
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Atomic Fermi gas in the unitary limit by quantum Monte
Carlo methods: Effects of the interaction range

Xin Li, Jindřich Kolorenč, and Lubos Mitas
Phys. Rev. A 84, 023615 — Published  8 August 2011

DOI: 10.1103/PhysRevA.84.023615

http://dx.doi.org/10.1103/PhysRevA.84.023615


Atomic Fermi gas in the unitary limit by quantum Monte Carlo methods: Effects of
the interaction range
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We calculate the ground-state properties of unpolarized two-component Fermi gas with the aid of
the diffusion quantum Monte Carlo (DMC) methods. Using an extrapolation to the zero effective
range of the attractive two-particle interaction, we find E/Efree in the unitary limit to be 0.212(2),
0.407(2), 0.409(3) and 0.398(3) for 4, 14, 38 and 66 atoms, respectively. Our calculations indicate
that the dependence of the total energy on the effective range of the interaction Reff is sizable
and the extrapolation to Reff = 0 is therefore important for reaching the true unitary limit. To
test the quality of nodal surfaces and to estimate the impact of the fixed-node approximation we
perform released-node DMC calculations for 4 and 14 atoms. Analysis of the released-node and the
fixed-node results suggests that the main sources of the fixed-node errors are long-range correlations
which are difficult to sample in the released-node approaches due to the fast growth of the bosonic
noise. Besides energies, we evaluate the two-body density matrix and the condensate fraction. We
find that the condensate fraction for the 66 atom system converges to 0.56(1) after the extrapolation
to the zero interaction range.

I. INTRODUCTION

In recent years, the homogeneous Fermi gas with at-
tractive interactions has been studied extensively both
theoretically and experimentally due to the success in
cooling atoms into ultracold dilute condensates [1–3]. By
tuning the interaction strength through the Feshbach res-
onance [4–7], the system can cross from the Bardeen-
Cooper-Schrieffer (BCS) superfluid phase, where the
s-wave scattering length as is negative, to the Bose-
Einstein condensate (BEC), where as is positive. Since
there is no symmetry change of the quantum state in-
volved, the system exhibits the well-known BCS-BEC
crossover.

The gas is characterized by three length parameters:
the scattering length as, the mean interparticle spacing rs
and the effective range of the two-particle potential Reff .
In the special case corresponding to the diverging scat-
tering length, as →∞, and to a high degree of dilution,
Reff � rs, the system is in a strongly interacting regime
called the unitary limit. In this regime the interparticle
spacing rs is the only relevant scale, and the rest of the
quantities are universal and system independent. The
total energy of this system can be written as E = ξEfree,
where Efree is the energy of the non-interacting atomic
gas and ξ is a system independent parameter. Exper-
imental measurements of ξ have been performed using
6Li and 40K atoms by investigating the expansion rate
of the atomic cloud and the sound propagation in it [8–
12]. Simultaneously, a number of theoretical and numer-
ical estimations of ξ have been reported, including diffu-
sion Monte Carlo (DMC) [13–18] as well as path integral
Monte Carlo, lattice simulations and analytical methods
[18–27]. The resulting estimates fall between ≈ 0.25–
0.45 showing that the actual value has not been settled
yet and is still of significant interest due to the universal
nature of the unitary limit.

One of the most interesting properties of the unitary
gas is the robust presence of the pairing condensate which
involves a large fraction of the system. The study of pair-
ing effects is thus much more straightforward than, say,
in superconducting materials, where only a sliver of the
fermions around the Fermi level forms the condensate
and the attractive interaction is much more complicated.
The quantum Monte Carlo (QMC) methods have the ad-
vantage that the condensate can be detected directly, by
evaluating the off-diagonal two-particle density matrix
and by monitoring its behavior at large distances [16, 18].

The goal of our study is twofold. First, the actual simu-
lations are performed for a non-vanishing, albeit possibly
very small, interaction range Reff , whereas Reff should
not be present in any result in the unitary limit. It is
necessary to analyze whether the actual limit of infinite
dilution, or, equivalently, of point-like character of the in-
teraction, has indeed been reached. Second, the impact
of the fixed-node approximation in the quantum Monte
Carlo method is not very well understood for this sys-
tem since there is nothing to compare with: so far the
fixed-node formulation of the QMC methods appears to
be the only approach that is able to provide an upper
bound for the total energy. This has motivated us to
probe the accuracy of the nodes by released-node QMC
simulations and by exploring the variational flexibility of
the employed wave functions.

