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We discuss a class of lasing modes created by a spatially inhomogeneous gain profile. These
lasing modes are “extra modes”, in addition to, and very different from, conventional lasing modes,
which arise from the passive cavity resonances. These new modes do not have high intensity across
the entire gain region, but instead are localized at the gain boundary and throughout the gain-free
region. They are surface modes, originating from the transmission resonances of the gain-free region.
Using an S-matrix description we connect these surface modes to the lasing modes in PT -symmetric
(balanced gain-loss) cavities.
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Generally in the theory of lasers, the observed lasing
modes arise from the modes of the passive cavity, which
are determined by the geometry and dielectric function of
the cavity in the absence of gain. The cavity mode that
evolves into the first lasing mode is selected because it has
a relatively long lifetime and a large spatial and spectral
overlap with the gain medium. Effects such as “line-
pulling” [1–3], self saturation, and mode competition can
cause lasing frequencies to shift away from their passive
cavity values, but typically each of the first few lasing
modes can be identified as evolving directly from a single
passive cavity mode.

There are laser systems in which the spatial distribu-
tion of the gain medium also plays a significant role in
determining properties of the lasing mode; two exam-
ples are gain-guided stripe lasers [4] and gain-coupled
distributed feedback (DFB) lasers [5, 6]. In gain-guided
semiconductor stripe lasers, lateral confinement is cre-
ated by the injected carriers, which produce a weak
graded index profile perpendicular to the direction of
propagation of the light. The confinement eliminates
transverse modes and reduces the threshold current for
lasing. In gain-coupled DFB lasers an imaginary index
grating is imposed at the Bragg frequency, which, though
small, strongly affects the relative lasing thresholds of the
passive cavity due to its periodic nature. In both cases
the resulting lasing modes emit at approximately the res-
onance frequencies of the passive cavity and are still in
one-to-one correspondence with them.

Recent numerical studies in one-dimensional (1D) ran-
dom lasers [7, 8] demonstrated the existence of lasing
modes created by spatially varying gain which do not oc-
cur near passive cavity resonance frequencies and do not
evolve smoothly out of passive cavity modes. Instead
they appear at bifurcations in the solution set of the
threshold lasing equations as a parameter, such as the
length of the gain-pumped region, is varied. They are
“extra modes”, not in one-to-one correspondence with
resonances of the passive cavity. These solutions were
observed under conditions of weak scattering and a spa-
tially inhomogeneous gain profile, with the signature of a
stronger spatial localization when compared to the pas-

sive modes of the random cavity. It was not clear what
role these three physical conditions — weak scattering,
randomness, and spatially inhomogeneous gain — played
in giving rise to these modes. In the present paper, we
show that the phenomenon is primarily due to the spa-
tially inhomogeneous gain profile and does not require
randomness.

Using a 1D cavity partially filled with a pumped gain
medium as an example, we show that these nonconven-
tional modes are closely related to transmission reso-
nances that occur as light propagates from the gain re-
gion through the gain-free region to the external freely-
propagating region. They are “surface modes”, strongly-
peaked at the boundary between gain and gain-free re-
gions, and are not modes associated with an effective
cavity created within the gain region.

A related problem of unconventional lasing modes has
been studied recently [9, 10], where the cavity is divided
not between gain and gain-free, but between gain and
loss such that parity-time (PT ) symmetry is preserved
[11]; the combination of parity and time-reversal (which
interchanges gain and loss) is a symmetry of the prob-
lem. Interestingly such cavities, with no net single-pass
gain, can nonetheless lase. Such cavities at threshold are
called CPA-lasers because they can simultaneously func-
tion as laser amplifiers and as coherent perfect absorbers
(CPAs) [12, 13] at the lasing frequency [9, 10]. These
lasing modes also bear no simple resemblance to passive
cavity modes and are not in one-to-one correspondence
to them. In the last section of this paper we show that
these CPA-laser states are closely related to the surface
modes, both of which are accompanied by an avoided
crossing of the poles of the corresponding S-matrix.

