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In the mean-field theory of atom-molecule systems, where bosonic atoms combine to form
molecules, there is no usual U(1) symmetry, presenting an apparent hurdle for defining Berry phase
and Berry curvature for these systems. We define a Berry connection for this system, with which
Berry phase and Berry curvature can be naturally computed. We use a three-level atomic-molecule
system to illustrate our results. In particular, we have computed the mean-filed Berry curvature of
this system analytically, and compared to the Berry curvature computed with the second-quantized
model of the same system. An excellent agreement is found, indicating validity of our definition.
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I. INTRODUCTION

In 1984, Berry discovered that in the adiabatic evolu-
tion of a quantum system, besides the dynamics phase,
there exists an additional phase accompanying the evolu-
tion and this phase depends only on the geometric path
in the parameter space[1]. This geometric phase, now
called Berry phase, along with the corresponding Berry
curvature, has found wide applications in condense mat-
ter physics[2, 3] and important use in implementation
of quantum computing gates[4, 5]. Recently, the Berry
phase has been generalized to nonlinear quantum sys-
tem, such as the Bose-Einstein condensates described
by the nonlinear Schrödinger equations[6]. This gener-
alization is possible because of the well-known fact that
quantum systems mathematically have a classical Hamil-
tonian structure [7, 8].

A recent development in the field of ultra-cold atoms
is to use Feshbach resonances[9] or a stimulated opti-
cal Raman transition[10, 11] to convert two atoms to a
molecule. This kind of atom-molecule systems can be
well described by a mean-field theory and become non-
linear systems when both the atoms and the molecules
are bosons and the number of particles in this system is
large. As nonlinearity can cause the breakdown of adia-
batic process, there have been great interests in the adi-
abatic evolution of the atom-molecule systems [12, 13].
Naturally, there are also efforts trying to study Berry
phase in this type of systems [18]. It is not trivial to
define Berry phase in these atom-molecule systems: the
mean-field Hamiltonian of these systems contains terms
of the form ψ∗

eψaψa, which obviously does not have U(1)
gauge invariance; this lack of U(1) invariance poses dif-
ficulty in defining Berry phase. In Ref.[18], the authors
managed to circumvent the difficulty and defined Berry
phase for these atom-molecule systems. However, it is
not clear how Berry connection and, therefore, Berry cur-
vature can be defined with their approach. It is also not
clear how the mean-field Berry phase defined in Ref.[18]
is related to the Berry phase for the second quantized

model of the system, which can be defined without any
ambiguity.
In this paper, we show a Berry connection can be de-

fined in the mean-field theory of the atom-molecule sys-
tems. With this Berry connection, Berry phase and Berry
curvature can be computed in the usual way. In particu-
lar, to show the validity of our definition, the Berry curva-
tures computed as such are compared to the Berry curva-
tures for the second quantized model. This is done both
analytically and numerically. Although our approach is
general, we choose to use a three-level atomic-molecule
system[19, 20] as an example to illustrate our results.
The paper is organized as follows. In Section II, we

shall briefly introduce our theoretical model. In Sec-
tion III, we define Berry connection for this system. In
Section IV, we compute the Berry curvatures for certain
mean-field eigenstates, and compare them to the results
obtained with the second quantized model. Excellent
agreement is found. Finally, in Section V, we discuss the
results and conclusions.

II. THREE LEVEL ATOM-MOLECULE SYSTEM

We consider an atomic-molecule Λ system shown in
Fig.1. With the atomic energy level set to be zero,
the Hamiltonian of this atom-molecule system under the
rotating-wave approximation can be written as

ĤN = ~ωeψ̂
†
eψ̂e + ~ωgψ̂

†
gψ̂g + ~Ωde

iνdtψ̂†
eψ̂g

+ ~
Ωpe

−iνpt

√
N

ψ̂†
eψ̂aψ̂a + h.c. (1)

where νd and νp are the frequencies of laser pulse Ωd and
laser pulse Ωp, respectively, and the bosonic annihilation

and creation operators ψ̂α and ψ̂†
α are for state |α〉 with

α being a, g, or e. N is the total number of atoms.
We note that Ωp can be made complex. One way to

achieve this is to split the laser pulse νp into two beams 1
and 2 and then re-combine and focus them on the system.
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FIG. 1: Schematic level diagram of an atom-molecule Λ sys-
tem. |a〉 is the atomic energy level, |g〉 is the molecular ground
state, and |e〉 is the excited molecular energy level. Ωd and
Ωp are the two Rabi frequencies of the laser pulses. ∆ is the
detuning of the pump field with respect to the transition from
|a〉 to |e〉.

