
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Origin of maximal symmetry breaking in even PT-
symmetric lattices

Yogesh N. Joglekar and Jacob L. Barnett
Phys. Rev. A 84, 024103 — Published 30 August 2011

DOI: 10.1103/PhysRevA.84.024103

http://dx.doi.org/10.1103/PhysRevA.84.024103


AGJ1078

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Origin of maximal symmetry breaking in even PT -symmetric lattices

Yogesh N. Joglekar∗ and Jacob L. Barnett
Department of Physics, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, USA

(Dated: August 10, 2011)

By investigating a parity and time-reversal (PT ) symmetric, N-site lattice with impurities ±iγ
and hopping amplitudes t0(tb) for regions outside (between) the impurity locations, we probe the
inter-impurity-distance dependence of the critical impurity strength and the origin of maximal PT -
symmetry breaking that occurs when the impurities are nearest neighbors. Through a simple and
exact derivation, we prove that the critical impurity strength is equal to the hopping amplitude
between the impurities, γc = tb, and the simultaneous emergence of N complex eigenvalues is a
robust feature of any PT -symmetric hopping profile. Our results show that the threshold strength γc
can be widely tuned by a small change in the global profile of the lattice, and thus have experimental
implications.

Introduction: The discovery of “complex extension of
quantum mechanics” by Bender and coworkers [1, 2]
set in motion extensive mathematical [3–5] and theo-
retical investigations [6] of non-Hermitian Hamiltonians

HPT = K̂ + V̂ that are symmetric with respect to com-
bined parity (P) and time-reversal (T ) operations. Such
continuum or lattice Hamiltonians [7–10] usually con-

sist of a Hermitian kinetic energy part, K̂ = K̂†, and
a non-Hermitian, PT -symmetric potential part, V̂ =
PT V̂ PT 6= V̂ †. Although it is not Hermitian HPT

has purely real eigenvalues E = E∗ over a range of pa-
rameters, and its eigenfunctions are simultaneous eigen-
functions of the combined PT -operation; this range is
defined as the PT -symmetric region. The breaking of
PT -symmetry, along with the attendant non-reciprocal
behavior, was recently observed in two coupled optical
waveguides [11, 12] and has ignited further interest in
PT -symmetric lattice models. These evanescently cou-
pled waveguides provide an excellent realization [13] of an
ideal, one-dimensional lattice with tunable hopping [14],
disorder [15], and non-Hermitian, on-site, impurity po-
tentials [16, 17].
Recently nonuniform lattices with site-dependent hop-

ping tα(k) = t0 [k(N − k)]
α/2

and a pair of imaginary
impurities ±iγ at positions (m, m̄) have been extensively
explored [17–20], where m̄ = N + 1 −m and N ≫ 1 is
the number of lattice sites. The PT -symmetric phase in
such a lattice is robust when α ≥ 0, the loss and gain
impurities ±iγ are closest to each other, and γ ≤ γc
where the critical impurity strength is proportional to
the bandwidth of the clean lattice, γc ∝ 4t0(N/2)

α. For a
generic impurity position m, when the impurity strength
γ > γc(m) increases the number of complex eigenvalues
increases sequentially from four to N − 1 when N is odd
and to N when it is even. In an exceptional contrast,
when m = N/2 - nearest neighbor impurities on an even
lattice - all eigenvalues simultaneously become complex
at the onset of PT -symmetry breaking. This maximal
symmetry breaking is accompanied by unique signatures
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in the time-evolution of a wavepacket [20].
These results raise the following questions: Is this ex-

ceptional behavior limited to lattices with α-dependent
hopping or is it generic? Which factors truly determine
the critical impurity strength γc(N/2) in the exceptional
case? In the general case, how does the critical impurity
strength γc(m) for arbitrary impurity positions (m, m̄)
depend upon the lattice parameters?
In this Brief Report, we investigate an N -site lattice

with impurities ±iγ at positions (m, m̄) and a constant
hopping amplitude t0(tb) for sites outside (between) the
parity-symmetric impurity locations. Our two salient re-
sults are as follows: (i) When tb ≫ t0, the critical im-
purity strength γc(m) → tb irrespective of the impu-
rity position m and whether N is even or odd. When
tb < t0, the critical impurity strength γc(m) ∼ tηb where
the exponent η(d) ∼ d increases monotonically with the
distance d = m̄ − m = N + 1 − 2m between the im-
purities, irrespective of whether N is even or odd. (ii)
For an even lattice, when m = N/2, we analytically
prove that all eigenvalues simultaneously become com-
plex when γ > γc(N/2) = tb. This robust result is
true for any symmetric distribution of real hopping am-
plitudes. Thus, the PT -symmetry breaking threshold can
be substantially tuned without significant changes in the
global hopping-amplitude profile of the lattice, and the
exceptional nature of the m = N/2 case is due to the
ability to partition the system into two, and exactly two,
pieces.
Tight-binding Model: We start with the Hamiltonian for
a one-dimensional, tight-binding, non-uniform lattice