I. SPATIALLY INHOMOGENEOUS GAIN

For simplicity, we will focus on the unconventional las-
ing modes found in partially pumped one-dimensional
cavities in which the electric field may be treated as a
scalar. Let εc(x) denote the (real) dielectric function of
the passive cavity. We will only deal with threshold las-
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ing modes here and follow the approach of the Steady-
state Ab Initio Laser Theory (SALT) presented in ref-
erences [3, 14]. At threshold, modal interactions can be
neglected, and each lasing mode Ψµ(x) and its frequency
ωµ can be derived from the following equation [14][

∇2 + (εc + ηµF (x))k2µ
]

Ψµ(x, ωµ) = 0, (1)

with the boundary condition that the solutions be purely
outgoing at x → ±∞. Here kµ ≡ ωµ/c and F (x) de-
scribes the spatial gain profile which is zero in gain-free
regions [16]. For a fixed frequency ω, this equation has
solutions at discrete complex values of ηµ(ω); by varying
ω one finds pairs of (kµ, ηµ) which represent threshold
lasing frequencies and electric susceptibility of the gain
medium. The corresponding Ψµ(x, ωµ), determined by
(1), are the threshold lasing modes on which we will fo-
cus in our discussions below. Note that all ηµ must have
a negative (amplifying) imaginary part.

For simplicity, we will adopt the “linear gain model”,
in which we assume that the pumped gain medium only
alters the imaginary part of the index in the cavity, i.e.
(εc + ηµF (x))1/2 ≈ n(x) ≡ n′(x) + in′′(x), where n′(x) =√
εc(x), n′′(x) = −niF (x), and ni is a small real positive

constant. In this approach the parameters to be varied
to reach threshold are the lasing frequency and ni. The
thresholds are ordered, beginning with the lowest value
of ni, corresponding to the first lasing mode to turn on
as the pump is increased. The infinite set of threshold

solutions are specified by (ωµ, n
(µ)
i ), but in a real laser

once the first mode turns on it affects the thresholds and
frequencies of other modes via non-linear effects. These
can be taken into account by the full SALT [14], but we
defer a treatment of those effects to future work [15].

In the “partial gain” system shown in Fig. 1, the gain
medium is uniformly distributed in the left part (0 ≤
x ≤ LG) of a cavity of length L and dielectric constant
εc(x) = n21 > 1. Emission occurs through two side walls
at x = 0 and x = L. Outside the cavity ε is taken to be
unity. As noted, we assume that the refractive index of
the gain region, n2, is of the form n2 = n1− ini (ni > 0).

The solution to (1), with outgoing boundary conditions
at x = 0 and L, satisfies the following equation:

tan[θ2 + n2kLG]

n2
+

tan[θ1 + n1k(L− LG)]

n1
= 0, (2)

θp ≡
π

2
+
i

2
ln

(
np + 1

np − 1

)
, p = 1, 2. (3)

For large kLG, this equation has two distinct sets of so-
lutions. The first set can be found approximately by
setting n2 = n1 everywhere in Eq. (2), except in the
term n2k LG. This yields the familiar equally-spaced las-
ing frequencies, equal to the real part of the resonance
frequencies of the passive cavity:

ω = c
mπ

n1L
, m = 0, 1, 2, ... (4)

n2 n1

x= x=Lx=LG0

n=1 n=1

FIG. 1: Schematic diagram of a two-sided 1D edge-emitting
laser. The cavity occupies the region 0 ≤ x ≤ L. Gain is
present in the dotted region (0 ≤ x ≤ LG).

As can be seen in Fig. 2(a), these modes have an oscilla-
tory form throughout the entire cavity, but overlaid upon
this oscillation is a clear amplification trend towards both
ends of the gain region. The corresponding solutions for
ni are

ni =
n1
mπ

L

LG
ln

(
n1 + 1

n1 − 1

)
> 0. (5)

This is precisely the value obtained by balancing the am-
plification of the mode in the gain region against the out-
coupling loss due to Fresnel scattering at the two ends of
the cavity. The threshold amplification decreases with in-
creasing n1 and inversely with kLG, tending to the stan-
dard limit for uniform pumping as LG → L.

