1.5)

where ωm = π/T , the triangular pulse model [8],

Ω(t) = Ω0(1−
2|t|
T

), δ(t) = δ0
2t

T
. (1.6)

Assuming that δ0 and Ω0 can be scaled independently as in the experiment by Miao et al. [6], we can map
Pnad in the two dimensional parameter space of normalized δ0 and Ω0, as shown in Fig. 1 for sinusoidal and
triangular pulses. In contrast to the asymptotic method proposed by Dykhne [12] and Davis and Pechukas
[13] for infinite-time models and its generalization to multiple singularities in the complex t plane [14], which
claimed that Pnad depends only on the energy sheets (via their continuation into the complex t plane), Pnad

for finite-time models is not only determined by the eigenenergies, but also by the time dependence of δ(t)
and Ω(t). The problem of interest is how the pulse profile and parameters affect Pnad, and in particular,
how to achieve a stable inversion, ie, Pnad = 0.

For Ω0T ≫ 1 and/or δ0T ≫ 1, it is more advantageous to work in the rotating adiabatic frame [8], in
which the Hamiltonian is

H(t) =
~

2

(

0 iθ̇(t)eis(t)

−iθ̇(t)e−is(t) 0

)

, (1.7)

where 0 ≤ θ ≤ π with tan θ(t) = Ω(t)/δ(t), and s(t) =
∫ t

0
Ω′(τ)dτ with Ω′(t) =

√

Ω2(t) + δ2(t). Denote the
propagation matrix in the rotating adiabatic frame from 0 to t and from −t to 0 by

O(t) =

(

α∗(t) −β(t)
β∗(t) α(t)

)

, O(−t) =
(

α∗(−t) −β(−t)
β∗(−t) α(−t)

)

. (1.8)

If the pulse is symmetric in the sense that δ(−t) = −δ(t), Ω(−t) = Ω(t), by time reversal we have

α(−t) = α(t), β(−t) = β∗(t). (1.9)
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Figure 1: Map of Pnad in the pulse parameter space. The curves are for Pnad = 0.9, 0.5, 0.1, 0.01, 0.001, .... The
darkest regions are for vanishing Pnad.

Denote the propagation matrix in the rotating adiabatic frame over the entire pulse by

Oad = O(T/2)O(−T/2) =
(

α∗
ad −βad
β∗
ad αad

)

. (1.10)

For pulse profiles with adiabatic states at the end of the pulse inverted from those at the beginning of the
pulse, such as sinusoidal or triangular pulses,

Pnad = |βad|2, βad = α(−T/2)β(T/2) + β(−T/2)α∗(T/2).

For a symmetric pulse, βad is a real number, and

Pnad = β2
ad = (α(T/2)β(T/2) + α∗(T/2)β∗(T/2))2, (1.11)

which implies that the traces of Pnad = 0 in the map are curves (cf. Fig. 1); while for a nonsymmetric pulse
profile, βad is complex and the traces of Pnad = 0 in the map are scattered points. Since we are interested
in stable inversions, we will only consider symmetric pulses.

As shown in Fig. 1, the maps of Pnad for finite-duration pulses are divided into oscillatory and nonoscil-
latory regions. In the nonoscillatory region, the nonadiabatic transition is dominated by the Landau-Zener
transition at resonance, which gives

Pnad
∼= e−4πk1 , (1.12)

where k1 = Ω2
0/(8δ̇0). The factor of 8 is introduced for convenience (see Appendix A). In the oscillatory

region, the phase of oscillation depends on the area swept by the difference between the eigenenergies over
the pulse duration. Let

s0 =

∫ T/2

−T/2

[E+(t)− E−(t)]dt, (1.13)

where E± = ±~

2

√

Ω2(t) + δ2(t) are the eigenenergies of the Hamiltonian in Eq. (1.1). For non-chirped
pulses, the area theorem [11] states that

Pnad = cos2(
s0
2
). (1.14)
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Non-chirped inversion pulses require s0 = (2n+ 1)π. In the adiabatic limit, by the first order perturbation
in the rotating adiabatic frame [8],

Pnad
∼= (

Ω̇0

δ20
)2 sin2(

s0
2
). (1.15)

Adiabatic inversion pulses require s0 = 2nπ. We will explain the change from s0 = (2n+1)π for non-chirped
inversion pulses to s0 = 2nπ for adiabatic inversion pulses in Section 2.