We have carried out calculations of the ground-state
properties of a dilute Fermi gas by the fixed-node DMC
(FN-DMC) [28] method for 4, 14, 38 and 66 atoms. The
two-particle potential was tuned to as → ∞. To fulfill
the second condition of the unitary regime, Reff � rs,
the simulations were repeated for varied Reff and the re-
sults were extrapolated to Reff = 0 in the end. The early
calculations of the parameter ξ [13, 14] as well as some
recent studies [18] were done at Reff/rs ≈ 0.17. We have
found that the extrapolation from this point to zero cor-
responds to over 5% reduction of the ξ value consistent
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with other very recent investigations [29, 30].
In order to test the quality of the nodal surface of

the BCS wave function, we have performed released-node
DMC (RN-DMC) [31, 32] calculations for 4 and 14 atoms.
This procedure has been carried out starting from two
types of nodal constraints: from the BCS nodes and
from the Hartree-Fock (HF) nodes. Our RN-DMC re-
sults suggest that the nodal corrections are driven mainly
by long-range correlations which are difficult to sample
in the released-node framework due to the rapid growth
of the bosonic noise. Nonetheless, we have been able to
conclude that the fixed-node error is marginal for the
BCS wave function in the case of the smallest system
consisting of 4 atoms.

We have calculated also the two-body density matrix
and the condensate fraction for the 66 atom system,
and we have estimated the corrections from the effective-
range extrapolation to these quantities.

II. METHOD

A. Hamiltonian

We consider a two-component Fermi gas with Hamil-
tonian

H = −1

2

N/2∑
i=1

∇2
i −

1

2

N/2∑
i′=1

∇2
i′ +

∑
i,i′

V (rii′) , (1)

where N is the total number of atoms, i and i′ correspond
to the spin-up and spin-down atoms, and rii′ denotes the
distance |ri − ri′ |. The atoms are located in a cubic box
with the side L and we impose the periodic boundary
conditions. The two-particle potential V (rii′) is taken in
the Pöschl-Teller form

V (rii′) = − 2µ2

cosh2(µrii′)
, (2)

whose effective range is Reff = 2/µ. The s-wave scatter-
ing length as is infinite for all values of µ 6= 0.

B. Trial wave functions

In the majority of our calculations we employ trial
wave functions of the BCS form multiplied with the Jas-
trow factor (BCS-Jastrow) as given by

ΨT (R) = ΨBCS(R)eJ(R) , (3)

where

ΨBCS(R) = A
[ N/2∏
i,i′=1

φ(ri, ri′)

]
= det[φ(ri, ri′)] . (4)

Here A represents the antisymmetrization operator and
φ(ri, ri′) is the pair orbital. The vector R encom-
passes all atomic coordinates ri and ri′ . Additionally, we
have carried out a subset of calculations also with the
Hartree-Fock-Jastrow (HF-Jastrow) trial functions, in
which ΨBCS is replaced with a product of two Slater de-
terminants of one-particle orbitals (simple plane waves).
The HF-Jastrow wave function reads as

ΨSJ(R) = det[ϕa(ri)] det[ϕa(ri′)]e
J(R). (5)

The pair orbital φ(ri, ri′) in ΨBCS is written as a linear
combination of Gaussian functions

φ(ri, ri′) =

1∑
l,m,n=−1

∑
k

dke
−αk(xi−x′

i+lL)2

× e−αk(yi−y′i+mL)2e−αk(zi−z′i+nL)2 , (6)

where dk are expansion coefficients, and ri = (xi, yi, zi)
and ri′ = (xi′ , yi′ , zi′) are coordinates of i and i′ atoms
inside the simulation box. We choose sufficiently large ex-
ponents αk so that only the first neighbor shell of periodic
images contributes to the sum, that is, the Gaussian func-
tions are negligible at distances larger than 3L/2. The
pair orbital is smooth with zero derivative at the bound-
ary of the simulation cell. The Jastrow factor J(R) is
constructed in a similar way as the pair orbital φ(ri, ri′)
and contains contributions for both different spin atoms
and same spin atoms.

A typical trial wave function includes around 30 to 40
variational parameters that are optimized by minimiz-
ing a linear combination of the total energy and its vari-
ance [33]. Although the Jastrow factor does not change
the nodal surface, accurate description of the pair cor-
relations makes the variational optimization much more
efficient and robust. When the effective range of the po-
tential approaches zero, more Gaussian functions with
larger exponents αk are included in the Jastrow factor in
order to keep the accuracy of the trial function consis-
tently high. On the other hand, and somewhat surpris-
ingly, we find that similar adjustment of the pair orbital
with the changing effective range is relatively minor.