In addition to these conventional modes, which are
simply related to the passive cavity resonances, the par-
tial gain system supports a second set of solutions, which
we call “surface modes”. An example of a surface mode
is shown in Fig. 2(b); the mode profile is dominated by
anisotropic exponential growth within the gain region to-
wards the boundary with the gain-free region. The sur-
face modes have a much higher threshold ni than the con-
ventional modes; in the large nikLG limit their thresholds
are given by

ni ≈ (n1 − 1)
√
n1 > 0. (6)

independent of LG and k. The corresponding lasing fre-
quencies are also equally spaced:

ω ≈ c
mπ + arctan(

√
n1)

n1 (L− LG)
, m = 0, 1, 2, ... (7)

but the spacing is inversely proportional to (L − LG)
rather than L. This dependence is very significant. First,
one sees that these modes are pushed off to infinite fre-
quency as LG → L, so they do not exist in the uniformly
pumped system. Second, if these modes were associated
with an effective cavity created by the gain region, one
would expect a different dependence, i.e. ω ∼ LG

−1.
Thus, surface states must arise from a different physical
mechanism, which we will elucidate in the next section.

Fig. 2(c) shows {k, ni} for the two sets of modes, in
a cavity of length L = 10µm and n1 = 1.5; notice the
uniform but different spacing of the two sets. For these
parameters, the thresholds of the surface modes are al-
most two orders of magnitudes larger than the conven-
tional modes unless kLG approaches unity. In general we
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FIG. 2: (Color online) (a) Mode profile of a conventional
mode (k = 6.2886µm−1, ni = 0.0511) in a one-dimensional
cavity of length L = 10µm and index n1 = 1.5. It is amplified
symmetrically in the gain medium, which resides in the left
half of the cavity (light blue region). (b) Mode profile of a
surface mode (k = 6.4013µm−1, ni = 0.6124) localized inside
the right edge of the gain regime. (c) The conventional modes
(squares) and surface modes (circles) with k ∈ [14, 16]µm−1.
The crosses are the approximations given by Eq. (4-7). The
spacing of the conventional modes is defined by the whole
cavity while the larger spacing of the surface modes is defined
by the gain-free region.

can show that clearly distinct surface and conventional
modes exist until a crossover wave number, kc, given by

kcLG =

√
n1

(n1 − 1)
ln

(
n1 + 1

n1 − 1

)
, (8)

i.e. all the way down to near the lowest passive cavity
frequency unless n1 − 1 � 1 or LG � L. This explains
why surface modes have not been observed experimen-
tally to date and were first seen in simulations of random
lasers with very weak index variation around unity.

When n1 − 1 � 1 we can study modes both above
and below kc (Fig. 3). Above kc there are two sets of
distinct modes, with the properties just discussed. As k
approaches kc from the higher frequency side, the fluctu-
ation of the frequency spacing of the conventional modes
(∆k(c)) increases gradually (see Fig. 3). As k becomes
smaller than kc, the surface modes and some of the con-
ventional modes do not exist any more, and ∆k(c) has an
even bigger fluctuation. However we find that the aver-
age of ∆k(c) is no longer π/n1L but rather π/n1LG. Thus
below kc the lasing modes do behave approximately as
modes confined by the “gain cavity”. This is perhaps not
too surprising because the threshold normally increases
as k becomes smaller and the index discontinuity due
to the imaginary index boundary can become more im-
portant than that due to the real index jump, especially
in the limit n1 − 1 � 1. Some lasing modes in sub-
wavelength plasmonic waveguides may be attributed to
these effective “gain cavity” modes [17].
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FIG. 3: (Color online) (a) Conventional modes and surface
modes (crosses) in a one-dimensional cavity of L = 10µm,
LG = 2π µm and index n1 = 1.05. Solid and dashed curves in-
dicate the approximations (5) and (6), respectively. (b) Spac-
ing of the conventional modes (squares) and surface modes
(circles). Solid, dashed, dash-dotted lines indicate the spacing
determined by L, L−LG and LG, respectively. The crossover
of the squares near kc = 12.11µm−1 (Eq. (8); dotted line)
marks the transition of the conventional modes from those
of the passive cavity to those of the effective “gain cavity”.
Only data sufficiently far away from kc are shown where both
the conventional modes and the surface modes show regular
frequency spacing.