Finite-duration chirped pulses can be compared with the Demkov-Kunike model and finite Landau-Zener
model. The maps of Pnad for all these models consist of oscillatory and nonoscillatory regions. However, the
oscillations for different models have distinct characteristics. The Demkov-Kunike model is exactly solvable
[19]. In the oscillatory region, PDK

nad = cos2 τ
√

Ω2
0 − δ20/ cosh

2 τδ0. The condition for population inversion

is τ
√

Ω2
0 − δ20 = (n + 1

2 )π, rather than determined by the phase s0. The finite Landau-Zener model differs
from sinusoidal and triangular pulses in that the pulse in the finite Landau-Zener model does not vanish
continuously at the ends of the duration. By the analysis of Vitanov and Garraway [4], the condition for the
population inversion is s0 = (2n+ 1)π throughout the oscillatory region.

The map of Pnad for sinusoidal pulses also differs from that for triangular pulses. In Fig. 1(a), the trace
of sinusoidal pulses with population inversion consists of a sequence of loops; while in Fig. 1(b), the trace
of triangular pulses with inversion has an extra curve below the loops. In Section 3, we will explain this
difference using a split level crossing model. In Section 4 the model is extended for the stability analysis of
adiabatic and nonadiabatic inversion pulses.

2 Oscillation phase of Pnad

In the oscillatory region of the map, Ω0 ≫ δ0, the nonadiabatic transition is dominated by the avoided
crossing at the two ends of the duration. The pulse from 0 to T/2 can be regarded as the half LZ transition
from −∞ to 0 with adiabaticity k2 = δ20/(8Ω̇0). The propagation matrix of the LZ transition from −∞ to
0 is related to that from 0 to ∞ by Eq. (1.9). In addition to that, the LZ model with avoided crossing

at the end of the pulse corresponds to Eq. (1.7) with s(t) =
∫ t

T/2
Ω′(τ)dτ , which differs from the actual

s(t) =
∫ t

0 Ω′(τ)dτ by s0
2 . Therefore,

Oad =

(

α∗
LZ(k2) −β∗

LZ(k2)e
i
s0

2

βLZ(k2)e
−i

s0

2 αLZ(k2)

)

. (2.1)

By Eq. (1.11),

Pnad(k2, s0) = (α∗
LZ(k2)βLZ(k2)e

−i
s0

2 + αLZ(k2)β
∗
LZ(k2)e

i
s0

2 )2 = A(k2) cos
2(
s0
2

− φ(k2)), (2.2)

where
A(k2) = |2α∗

LZ(k2)βLZ(k2)|2, φ(k2) = arg(2α∗
LZ(k2)βLZ(k2)).

From Eq. (A.3),

2α∗
LZ(k2)βLZ(k2) = e−πk2+2ik2(1−lnk2)(

π

Γ2(12 − ik2)
+

ik2π

Γ2(1− ik2)
). (2.3)

A(k2) and φ(k2) are the amplitude and the phase factor of the oscillation. They are plotted in Fig. 2(a).
φ(k2) increases from 0 to π/2 as k2 varies, which explains the change from s0 = (2n+ 1)π for non-chirped
inversion pulses to s0 = 2nπ for adiabatic inversion pulses. As an example, the map of the asymptotic Pnad

given by Eq. (2.2) is plotted in Fig. 2(b) for sinusoidal pulses. Fig. 2(b) agrees very well with Fig. 1(a) in
the oscillatory region, though the nonoscillatory region is missing in Fig. 2(b).
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Figure 2: (a) Amplitude (solid line) and phase factor (dashed line) of Pnad in Eq. (2.2). (b) Map of Pnad in Eq.
(2.2) for sinusoidal pulses. The curves are for Pnad = 0.9, 0.5, 0.1, 0.01, 0.001, ...