HPT = −

N−1
∑

i=1

t(i)
(

a†i+1ai + a†iai+1

)

+iγ
(

a†mam − a†m̄am̄

)

,

(1)
where a†n(an) is the creation (annihilation) operator for a
state localized at site n, and the hopping function is given
by t(i) = tb > 0 for m ≤ i ≤ m̄ − 1, and t(i) = t0 > 0
otherwise. This Hamiltonian continuously extrapolates
from that for a lattice of length d = N + 1 − 2m with
impurities at its end when tb ≫ t0, to that of a pair
of disconnected lattices, one with the gain impurity and
the other with the loss impurity, when tb ≪ t0. Note
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that the critical impurity strengths in these two limits are
known [17, 21]. Due to the constant hopping amplitude
outside or between the impurity locations, an arbitrary

eigenfunction |ψ〉 =
∑N

n=1 ψ(n)a
†
n|0〉 with energy E can

be expressed using the Bethe ansatz as

ψ(n) =







A sin(kn), 1 ≤ n ≤ m,
P sin(k′n) +Q cos(k′n), m < n < m̄,

B sin(kn̄), m̄ ≤ n ≤ N.
(2)

Here E(k, k′) = −2t0 cos(k) = −2tb cos(k
′) defines

the relation between the quasimomenta k, k′. In the
PT -symmetric phase, the energy spectrum of Eq.(1) is
particle-hole symmetric [22], and the eigenenergies sat-
isfy |E| . 2max(t0, tb). Note that the relative phases
of ψ(n) are the same at different points within each of
the three regions, although there may be a phase differ-
ence between wavefunctions in different regions. There-
fore, without loss of generality, we may choose ψ(n) to
be real for 1 ≤ n ≤ m. By considering the eigenvalue
equation HPT |ψ〉 = E|ψ〉 at points m,m + 1 and their
reflection counterparts, it follows that the quasimomenta
(k, k′) obey the equation [21]

M(k, k′) ≡
[

sin2 [k(m+ 1)] + Γ2 sin2(km)
]

× sin [k′(N + 1− 2m)] + T 2
b sin2(km)

× sin [k′(N − 1− 2m)]− 2Tb sin(km)

× sin [k(m+ 1)] sin [k′(N − 2m)] = 0, (3)

where Γ = γ/t0 and Tb = tb/t0 denote the dimensionless
impurity strength and hopping amplitude respectively.
Note that when 2min(t0, tb) < |E| ≤ 2max(t0, tb), k is
real and k′ is purely imaginary (or vice versa), whereas
for |E| ≤ 2min(t0, tb), both k, k′ are real. Thus, Eq.(3)
represents two distinct equations in these two cases.
The right-hand panel in Fig. 1 shows the dimensionless

critical impurity strength Γc(d) = γc(m)/t0 as a function
of Tb = tb/t0 ≥ 1 for various inter-impurity-distances
d = N + 1 − 2m in an N = 20 lattice; we obtain similar
results for an odd lattice. Note that the distance between
PT -symmetric impurities is odd when N is even and vice

versa. We find that γc → tb quickly for tb/t0 > 1; when
tb/t0 ≫ 1, the lattice reduces to a uniform one with d+1
sites, impurities at its end points, and the result γc = tb
is expected [21]. The left-hand panel shows Γc(d) vs. Tb
on a logarithmic scale in N = 20 and N = 21 lattices
for Tb < 1. As the distance d between the impurities
increases, corresponding critical impurity strength de-

creases as a power-law, Γc(d) ∝ T
η(d)
b where the exponent

η(d) ∼ d. This behavior can be qualitatively understood
as follows: the system is in the PT -symmetric region
if the frequency ∼ γ/t0 at which particles are created
at the gain-impurity site m is lower than rate at which
these excess particles can hop over to the loss-impurity
site, where they are absorbed at frequency ∼ γ/t0. Since
tb is the hopping amplitude at sites between the impu-
rities, it follows that the effective frequency of hopping
from the gain- to the loss-site decreases with d as T d

b .
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FIG. 1. (color online) a) Left-hand panel shows dimension-
less critical impurity strength Γc(d) = γc/t0 as a function
of dimensionless hopping amplitude 0 < Tb = tb/t0 < 1
for various distances d between PT -symmetric impurities in
N = 20, 21 lattices; note that d must be odd when N is even

and vice versa. It follows that Γc(d) ∝ T
η(d)
b → 0, as is ex-

pected on physical grounds, irrespective of the whether N is
even or odd. b) Right-hand panel shows the critical impu-
rity strength Γc(d) as a function of Tb ≥ 1 for various values
of d in an N = 20 lattice. Although at Tb = 1, the critical
strength Γc(d) reduces with distance d between the impurities,
for Tb ≥ 2 the critical impurity strength Γc → Tb (γc → tb)
irrespective of d and N .