II. RESONANT TUNNELING
INTERPRETATION

The approximation (6) for the threshold of the surface
modes was obtained for nikLG � 1, i.e. for amplifica-
tion length much smaller than LG. In this limit, we can
ignore the left edge of the gain region in Fig. 1. The par-
tial gain system now simplifies to a slab of index n1 and
length (L − LG) connected to two semi-infinite media,
with indices n2 ∈ C on the left and n = 1 on the right.
The scattering resonances for this system occur at the
frequencies given by (7), and require that the refractive
indices of the semi-infinite gain region and the gain-free
region satisfy

(Im[n2])
2

= (Re[n2]− 1)(n21 − Re[n2]). (9)

For n2 = n1 − ini, this is equivalent to (6), defining the
threshold value of ni for the surface modes. We thus
conclude that surface modes occur when light escapes
through the gain-free region by resonant tunneling. It
is therefore unsurprising that the spacing of the surface
modes is inversely proportional to (L− LG) rather than
LG; their frequencies are related to the resonances of
the gain-free region. This also explains why the surface
modes are never concentrated on the left boundary of the
gain region.

For the system with finite gain and gain-free regions,
one can understand the existence of surface modes at the
resonances of the gain free region by regarding the gain
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region as a uniformly pumped cavity enclosed by two very
different mirrors. The left “mirror”, with reflection coef-
ficient r1, is just the dielectric interface between vacuum
and n2, giving rise to simple Fresnel reflection, which is
independent of frequency if n2 is fixed. The right “mir-
ror”, with reflection coefficient r2, is the entire extended
gain-free region, with multiple reflections from both the
n2 → n1 interface, and the n1 → 1 interface. Thus the
reflectivity r2 is strongly frequency-dependent with near-
zeros at the frequencies of the resonances of semi-infinite
gain model just discussed.

The mode profile within the gain region can be de-
composed into two amplified waves traveling in opposite
directions:

Ψ(x) = a>e
in2kx + a<e

−in2k(x−LG). (10)

At lasing threshold we have the usual round trip
phase and amplitude condition for a 1D resonator:
r1r2 exp(2in2kLG) = 1. Using this relation and the defi-
nition of r1, we find the ratio of the right and left traveling
waves to be: ∣∣∣∣a>a<

∣∣∣∣ = |r1| enikLG =

√∣∣∣∣r1r2
∣∣∣∣. (11)

But for the surface modes |r2(ω)| � 1, the lasing modes
are dominated by right-moving waves, leading to the
large asymmetry seen in Fig. 2. In contrast, |r2| ∼ |r1|
for conventional modes, resulting in a roughly symmetric
profile within the gain region. From this point of view
it is clear that in general the surface modes will have
much higher thresholds since they occur when one of the
“mirror reflectivities” is strongly reduced compared to
the conventional modes.

Having clarified the physical picture of these uncon-
ventional modes for a simple partial gain system, we now
verify that it also applies to the unconventional modes
in weakly scattering 1D random media, discovered in
Refs. [7, 8]. We consider a random cavity with weak index
variation as shown in Fig. 4 (specific parameters are given
in the figure caption). Nine lasing modes are found in the
interval k ∈ [10, 11]µm−1 shown, two of which are found
to be surface modes associated with resonant tunneling
through the gain-free region. This is determined by the
following procedure: we smoothly reduce the scattering
strength inside the gain region by reducing n1, defined
by Re[n(x)] = 1 + (n1 − 1)f(x) in which f(x) is a step-
wise function with values 0 and 1. The frequencies of the
conventional lasing modes blueshift systematically, while
the frequency of the two surface modes barely change
(vertical lines in the center panel). This finding confirms
that the surface modes are determined by the properties
of the gain-free region and have negligible dependence on
the gain region. To further confirm this interpretation,
we calculate the reflection coefficient of the random gain-
free region, for light in the last gain layer connected to it.
The choice of the gain coefficient, ni is different for each
of the two modes, as they have different thresholds. This
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FIG. 4: (Color online) Center panel: Shift of threshold lasing
frequencies when the refractive index of the dielectric layers
inside the gain region is varied. The frequencies of the sur-
face modes (vertical dashed lines) are stable despite the index
change. Inset: The system under consideration is a weakly
scattering 1D random system examined in Refs. [7, 8]. It con-
sists of 81 layers of dielectrics of averaged width 〈d〉 = 0.15µm
separated by air gaps, with a total length of 24.1µm. The gain
(the light blue region) is uniformly distributed upto the the
47th layer from the left. Upper and lower panels: Reflection
coefficient as a function of k when the imaginary part of the
index inside the gain region corresponds to the values of the
two surface modes (ni = 0.0265 and 0.4094), respectively.
The stars indicate the frequencies of the two surface modes
k = 10.29, 10.54µm−1.

leads to the two plots shown in the upper and lower pan-
els of Fig. 4. The lower panel is for the lower frequency
surface mode, and as expected shows a near-zero of the
reflection coefficient at the frequency of this mode; the
upper panel is for the higher frequency surface mode and
has the same behavior.