We take a closer look at Eq. (2.2) in the adiabatic limit, ie, for large k2. Substituting the following
Stirling’s formulas for Gamma functions [15] into Eq. (2.3),

Γ(1− ik) ∼=
√
2kπ exp(−πk

2
+ ik(1− ln k)− i

π

4
)(1 +

i

12k
− 1

288k2
),

Γ(
1

2
− ik) ∼=

√
2π exp(−πk

2
+ ik(1− ln k))(1 − i

24k
− 1

1152k2
),

we have

2α∗
LZ(k2)βLZ(k2) ∼=

i

8k2
(1− i

24k2
),

and so

A(k2) ∼= (
1

8k2
)2, φ(k2) ∼=

π

2
− 1

24k2
,

Pnad
∼= (

1

8k2
)2 sin2(

s0
2

+
1

24k2
) = (

Ω̇0

δ20
)2 sin2(

s0
2

+
Ω̇0

3δ20
). (2.4)

It agrees with the adiabatic limit Eq. (1.15) except for a phase factor of Ω̇0/(3δ
2
0). To understand the

discrepancy, we recall that Eq. (1.15) was obtained from first order perturbation in the rotating adiabatic
frame. Higher order unitary perturbation can be obtained from the Magnus expansion [16],

O(t) = exp

{

−i
∫ t

0

dt1H(t1)−
1

2

∫ t

0

dt1

∫ t1

0

dt2[H(t1), H(t2)]

+
i

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3[H(t1), [H(t2), H(t3)]] + [[H(t1), H(t2)], H(t3)] + · · ·
}

. (2.5)

Although Eq. (2.5) gives good approximation to Pnad over the entire parameter space [8], the computation
is more complicated than the Dyson expansion [17] of the same order. To obtain the adiabatic limit of Pnad,
it is more advantageous to use the latter. With the Hamiltonian in Eq. (1.7), the Schrödinger equation is

α̇(t) =
θ̇(t)

2
e−is(t)β(t), β̇(t) = − θ̇(t)

2
eis(t)α(t).
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The Dyson expansion gives

α(t) = 1−
∫ t

0

dt1

∫ t1

0

dt2
θ̇(t2)

2
eis(t2)

θ̇(t1)

2
e−is(t1) + · · ·

β(t) = −
∫ t

0

dt1
θ̇(t1)

2
eis(t1) +

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3
θ̇(t3)

2
eis(t3)

θ̇(t2)

2
e−is(t2)

θ̇(t1)

2
eis(t1) − · · · (2.6)

In the adiabatic limit,

α(T/2) = 1 + i

∫ T/2

0

θ̇2

4Ω′ dt+O((Ω0T )
−2).

β(T/2) = − θ̇eis

2iΩ′ |
T/2
0 − [

θ̇(T/2)eis(T/2)

Ω′(T/2)
+

θ̇(0)

Ω′(0)
]

∫ T/2

0

θ̇2

8Ω′ dt− (
eis

2Ω′
d

dt

θ̇

Ω′ )|
T/2
0 +O((Ω0T )

−3). (2.7)

Using the diabaticity defined as
ǫ(t) = −θ̇(t)/Ω′(t),

and substituting Eq. (2.7) into Eq. (1.11), we find the Pnad up to second order in ǫ,

Pnad
∼= [ǫ2 sin(

s0
2

+

∫ T/2

0

θ̇2

2Ω′dt+
ǫ̇2
ǫ2δ0

)− ǫ̇1
Ω0

]2. (2.8)

Here ǫ1 and ǫ2 are the diabaticity at resonance and pulse end respectively. In the region where ǫ2 ≫ ǫ1,
the avoided crossing at resonance can be neglected, and the avoided crossing at the pulse ends can be
approximated by LZ transitions. Eq. (2.8) reduces to

Pnad
∼= ǫ22 sin

2

(

s0
2

+
1

2

∫ ∞

0

δ20Ω̇
2
0

(δ20 + Ω̇2
0t

2)
5

2

dt

)

= ǫ22 sin
2

(

s0
2

+
ǫ2
2

∫ ∞

0

dx

(1 + x2)
5

2

)

= ǫ22 sin
2(
s0
2

+
ǫ2
3
).

It is identical to Eq. (2.4), which indicates that second order perturbation in the rotating adiabatic frame is
required to obtain the asymptotic Pnad in Eq. (2.4).