Indeed, when tb/t0 ≪ 1, the system is divided into two,
non PT -symmetric, uniform lattices, one with the loss
impurity and the other with the gain. It follows, then,
that γc → 0 as tb/t0 → 0. We remind the reader that
except when d = 1 (right-hand panel in Fig. 1) - the exep-
tional case - the PT -symmetry breaks sequentially with
the emergence of four complex eigenvalues.
Origin of Maximal Symmetry Breaking: Now let us con-
sider the exceptional case in an even lattice, m = N/2,
where Eq.(3) reduces to

t20 sin
2

[

k

(

N

2
+ 1

)]

=
(

t2b − γ2
)

sin2
(

kN

2

)

. (4)

It follows from Eq.(4) that the PT -symmetry breaks
maximally when γ > γc(N/2) = tb and is accompanied
by the simultaneous emergence of N complex (not purely
imaginary) quasimomenta and eigenenergies. Since the
bandwidth of the clean lattice is determined by both hop-
pings (t0, tb), it follows that the critical impurity strength
is independent of the lattice bandwidth.
To generalize this result, we consider the system with

an arbitrary, PT -symmetric, position-dependent hop-
ping profile tk = tN−k and real energy eigenvalues. In
the PT -symmetric region, the coefficients of an eigen-

function |φ〉 =
∑N

m=1 φ(m)|m〉 satisfy φ(m̄) = zφ∗(m)
where z = eiχ is a complex number of unit modulus; this
follows from the constraint (PT )2|φ〉 = |φ〉. Since the
hopping and eigenvalues are real, the eigenvalue differ-
ence equations imply that for any eigenfunction |φ〉, we
can choose the coefficients φ(k) to be real for 1 ≤ k ≤ m.
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A real eigenvalue ǫ and the (real) coefficients α = φ(N/2)
and β = φ(N/2 − 1) of its corresponding eigenfunction

|φǫ〉 =
∑N

i=1 φ(i)|i〉 satisfy

det

[

tN/2−1β + (ǫ− iγ)α tN/2α
tN/2α tN/2−1β + (ǫ+ iγ)α

]

= 0,

(5)
where we have used the PT -symmetric nature of eigen-
functions to deduce that φ(N/2+1) = eiχα, φ(N/2+2) =
eiχβ. Thus, when γ > γc = tN/2 = tb, the eigen-
value ǫ must become complex. Since this is true for
all eigenfunctions, the PT -symmetry breaks maximally

and the critical impurity strength is equal to the hop-
ping between the nearest-neighbor impurities. Note that
when the eigenvalue ǫ becomes complex, the correspond-
ing eigenfunction |φ〉 does not remain PT -symmetric,
φ(m̄) 6= zφ∗(m), and thus the eigenfunction coefficients
φ(k) for 1 ≤ k ≤ m cannot be chosen as real; instead
PT |φ〉 is an eigenfunction of the Hamiltonian with eigen-
value ǫ∗ 6= ǫ. Our robust result also explains the fragile
nature of PT -symmetric phase in lattices with hopping
function tα(k) for α < 0 [20]: in this case, the lattice
bandwidth ∆α ∼ N−|α|/2 whereas the hopping ampli-
tude between the two nearest-neighbor impurities scales
as tb ∼ N−|α|. Therefore the critical impurity strength
γc/∆α ∼ N−|α|/2 → 0 as N → ∞. A similar analysis for
closest impurities in an odd-N lattice shows that, due to
the presence of a lattice site between the two impurity
positions m = (N − 1)/2 and m̄ = (N + 3)/2, the cor-
responding critical impurity strength γc depends on the
details of the eigenfunction.
Thus, the maximal symmetry breaking only occurs in

an even, PT -symmetric lattice with nearest-neighbor im-
purities, and its origin is the ability to naturally partition
such a lattice into exactly two components.
Acknowledgments: This work was supported by the
IUPUI Undergraduate Research Opportunities Program
(J.B.) and by NSF Grant No. DMR-1054020 (Y.J.).



4

[1] C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243
(1998).

[2] C.M. Bender, Dorje C. Brody, and Hugh F. Jones, Phys.
Rev. Lett. 89, 270401 (2002).

[3] A. Mostafazadeh, J. Math. Phys. 43, 205 (2002).
[4] A. Mostafazadeh, J. Phys. A 36, 7081 (2003).
[5] A. Mostafazadeh, Phys. Rev. Lett. 99, 130502 (2007).
[6] See, for example, C.M. Bender, Rep. Prog. Phys. 70,

947 (2007); A. Mostafazadeh, Phy. Rev. Lett. 99, 130502
(2007); M. Znojil, J. Phys. A 44, 075302 (2011).

[7] M. Znojil, Phys. Lett. A 40, 13131 (2007).
[8] M. Znojil, Phys. Lett. B 650, 440 (2007).
[9] M. Znojil, Phys. Rev. A 82, 052113 (2010).

[10] C. Korff and R. Weston, J. Phys. A 40, 8845 (2007); O.A.
Castro-Alvared and A. Fring, ibid. 42, 465211 (2009).

[11] A. Guo et al., Phys. Rev. Lett. 103, 093902 (2009).
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