An additional effect seen explicitly in the center panel
of Fig. 4 is an inverse bifurcation of the solution set
as a parameter is varied, in this case the overall ampli-
tude of n1 in the gain region. The surface mode, with
k = 10.54µm−1, annihilates with its closest conventional
mode at n1 = 1.041, where their thresholds become iden-
tical. This need not happen at all frequency crossings as
shown by the other surface mode in the figure. Similar
bifurcations (in the forward direction) occur throughout
the threshold lasing spectrum as LG is reduced from L,
producing the surface modes.

III. S-MATRIX PICTURE AND LASING IN
PT -SYMMETRIC CAVITIES

In this section, we study the partial gain system from
the point of view of the scattering matrix (S-matrix).
As we shall see, this reveals a unified description linking
conventional and surface modes to laser-absorber (CPA-
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laser) modes of PT -symmetric cavities [10].
The S-matrix of a 1D cavity is defined by

S(n(x), ω)

(
B
C

)
=

(
A
D

)
, (12)

where B,C(A,D) are the complex amplitudes of the in-
cident (scattered) waves from the left and right side of
the cavity. Although physical solutions are associated
with real ω, it is standard to analytically continue S to
complex values of ω. Scattering resonances correspond
to purely outgoing boundary conditions on the S-matrix
(B = C = 0) and occur when the S-matrix has a pole in
the complex plane. In a lossless cavity (n(x) ∈ R) the
poles of the S-matrix are required by current conserva-
tion and causality to occur only at complex values of k
in the lower half plane (with a negative imaginary part).
For the simple dielectric cavity of Fig. 1, in the absence
of gain, the resonance wave numbers are

k(0)m =
πm

n1L
− i

n1L
ln

(
n1 + 1

n1 − 1

)
, (m = 1, 2, · · · ); (13)

the imaginary part reflects the cavity outcoupling loss
and defines the threshold values of ni when gain is added.

The real part of k
(0)
m defines frequencies at which lin-

ear scattering is resonantly enhanced, but the outgoing

solution at the complex wave number k
(0)
m is not itself

a physically realizable state as it corresponds to a non-
conserved photon flux outside the cavity (both in the
upper and lower half planes). Poles precisely on the real
axis do correspond to physical states, and we give them
the different name of “threshold lasing modes” (TLMs)
[14] to distinguish them from other resonances. It is the
TLMs of the partial gain system which we studied in the
earlier sections of the paper.

Starting with the lossless cavity, when gain is added
(either uniformly or non-uniformly), the poles move up-
wards towards the real axis as we increase the gain (i.e.
increase ni) until the poles pass through the real axis at
(in general) different values of ni, corresponding to dif-
ferent thresholds for lasing (neglecting non-linear effects
[14]). For a high-Q cavity with uniformly distributed
gain, the trajectories of the poles are almost vertical.
Thus the lasing frequency can be well described by the

real part of k
(0)
m , the (real) passive cavity frequencies, and

the spatial distribution of the lasing mode will be similar
to the passive cavity mode (inside the cavity). More-
over, in this case the poles continue to move upwards as
the gain is increased beyond threshold and that pole will
never cross the real axis again (see Fig. 5(a)) [18]. Thus
the lasing modes will be in one-to-one correspondence
with the passive cavity modes.