Eq. (2.8) can be verified in another way. If the diabaticity ǫ(t) is a constant, the Hamiltonian in the
adiabatic frame [8],

H(t) =
~

2

(

Ω′(t) iθ̇(t)

−iθ̇(t) −Ω′(t)

)

,

can be integrated exactly to give

Pnad =
ǫ2

1 + ǫ2
sin2

∫ T/2

0

√

Ω′(t)2 + θ̇(t)2dt. (2.9)

The particular case of sinusoidal pulses with Ω0 = δ0 has been analyzed thoroughly in Ref. [18]. Expanding
Eq. (2.9) in ǫ, we get

Pnad = {ǫ sin
∫ T/2

0

(Ω′(t) +
θ̇(t)2

2Ω′(t)
)dt+O(ǫ3)}2 ∼= {ǫ sin(s0

2
+

∫ T/2

0

θ̇2

2Ω′ dt)}
2,

which agrees with Eq. (2.8) as ǫ̇ = 0.

3 Boundary between oscillatory and nonoscillatory regions

Having studied both the nonoscillatory and oscillatory regions in the map of Pnad for finite chirped pulses,
we will switch the focus to the boundary between the two regions, where neither the avoided crossing at
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resonance nor those at the pulse ends are negligible. To take all the avoided crossings into account, we
introduce a split level crossing model that combines the nonadiabatic transitions at the resonance and
away from the resonance. The pulse can be decomposed into three segments, namely, before resonance, at
resonance, and after resonance. Since the nonadiabatic transition probability is small in each segment, the
total nonadiabatic transition amplitude is approximately the sum of the amplitude in each segment. At
resonance, the nonadiabatic transition amplitude is determined by the LZ transition. By Eq. (A.3), the
on-resonance transition amplitude is

A1 = αLZ(k1)βLZ(k1)+α
∗
LZ(k1)β

∗
LZ(k1) = πe−πk1(

1

Γ(12 − ik1)Γ(
1
2 + ik1)

− k1
Γ(1− ik1)Γ(1 + ik1)

) = e−2πk1 ,

which agrees with the nonadiabatic transition probability given in the Landau-Zener formula Eq. (1.12).
The off-resonance nonadiabatic transition amplitude in the adiabatic limit was computed in Section 2. The
series Eq. (2.7) would not contain the on-resonance transition amplitude e−2πk1 no matter how high the
order of perturbation is, because e−2πk1 has an essential singularity at infinity, thus cannot be approximated
by a power series in 1/k1. By Eq. (2.8), the off-resonance transition amplitude up to second order in ǫ is

A2 = ǫ2 sin(
s0
2

+

∫ T/2

0

θ̇2

2Ω′ dt+
ǫ̇2
ǫ2δ0

)− ǫ̇1
Ω0
.

Since the boundary is in the region where ǫ1 ≫ ǫ2, A2 can be simplified to

A2 = ǫ2 sin
s0
2

− ǫ̇1
Ω0
.

As a result, the total nonadiabatic transition probability can be approximated by

Pnad
∼= (A1 +A2)

2 = (e−2πk1 + ǫ2 sin
s0
2

− ǫ̇1
Ω0

)2. (3.1)

To justify Eq. (3.1), we plot the traces of Pnad = 0 obtained by numerical integration against those
determined by Eq. (3.1) in Fig. 3.
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Figure 3: (Color online) Trace of Pnad = 0 in the map along the boundary between the oscillatory and nonoscillatory
regions. (a) Black curves: exact Pnad; red (gray) curves: approximate Pnad given by Eq. (3.2); dots: tips of loops
given by Eq. (3.3). (b) Black curves: exact Pnad; red (gray) curves: approximate Pnad given by Eq. (3.1); lower blue
(thin) curve: approximate Pnad given by Eq. (3.4); dots: tips of loops given by Eq. (3.5).

Fig. 3(a) is for the sinusoidal pulses. Since Ω(t) varies smoothly at resonance, ǫ̇1 = 0. Eq. (3.1) becomes

Pnad
∼= (e−2πk1 + ǫ2 sin

s0
2
)2. (3.2)
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The domain in Fig. 3(a) consists of large Ω0/ωm and δ0/ωm because Eq. (3.2) is only valid asymptotically.
Fig. 3(a) shows that the trace of Pnad = 0 determined by Eq. (3.2) is very close to the exact trace. On the
other hand, if the on-resonance transition amplitude e−2πk1 were omitted from Eq. (3.2), it would lead to a
qualitatively different trace of Pnad, determined by sin s0 = 0, shown as the darkest regions in Fig. 2(b). To
quantify the boundary between the oscillatory and nonoscillatory regions, we can define it as the envelope
of the trace of Pnad = 0, connected by the “tips” of the loops, which satisfy

sin
s0
2

= −1 ⇒ s0 = (4n− 1)π and e−2πk1 = ǫ2, (3.3)

according to Eq. (3.2). The tips are plotted in Fig. 3(a) as well.