C. Fixed-node and released-node DMC methods

The DMC method projects out the ground state from
a given trial function ΨT by means of an auxiliary evo-
lution in the imaginary time, Φ(τ) ∼ exp(−τH)ΨT . By
introducing importance sampling [28] with the aid of a
guiding function ΨG, we can write an integral equation
for Φ(R, τ) in the form

ΨG(R)Φ(R, τ + ∆τ) =∫
dR′

ΨG(R)

ΨG(R′)
G(R,R′,∆τ)ΨG(R′)Φ(R′, τ) . (7)
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FIG. 1. The fixed-node energy for unpolarized unitary Fermi
gas as a function of the interaction range Reff/rs with linear
extrapolation to Reff/rs = 0. The system sizes are 4, 14, 38
and 66 atoms from the top left to the bottom right. The
statistical error bars are smaller than the symbol size.

For small ∆τ , the propagator G(R,R′,∆τ) can be ap-
proximated using the Trotter-Suzuki formula as

ΨG(R)

ΨG(R′)
G(R,R′,∆τ) ≈ G0(R,R′ + ∆τv(R′),∆τ)

× e−∆τ [EL(R)+EL(R′)−2ET ]/2, (8)

where v(R′) ≡ ∇ ln |ΨG(R′)| and G0(R,R′,∆τ) is the
Green’s function for non-interacting atoms that takes the
form of the diffusion kernel. The so-called local energy
EL is given by

EL(R) =
HΨG(R)

ΨG(R)
. (9)

The product ΨGΦ is represented by a set of sam-
ples (also referred to as walkers) and this ensemble is
evolved with the aid of a stochastic process simulat-
ing Eqs. (7) and (8). In the fixed-node method we set
ΨG(R) = ΨT (R) and the fixed-node condition is im-
posed by enforcing the sampling points to obey

ΨG(R)Φ(R, τ) ≥ 0 (10)

at all times. In the limit of long τ the solution con-
verges towards the lowest-energy state consistent with
the boundary conditions given by the fixed nodes.

In the RN-DMC method the guiding function has
bosonic symmetry and its square should be close to the
square of the fermionic ground state. We have used guid-
ing functions in the form [32, 34]

ΨG(R) =
√

Ψ2
T (R) + α 〈Ψ2

T 〉 , (11)

where
〈
Ψ2
T

〉
is the average value of Ψ2

T (R0) over all con-
figurations, and R0 are the walker positions right after
the nodal release. The tunable parameter α controls the
rate of walkers passing through the nodal region. The
guiding function is non-negative everywhere and there-
fore the stochastic process propagates a mix of bosonic
and fermionic states. The fermionic component is fil-
tered out by reweighting with the factor ΨT /ΨG so that
the fermionic-state energy is given by

〈Φ0|H|ΨT 〉 =

∫
dRΦ0(R)ΨG(R) ΨT (R)

ΨG(R)
HΨT (R)
ΨT (R)∫

dRΦ0(R)ΨG(R) ΨT (R)
ΨG(R)

, (12)

where Φ0(R) denotes the exact fermionic ground state.
Since this method is exponentially demanding both in

the projection time and in the number of atoms, it is
important to choose α so that the statistical informa-
tion is recovered as quickly as possible. If α is too large
the fluctuations from the poor importance sampling over-
whelm any useful signal very rapidly. On the other hand,
a too small value can bias the results. The converged
RN-DMC energy should not depend on α, provided one
would be able to evolve the stochastic process with the
error bars under control until the full convergence. Since
it is difficult to reach reliable error bars in this type of
calculations, we have used the method mostly to identify
the onset and the amplitude of the energy decrease dur-
ing the projection period when the stochastic noise was
acceptably small.

In the RN-DMC process, we can also pick up the sta-
tistical signal from the walkers that have never crossed
the nodal surface, and in essence this provides the FN-
DMC estimator. By monitoring these paths as well, we
can assess the consistency of the estimators and some-
what better tune the parameter α for providing better
RN-DMC signal.

III. RESULTS

For benchmark purposes we first calculate perhaps the
smallest nontrivial system—four atoms. Our result is
shown in Fig. 1, upper left panel. There is approximately
10% energy drop when Reff/rs is reduced from 0.1279 to
0.003998. We extrapolate Reff to zero using a linear fit
and obtain ξ2,2 = 0.212(2). Here and in the rest of the
paper, the denominator Efree in the ratio ξ = E/Efree is
evaluated in the same finite volume subject to the same
boundary conditions as the nominator E.