The situation is very different for the case of a spatially
inhomogeneous gain profile, however. In this case the
poles do not move simply vertically, but in fact undergo
an anti-crossing in the upper-half plane, which results
in one of the two “interacting” poles moving back down
to the real axis and giving rise to a second lasing mode.
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FIG. 5: (Color online) Trajectories of two S-matrix poles of
a 1D uniform cavity when gain (Im[n(x)]) is added in dif-
ferent ways. In all cases squares indicate the passive cavity

resonances k
(0)
m and the diamonds mark the threshold lasing

frequencies. (a,b) Gain is added uniformly to the whole cav-
ity and to the left half of the cavity, respectively. In the
former case one pole creates one lasing state, in the latter an
anti-crossing in the complex plane of two poles generates an
additional surface mode. (c-f) Gain (ni) and loss (−τni) are
added to the left and right halves respectively, at a ratio of
τ = 0.274, 0.56, 0.571, 1 (PT -symmetric). For (c) τ = 0.274
the poles hit the EP exactly, after which their vertical mo-
tions are reversed compared to the τ = 0 case; the resulting
surface mode frequency is shifted lower. For (d) τ = 0.56 the
anti-crossing is almost at the real axis, and the surface and
conventional modes (now no longer very different) have simi-
lar frequencies. For (e) τ = 0.571 a inverse bifurcation occurs,
the conventional and surface modes “merge” and annihilate;
for larger values or τ , half the lasing modes of the uniformly
pumped cavity are absent, and at the PT -symmetric point
(τ = 1), there is a single CPA-laser mode for each pair of
passive cavity modes, exactly half-way in between. Other
neighboring pairs behave similarly.

Thus, for this case one pole generates two different lasing
modes at different values of the gain; however the second
mode generated looks very different from the first one,
and is one of the “extra” surface modes (see Fig. 5(b)).

Another case of recent interest in which unconventional
lasing modes appear is that of PT -symmetric cavities.
These are optical cavities in which gain and loss are
equally applied in such a manner that n(−x) = n∗(x).
The first PT -symmetric optical systems were studied not
in cavities, but in parallel balanced gain-loss waveguides
[19]. More recently several authors have looked at cavi-
ties or heterojunctions [9, 10, 20], and discovered a novel
type of lasing transition, in which not only does a pole
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FIG. 6: (Color online) Evolution of threshold lasing frequency
and gain as the loss/gain ratio τ increases from 0 (partial
gain) to 1 (PT -symmetric). The solid and dashed lines rep-
resent two passive cavity modes, and the dashed-dotted line
indicates a surface mode.

of the S-matrix reach the real axis, but a zero does so as
well. A zero of the S-matrix on the real axis corresponds
to a “coherent perfect absorber” (CPA): a cavity with
loss tuned to absorb perfectly the time-reverse of the las-
ing mode when equivalent gain is added [12, 13]. For the
PT -symmetric laser (CPA-laser) one has the unique sit-
uation in which the cavity is strongly amplifying for one
eigenmode of the S-matrix and strongly attenuating for
the other. In the CPA-laser, like the partial gain laser
considered above, the lasing modes are not in one-to-one
correspondence with the passive cavity resonances, but
in the case of the CPA-laser half of the passive cavity
resonances give rise to lasing modes and the other half
do not, so there are fewer lasing modes, instead of extra
modes. However it is obvious that one route to a CPA-
laser is to start with a partial gain laser such as that of
Fig. 1, with LG = L/2, and simply add equal loss to the
gain-free region. Thus there should be some continuous
change in the pole behavior to interpolate between the
case of extra surface modes and the case of CPA-laser
modes with half the density of the conventional lasing
modes.

To find the connection between these CPA-laser states
and the surface lasing modes, we gradually increase
the loss/gain ratio τ from 0 (partial gain) to 1 (PT -
symmetric) and monitor the motion of the poles as the
gain is increased at fixed τ (see Fig. 5(b-f)). We find that
the anti-crossing in the upper-half plane of the two cavity
resonances, which gives rise to the surface mode, occurs
nearer to the real-axis as τ increases. Hence the pole
which returns to the real axis and generates two modes
at different values of the gain, now does so at closer and

closer values of the frequency and gain, until, at a partic-
ular value of τ ≈ 0.571, the pole motion reaches a point
of tangency to the real axis and only a single mode is gen-
erated (see Fig. 5(d)). This is another inverse bifurcation
of the solution set; for infinitesimally larger τ this pole
never crosses the real axis and both the surface and one of
the conventional modes disappear; at τ = 1 we reach the
CPA-laser modes of the PT -symmetric cavity, with half
the modal density of the conventional lasing modes. The
behavior of the lasing frequencies and thresholds through
this transition are shown in Fig. 6. We see that the be-
havior of the surviving cavity mode after the bifurcation
lies on a continuous curve with the surface mode.