Fig. 3(b) plots the triangular pulses with population inversion. For triangular pulses, Ω(t) has a kink
at resonance, ǫ̇1 = −3ǫ1Ω̇1/Ω0 > 0, so Eq. (3.1) has to be used. In Fig. 3(b), the trace of inversion pulses
determined by Eq. (3.1) matches very well with the exact trace. Compared with sinusoidal pulses, the trace
of triangular pulses with population inversion contains an extra curve below the loops. It can be explained
by the difference between Eqs. (3.1) and (3.2). Eq. (3.1) has two sets of zeros. Along the lower curve,
ǫ2 ≪ e−2πk1 , and the approximate equation for the trace can be simplified to

e−2πk1 =
ǫ̇1
Ω0
, (3.4)

the plot of which also agrees well with the exact trace in Fig. 3(b). Along the loops, e−2πk1 ≪ ǫ2, and the
trace determined by the simplified approximate equation,

ǫ2 sin
s0
2

=
ǫ̇1
Ω0
,

is indistinguishable from that determined by Eq. (3.1). Similarly, the boundary is defined as the envelope
connected by the tips of the loops that are plotted in Fig. 3(b) and determined by

sin
s0
2

= 1 ⇒ s0 = (4n+ 1)π and ǫ2 =
ǫ̇1
Ω0
. (3.5)

Equations (3.1) through (3.5) explain the qualitative difference between the traces of sinusoidal and triangular
pulses with population inversion. More generally, the boundary between the oscillatory and nonoscillatory
regions in the map of Pnad is determined asymptotically by Eq. (3.2) for smooth pulses, and Eq. (3.1) for
other pulses.

4 Stable inversion pulses

In this section we will use the map of Pnad to design chirped pulses to achieve stable inversion of quantum
state. The controlled inversion of quantum state can be used to generate large optical force on atoms in laser
cooling [6] or perform the NOT operation on a qubit in quantum computing. The pulse has to achieve not
only an inversion, ie, Pnad = 0, but also a stable inversion, ie, Pnad < Pth as pulse parameter vary, where
Pth is the accuracy threshold that depends on the application. In the interaction of counterpropagating light
pulses with atoms, the optical force F ∝ 1 −

√
Pnad [6]. The accuracy threshold is Pth = 10−2 to achieve

90% of the maximum force. Fault-tolerant quantum computation can run reliably for arbitrarily long time
provided that the noise is weaker than certain accuracy threshold. In Ref. [20], it was proved that for
quantum computation based on error detection and postselection, the accuracy threshold was 1.04 × 10−3.
A larger threshold allows more variation in the pulse parameters. It is well known that adiabatic pulses
provide an efficient method to achieve stable inversion. We will quantify the stability in this section.

For a given pulse profile, Pnad depends on the coupling strength Ω0 and detuning δ0. In atomic exper-
iments Ω0 and δ0 are stably controlled [6], so the sensitivity to δ0 does not pose a problem. However, as
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pointed out in Ref. [5], the sensitivity to Ω0 determines the usable cross section of Gaussian laser beam.
Only the portion of the cross section whose Ω0 is within the allowed range for the accuracy threshold can
be used reliably for the inversion. The energy efficiency, ie, the proportion of the usable energy, is

η = 1− [(Ω0)min/(Ω0)max]
2.

On the other hand, the sensitivity to the Doppler shift would affect the velocity capture range of an inversion
pulse. For an atom moving at velocity v, the effective detuning is shifted by δD = kv, where k is the wave
number of the resonant light.