This will lead to a complex Ωp as Ωp = ε1+ε2e
−iϕ, where

the phase ϕ is determined by the optical path difference
between the two beams.
We split the Schrödinger picture Hamiltonian into two

parts, ĤN = ĤN0 + ĤN1, where

ĤN0 = ~νpψ̂
†
eψ̂e + ~(νp − νd)ψ̂

†
gψ̂g (2)

ĤN1 = ~(ωe − νp)ψ̂
†
eψ̂e + ~(ωg − νp + νd)ψ̂

†
gψ̂g

+ ~Ωde
−iνdtψ̂†

eψ̂g + ~
Ωpe

−iνpt

√
N

ψ̂†
eψ̂aψ̂a + h.c.(3)

After choosing ωe = ωg+νd and using the the interaction

picture Hamiltonian ĤNI = eiĤN0t/~ĤN1e
−iĤN0t/~ , we

obtain

ĤNI = ~∆ψ̂†
eψ̂e + ~∆ψ̂†

gψ̂g + ~Zψ̂†
eψ̂g

+ ~
(X − iY )√

N
ψ̂†
eψ̂aψ̂a + h.c. (4)

where ∆ = ωe−νp, Z = Ωd and X− iY = Ωp. The three
parameters, X ,Y and Z, characterize the influences of
the laser beams.
In the limit N → ∞, this atom-molecule system be-

comes classical and can be described by the following
mean-field Hamiltonian

Hs = lim
N→∞

〈 ˆHNI〉
N

= ~∆ψ∗
eψe + ~∆ψ∗

gψg

+ ~Zψ∗
eψg + ~(X − iY )ψ∗

eψaψa + h.c. (5)

where ψα is complex amplitude for the state |α〉. The
normalization is 2|ψe|2 + 2|ψg|2 + |ψa|2 = 1.

III. MEAN-FIELD BERRY CONNECTION

A particularly interesting point of this atom-molecule
system is that its mean-field Hamiltonian Hs has no U(1)

system. Instead, the Hamiltonian is invariant under the
following transformation





ψe

ψg

ψa



 → Us(1)





ψe

ψg

ψa



 =





e2iφ 0 0
0 e2iφ 0
0 0 eiφ









ψe

ψg

ψa



 .

(6)
Following Ref.[18], we shall call Us(1) skewed gauge
transformation. This lack of U(1) gauge transforma-
tion presents an apparent difficulty in defining the Berry
phase (or Berry connection) in this mean-field model.
However, we notice that the mean-field Hamiltonian in
Eq.(5) has a classical Hamiltonian structure. Namely,
we can define three pairs of conjugate variables, pe =√
i~ψ∗

e , qe =
√
i~ψe, pg =

√
i~ψ∗

g , qg =
√
i~ψg, and

pa =
√
i~ψ∗

a, qa =
√
i~ψa for this Hamiltonian. As the

nonlinear Berry phase introduced in Ref.[6] applies in
any system which has a classical Hamiltonian structure,
it should also apply in this atom-molecule system. If
we focus on the integrable regions, the system can be
described by a set of action and angle variables. This
means that we can define the Berry connection for this
system as [6]

~A = i〈ψ|∇|ψ〉 , (7)

where ∇ = (∂/∂X, ∂/∂Y, ∂/∂Z) and the bar indicates
an average over all initial angles with the same actions.
According to the quantum adiabatic theorem, the oc-
cupation probabilities of different eigenstates |an|2 are
adiabatic constants. In fact, they are actions In = |an|2
when the system is regarded mathematically as a classi-
cal Hamiltonian system; their corresponding angle vari-
ables θn’s are the phase of an’s. Therefore, for an instan-
taneous eigenstate, the averaging over the angles is no
longer needed and the Berry connection becomes

~An = i〈ψn|∇|ψn〉 , (8)

where |ψn〉 is an instantaneous eigenstate of the system.
Let us now analyze the general properties of this connec-
tion.
Under the skewed gauge transformation Us(1), we have

~A = i〈ψ|∇|ψ〉 −→ ~A′ = 〈ψ|′ i d
dR

|ψ〉′

= ~A+ (2|ψe|2 + 2|ψg|2 + |ψa|2)∇φ , (9)

where the last term is a trivial total derivative due to the
conservation of number of particles in the system. This
indicates that the Berry connection defined in Eq.(7) is
“gauge”-invariant under Us(1).