This variation of the lasing spectrum with τ is also re-
flected in the spatial profile of the modal intensities (see
Fig. 7). For τ increasing from zero toward the bifurca-
tion point, the paired conventional and surface modes
begin to resemble each other more, until they become
identical at the bifurcation point. Above the bifurca-
tion, as already noted, the surviving conventional mode
takes on the character of the surface mode which has
disappeared. Eventually, as τ → 1, the point of PT -
symmetry, this surviving mode becomes localized at the
gain-loss boundary and corresponds to a CPA-laser mode
described in [10]. Note that at the PT -symmetry point a
zero of the S-matrix also sits on the real axis (not shown);
this implies that there are modes of excitation of the
cavity which will be perfectly absorbed, despite the fact
that they sit at the lasing threshold [10]. The spatial
profiles of these CPA modes are obtained simply by re-
flecting the lasing modes around the gain-loss boundary:
|ΨCPA(x)| = |ΨLaser(−x)| (see Fig. 7). The difference be-
tween the CPA and laser modes is subtle near the bound-
ary of the gain and gain-free region, but becomes more
substantial farther away.

The center of the avoided crossing regime in the com-
plex plane is a branch point of two neighboring Riemann
sheets, or an exceptional point (EP) [21], where the S-
matrix is defective (only has one eigenvector). The pole
motion with varying ni accelerates as they approach the
EP and decelerates once they are “deflected” by the EP.
Note that the vertical motions of the two poles after the
deflection are different in Fig. 5(c-f) and in Fig. 5(b); the
pole starting with the lower frequency moves downwards
in the first two cases but moves upwards in the latter.
This behavior suggests that the two poles must hit the
EP simultaneously at an intermediate value of τ . To find
this value and identify the EP, we resort to the criterion
dkm/dni →∞. Using Eq. (2) we can write this criterion
explicitly as

tan[θ1 + n1kL/2] = ±i
√

2

[
1 +

(
n2
n1

)2
]−1/2

, (14)

tan[θ2 + n2kL/2] = ∓i
√

2

[
1 +

(
n1
n2

)2
]−1/2

. (15)

By solving the real and imaginary parts of these two
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FIG. 7: (Color online) Mode profiles of the surface lasing
mode and the surviving conventional lasing mode in Fig. 6
with matching color schemes. Four values of τ are chosen:
0.2, 0.4, 0.56 (just before the inverse bifurcation) and 1 (PT -
symmetric). The corresponding CPA mode (with incoming
waves outside the cavity) in the PT -symmetric case is given
by the dashed black curve, which differs only slightly. The
maximal intensities of all modes are normalized to unity. In-
dividual oscillations cannot be resolved at the scale shown due
to the large values of n1kL.

equations, we obtain not only the position of the EP
k = 8.388 + 0.012i µm−1 but also the required threshold
gain ni = 0.0113 and loss/gain ratio τ = 0.274 for the

poles to reach the EP (Fig. 5(c)). Note that the EP does
not cause the annihilation behavior discussed above di-
rectly. However, its physical presence can be observed by
an alternative method [22].

IV. CONCLUSION

We have discussed a class of highly localized lasing
modes created by a spatially inhomogeneous gain profile.
Both their frequencies and spatial profiles are very differ-
ent from the passive cavity modes, which are the origin of
the lasing modes within conventional laser theory. Such
surface modes occur more prominently in low-Q lasers,
such as random lasers, but have nothing to do physically
with randomness; they occur as well in the simple, uni-
form, low-Q dielectric cavities studied above. We have
checked that the surface modes are not strongly altered
by nonlinear self-saturation and spatial hole-burning ef-
fects [2, 3, 14] and maintain their localized mode profile
[15]. We have identified the physical origin of these sur-
face modes as the transmission resonances of the gain-
free region. Using an S-matrix approach we have shown
the connection between the surface modes and the las-
ing modes in PT -symmetric cavities. Our study suggests
the possibility to achieve anisotropic emission in lasers by
tailoring the gain profile rather than changing the cavity
shape or mirror reflectivities. Due to the highly asym-
metric spatial profile of the surface modes, they may find
applications in optical switching and sensing.
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