The classical way of adiabatic inversion consists of a constant coupling strength Ω0 and a frequency sweep
from well below resonance to well above resonance. To obtain a complete inversion that is insensitive to
the transition time T , δ0 ≫ Ω0 is needed, which requires a large detuning, and thus is inefficient. Efficient
methods of inversion include π-pulses and adiabatic pulses. We will compare their stability under the
variation of coupling strength and Doppler shift with respect to specific accuracy thresholds.

4.1 Stability of inversion pulses

Pnad for π-pulses is given by Eq. (1.14). A perturbed pulse with coupling strength Ω0 +∆Ω must satisfy

Pnad = cos2[s0(1 +
∆Ω

Ω0
)] = sin2(s0

∆Ω

Ω0
) < Pth,

where the inversion condition Pnad = cos2 s0 = 0 of the unperturbed pulse is used. For Pth ≪ 1, the
maximum allowed ∆Ω is given by

T∆Ω = C
√

Pth, (4.1)

where C = Ω0T/s0 is a constant of order 1 depending on the pulse profile. C = π for sinusoidal pulses,
C = 4 for triangular pulses.

Pnad for adiabatic pulses is given by Eq. (1.15). The perturbed pulse must satisfy

Pnad ≈ ǫ22 sin
2(s0 +

∂s0
∂Ω0

∆Ω) < Pth,

where s0 is regarded as a function of δ0 and Ω0. Using the inversion condition Pnad = ǫ22 sin
2 s0 = 0 of the

unperturbed pulse, we obtain the maximum allowed ∆Ω for Pth ≪ 1,

∆Ω = C
δ20
Ω0

√

Pth, (4.2)

where C = (Ω0/Ω̇0)(∂Ω0/∂s0) is a number of order 1 depending on the pulse profile and parameters. By
comparing Eqs. (4.1) and (4.2), the allowed ∆Ω for adiabatic pulses with ǫ2 ≪ 1 is much larger than that
for π-pulses under the same threshold. Among adiabatic pulses, the pulses with larger δ0 and smaller Ω0 are
preferred in order to allow larger ∆Ω.

The profiles of the π-pulse and the adiabatical pulse with Doppler shift are plotted in Fig. 4. For a
Doppler-shifted π-pulse,

α(T/2) = αLZ(k2), β(T/2) = β∗
LZ(k2)e

is′
0 , α(−T/2) = αLZ(k2), β(−T/2) = −βLZ(k2)e

−is′
0 ,

where k2 = δ2D/(8Ω̇0) is the adiabaticity at the two ends of the doppler-shifted pulse, and

s′0 =
1

2

∫ T/2

−T/2

√

Ω2(t) + (δ(t) − δD)2dt. (4.3)
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Figure 4: Profiles of Doppler-shifted pulses. Dashed lines are the detuning without Doppler shift.

Since the adiabatic states at the end of the pulse are the same as those at the beginning of the pulse,

Pnad = |αad|2 = |α2
LZ(k2) + β2

LZ(k2)e
−2is′

0 |2.

Using the inversion condition Pnad = cos2 s0 = 0, the fact that s′0−s0 is of the order of k2, and the asymptotic
forms of αLZ(k2) and βLZ(k2) obtained from Eq. (A.3), we have for k2 ≪ 1,

Pnad = |α2
LZ(k2)− β2

LZ(k2)|2 = 2πk2 < Pth.

Therefore the maximum allowed Doppler shift is

δD =

√

4

π
Ω̇0Pth. (4.4)

For a Doppler-shifted adiabatic pulse, the perturbation method in the rotating adiabatic frame still applies,
except that the detuning is no longer symmetric. By the first order approximation,

Pnad =

∣

∣

∣

∣

∣

ǫ(t)eis(t)

2i

∣

∣

∣

∣

T/2

−T/2

∣

∣

∣

∣

∣

2

= (
ǫ+ + ǫ−

2
sin s′0)

2 + (
ǫ+ − ǫ−

2
cos s′0)

2,

where ǫ± = Ω̇0/(δ0 ± δD)2 are the diabaticity at the two ends of the Doppler-shifted pulse, and s′0 is defined
by Eq. (4.3). Using the inversion condition Pnad = ǫ22 sin

2 s0 = 0 and the fact that s′0 − s0 is of the order of
Tδ2D/δ0, we have for δD ≪ δ0,

Pnad = (2ǫ2
δD
δ0

)2 < Pth.