Usually, the Berry connection ~A defined in Eq.(7) is
guaranteed to be real by the U(1) gauge symmetry. Due
to the lack of U(1) symmetry in this atom-molecule sys-

tem, the so-defined ~A is in general complex. However,
this complexity does not pose any difficulty. To see this,
we decompose it explicitly into the real part and the
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imaginary part

~A =
i

2

(

〈ψ|∇|ψ〉 − 〈∇ψ|ψ〉
)

+
i

2
∇
(

〈ψ|ψ〉
)

, (10)

which shows clearly that the imaginary part is a total
derivative and, therefore, non-essential.
There is another way to justify the definition in Eq.(7).

That is through its semiclassical relation with the quan-
tum Berry connection, which can be defined and com-
puted with respect to the second quantized Hamiltonian

ĤN1. We denote it as ~AN , where the subscript N is re-
ferred to the number of atoms in the system. One can
prove that[21]

lim
N−→∞

(
~BN

N
− ~B) = 0 , (11)

where ~B = ∇× ~A and ~BN = ∇× ~AN are the mean-field
and quantum Berry curvatures, respectively. To prove
this relation, one first notices that the mean-field Hamil-
tonian is in fact the semiclassical limit of ĤN1. To see this
clearly, we can use the three pairs of conjugate variables,
pe, qe, pg, qg, and pa, qa and quantize them as follows,

[q̂e, p̂e] = [q̂g, p̂g] = [q̂a, p̂a] =
i~

N
. (12)

As can be checked easily, this recovers the second quan-
tized Hamiltonian ĤNI . Since these commutators ap-
proach to zero as N −→ ∞, we see that the mean-field
Hamiltonian Hs is the semiclassical limit of the quan-

tum Hamiltonian HNI . Since ~A defined in Eq.(7) can
also be regarded as the connection for Hannay’s angle
[6], one can then prove the above semiclassical relation
by following Berry’s argument [22].

IV. EXAMPLE: EIGENSTATES

In this section, we use an example to illustrate the
Berry connection that we have introduced in the last sec-
tion. For simplicity, we focus on the ground state with

∆ = 0. When X2 + Y 2 > Z2

4
, the ground state is

ψe =
1

2
, ψg = −1

2
, ψa = 0, (13)

with µ = −Z
2
. When X2 + Y 2 < Z2

4
, the ground state is

ψe = −

√

2

3
(X2 + Y 2) + 1

12
Z2

2(X − iY )
, (14)

ψg =
Z

4(X − iY )
, (15)

ψa =

√

2

3
− Z2

6(X2 + Y 2)
, (16)

with µ = −
√

2

3
(X2 + Y 2) + 1

12
Z2.
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FIG. 2: (a) The y component of the Berry curvature as a
function of X at Y = Z = 1 and ∆ = 0. The inset shows how
this Berry curvature changes as a function of N , the number
of particles, at X = 1.5. (b) The z component of the Berry
curvature as a function of X at Z = 1 and Y = ∆ = 0. The
inset shows how this Berry curvature as a function of N at
X = 1.5. The dotted lines in the insets are for the mean-field
values of the Berry curvature.

With the definition of Berry connection in Eq.(8), we
are able to compute the mean-field Berry curvature. We
find the Berry curvature is zero when (X2+Y 2) < Z2/4.
When (X2 + Y 2) > Z2/4,

{Bx, By, Bz} = {X,Y, Z} Z

6(X2 + Y 2)2
. (17)

We have also computed the Berry curvature with the
second-quantized model ĤNI using the formula

BN0 = Im
∑

m 6=0

〈0|∇ĤNI |m〉 × 〈m|∇ĤNI |0〉
(Em − E0)2

, (18)

where Em is the eigenenergy of the eigenstate |m〉. The
second-quantized Berry curvature is compared to the
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mean-field Berry curvature as shown in Fig. 2. It is
clear from the figure that these two sets of results are in
very good agreement with the mean-field. This further
confirms of our definition of Berry connection in Eq.(7)
is valid.

V. CONCLUSION

In the present work we have given a general definition
of Berry connection for nonlinear systems with a skewed
U(1) gauge invariance. We have justified this definition

from various aspects, in particular, its relation to Berry
connection for the corresponding quantum systems. We
have used a three-level Λ atomic-molecular system to il-
lustrate our results. Our result clarifies a mystery sur-
rounding how to define Berry connection for nonlinear
systems with skewed U(1) symmetry.
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