The maximum allowed Doppler shift is given by

δD
δ0

=
δ20
Ω̇0

√
Pth

2
. (4.5)

By comparing Eqs. (4.4) and (4.5), adiabatic pulses have larger velocity capture range than π-pulses. Among
adiabatic pulses, the pulses with larger δ0 and smaller Ω0 are also preferred for larger velocity capture range.

4.2 Examples of stable inversion pulses

We present and compare a few sinusoidal inversion pulses with small coupling strength and detuning. The
pulses are shown in the magnified map of Pnad for sinusoidal pulses Fig. 5(a). Point A represents the first
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Figure 5: (a) Magnified map of Pnad for sinusoidal pulses. The curves are for Pnad = 0.1, 0.01, 0.001, .... Point A is
the π-pulse, points B and C are the adiabatic pulses. (b) Pnad with Doppler shift for the points A, B and C.

π-pulse, whose δ0 = 0 and s0 = π/2. Points B and C represent two adiabatic pulses, chosen as the pulses
with the largest detuning on the first and second “loops” in the map. Pnad for each pulse is plotted against
the Doppler shift in Fig. 5(b). The maximum allowed deviation in the coupling strength, the corresponding
energy efficiency, and the maximum allowed Doppler shift are listed in Table 1 for each pulse, with respect
to the accuracy threshold 10−3 and 10−2.

Pnad < 10−3 Pnad < 10−2

Pulse parameters ∆Ω0 η δD ∆Ω0 η δD
A (δ0 = 0,Ω0 = π/2) 0.032 7.8% 0.043 0.100 22.5% 0.135
B (δ0 = 4.1,Ω0 = 3.4) 0.425 40% 0.57 0.775 60% 1.02
C (δ0 = 9.2,Ω0 = 6.0) 0.954 50% 0.86 2.055 75% 4.65

Table 1: Maximum allowed deviation in coupling strength, energy efficiency, and maximum allowed Doppler
shift of the sinusoidal pulses with respect to the accuracy threshold. All frequencies are in the unit of ωm.

In Table 1, ∆Ω and δD for the π-pulse agree well with Eqs. (4.1) and (4.4). ∆Ω and δD for the adiabatic
pulses agree with Eqs. (4.1) and (4.4) only qualitatively because the pulses are close to the boundary
between the oscillatory and nonoscillatory regions in the map, where Pnad need to be approximated by the
more complicated Eq. (3.1). According to Table 1, ∆Ω0 for the threshold Pth = 10−3 is more than 10 times
bigger for the adiabatic pulses than for the π-pulse, and the energy efficiency is more than 5 times higher.
The energy efficiency is further boosted by half for the more relaxed accuracy threshold Pth = 10−2. The
adiabatic pulses allow 10 times bigger Doppler shifts than the π-pulse for the same accuracy threshold. It
is in contrast to the half adiabatic pulse with constant adiabaticity in Ref. [5], because at the two ends the
sinusoidal pulses have detuning ±δ0, while the pulses in Ref. [5] have vanishingly small detuning.

Similar adiabatic pulses can be selected from the map of Pnad for triangular pulses Fig. 1(b). For a
generic pulse profile, which may be neither sinusoidal nor triangular [6], an adiabatic inversion pulse with
relatively small coupling strength and detuning can be selected from the corresponding map of Pnad, with
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guidance by Eqs. (4.2) and (4.5). The adiabatic pulse has higher power efficiency and larger velocity capture
range than the π-pulse.

5 Conclusion

We studied the map of the nonadiabatic transition probability Pnad in the parameter space of the coupling
strength and detuning amplitude for chirped pulses. The oscillation of Pnad is due to the interference of the
nonadiabatic transitions at the beginning and the end of the pulse. The boundary between the oscillatory
and nonoscillatory regions of the map is formed by the interference between the on-resonance transition and
off-resonance transition. The map of Pnad can aid the design of efficient chirped pulses to achieve stable
population inversion. We proved that adiabatic pulses with larger detuning amplitude and smaller coupling
strength are optimal both for high power efficiency and for large velocity capture range. Finally, as pointed
out by Vitanov and Garraway [4], Pnad only depends on the function θ(s). Therefore the sinusoidal or
triangular pulses described in this paper can be generalized to fit a specified coupling or detuning profile
without altering the transition probability.
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A Landau-Zener transition in the rotating adiabatic frame

The Landau-Zener model defined by Eqs. (1.1) and (1.2) is well-known to be analytically solvable. For the
applicability in Section 2, we derive the propagation matrix from 0 to ∞ rather than from −∞ to ∞ as in
most literatures. Following Zener’s paper [2], we write the wave function as

ψ(t) = e−iat
2

4 c+(t)ψ+ + ei
at

2

4 c−(t)ψ−.

c+(t) satisfies the following equation,

d2c+
dt2

− iat
dc+
dt

+
b2

4
c+ = 0.

Letting z = iat2/2, we can convert the equation above to the Kummer’s equation,

z
d2c+
dz2

+ (
1

2
− z)

dc+
dz

− ib2

8a
c+ = 0.

The solution is

c+(t) = F

(

i
b2

8a
;
1

2
; i
at2

2

)

c+(0)− i
bt

2
F

(

i
b2

8a
+

1

2
;
3

2
; i
at2

2

)

c−(0). (A.1)

where F is the confluent hypergeometric function [15]. Consequently, the propagation matrix from 0 to t is

O0(t) =





e−iat
2

4 F
(

i b
2

8a ;
1
2 ; i

at2

2

)

−i bt2 e−iat
2

4 F
(

i b
2

8a + 1
2 ;

3
2 ; i

at2

2

)

−i bt2 ei
at

2

4 F
(

−i b28a + 1
2 ;

3
2 ;−iat

2

2

)

ei
at

2

4 F
(

−i b28a ; 12 ;−iat
2

2

)



 .
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As t → ∞, O0(t) does not converge because of the highly oscillating phases. However, the propagation
matrix in the rotating adiabatic frame converges as t → ∞ because the oscillating phases are cancelled by
the phases in the eigenstates. The quantum state in the rotating adiabatic frame is associated with the state
in the original frame by [8]

ψ(t) = U(t)ψ0(t) =

(

exp(i s(t)2 ) 0

0 exp(−i s(t)2 )

)(

cos( θ(t)2 ) sin( θ(t)2 )

− sin( θ(t)2 ) cos( θ(t)2 )

)

ψ0(t), (A.2)

in which θ(t) and s(t) are defined after Eq. (1.7), with Ω(t) and δ(t) given in Eq. (1.2). As t → ∞, the
propagation matrix in the rotating adiabatic frame, denoted by OLZ , becomes

OLZ(∞) = lim
t→∞

U(t)O0(t)U
†(0)

= lim
t→∞

(

exp( i
2

∫ t

0

√

b2 + (aτ)2dτ) 0

0 exp(− i
2

∫ t

0

√

b2 + (aτ)2dτ)

)

O0(t)

( √
2
2 −

√
2
2√

2
2

√
2
2

)

= e−
π

2
k





eik(1−ln k) Γ( 1

2
)

Γ( 1

2
−ik)

eik(1−ln k)−i π

4

√
k

Γ( 1

2
)

Γ(1−ik)

−e−ik(1−ln k)+i π

4

√
k

Γ( 1

2
)

Γ(1+ik) e−ik(1−ln k) Γ( 1

2
)

Γ( 1

2
+ik)





( √
2
2 −

√
2
2√

2
2

√
2
2

)

,

where k = b2/(8a) is the adiabaticity at the avoided crossing. The asymptotic form of the confluent hyper-
geometric function [15] has been used in the derivation of the last equality. Substituting OLZ(∞) into Eq.
(1.8), we obtain the coefficients α and β for the Landau-Zener model in the limit that t → ∞ as functions
of k,

αLZ(k) =

√

π

2
exp

{

−π
2
k − ik(1− ln k)

}

[

1

Γ(12 + ik)
+ ei

π

4

√
k

Γ(1 + ik)

]

,

βLZ(k) =

√

π

2
exp

{

−π
2
k + ik(1− ln k)

}

[

1

Γ(12 − ik)
− e−iπ

4

√
k

Γ(1− ik)

]

. (A.3)

It recovers the half crossing transition probability [21], P = |αLZ − β∗
LZ |2/2 = (1− e−2πk)/2.
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