The ground-state energy of this small and relatively
simple system was obtained also by two other numeri-
cal methods using a lattice formulation of the unitary
Fermi gas model: the iterative Lanczos diagonalization
and the auxiliary-field projection Monte Carlo method
[35]. The agreement between our fixed-node DMC re-
sults and the outcome of these entirely different meth-
ods strongly suggests that our range-extrapolated total
energy of the four-atom system is very accurate. This



4

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

ξ 2
,2

EFt

FN RN

FN-DMC

FN-DMC α=0.5

RN-DMC α=0.5

 0.225

 0.23

 0.235

 0.24

 0.245

 0.25

 0.255

 0.26

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

EFt

FN RN

FN-DMC

FN-DMC α=0.5

α=0.2

α=0.05

RN-DMC α=0.5

α=0.2

α=0.05

 0.22

 0.222

 0.224

 0.226

 0.228

 0.23

 0.232

 0.234

 0.236

 0.238

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

EFt

FN RN

FN-DMC

FN-DMC α=0.2

α=0.05

α=0.01

RN-DMC α=0.2

α=0.05

α=0.01

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

φ(
r)

r/L

φ 100

φ 110

φ 111

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

r/L

φ 100

φ 110

φ 111

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

r/L

φ 100

φ 110

φ 111

FIG. 2. (Color online) The pair orbitals and FN-DMC and RN-DMC energies of the 4-atom unitary system with Reff/rs =
0.06397. The upper row shows the pair orbitals with the lowest (left), intermediate (middle) and optimal (right) accuracy with
regard to the variational optimization. The lower row shows the corresponding DMC energies as functions of the projection time
starting from the variational estimate. Note that the resolution of the left and right panels differs by an order of magnitude.
The vertical dotted lines indicate the instant of the nodal release.

conclusion is further corroborated by our released-node
DMC results discussed below.

Our calculations with 14, 38 and 66 atoms are carried
out analogously to the 4-atom case, and the extrapolated
values of ξ are 0.407(2), 0.409(3) and 0.398(3), respec-
tively, as plotted in Fig. 1. In these calculations, the
smallest effective range is Reff/rs = 0.003125. Reduc-
tion of Reff decreases the energy in all cases although the
decrease per atom is smaller in larger systems.

To test the quality of the nodal surfaces, we have car-
ried out released-node calculations for 4-atom and 14-
atom systems. In a typical released-node run the num-
ber of walkers was about two million so that the error
bars were initially very small. Time step ∆τ was set
to 4 × 10−5r2

s in all cases and we have verified that the
time-step bias of the results is negligible.

The RN-DMC calculations for 4 atoms were done with
Reff/rs = 0.06397. In Fig. 2, the upper row shows the
pair orbital along three distinct directions (100, 110 and
111) of the interparticle distance vector ri−rj . The lower
row shows the FN-DMC and RN-DMC energies as they
evolve with the projection time. The plots show conver-
gence of the FN-DMC energy followed by the nodal re-
lease. This is accomplished by switching the guiding wave
function from ΨT (R) to the bosonic function ΨG(R) de-
fined in Eq. (11).

The released-node signal reflects the quality of the
nodal surface of the trial wave function employed in the
FN-DMC simulation. We have tested wave functions
with intentionally varied accuracy by employing subop-
timal pair orbitals. The plot of the energy evolution in
the left panel of Fig. 2 shows a clear and pronounced
drop after the nodal release. As the quality of the pair
orbital improves, this drop shrinks. For the fully op-
timized BCS-Jastrow wave function (the right panel in
Fig. 2) the energy is reduced by less than 0.002 within
the longest projection time we have tried. Despite the
RN-DMC energies do not converge within the simulation
time, it is apparent that the released-node method suc-
cessfully detects the nodal inaccuracies that were inten-
tionally introduced into the wave functions. In addition,
as expected, the amplitude of the released-node signal
qualitatively corresponds to the size of the introduced
nodal deficiencies: the larger the nodal distortion the
stronger the nodal release response. For our best wave
function there is essentially no released-node signal visi-
ble within the obtained error bars and projection times.
This fact as well as comparison with other two numerical
methods [35] indicate that our fully optimized BCS wave
functions are very accurate in this small system and that
the fixed-node error is marginal.

We observe an unexpectedly high sensitivity of the
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FIG. 3. (Color online) Evolution of the DMC energies for the
14-atom system with the best optimized BCS-Jastrow wave
function. The runs are for Reff/rs = 0.2. No statistically
significant energy drop is observed after the nodal release that
is indicated with the vertical dotted line.

nodal quality to the details of the pair orbital at large
distances. Although the suboptimal orbitals used in the
4-atom RN-DMC simulations were modified only in their
long-range tails (see the upper row of Fig. 2), the fixed-
node energies did raise by sizable amounts. This suggests
an explanation for the relatively slow convergence of the
released-node energy: the long-range tails of the pair or-
bital affect the nodal hypersurfaces, although the energy
cost of nodal hypersurfaces displacement is surprisingly
low (this has been actually tested very recently on an-
other system, see [36]). One can further deduce that this
makes the released-node method quite challenging to ap-
ply since it requires correcting the nodal surface change
by sampling low-density regions with walkers travelling
large distances. This is, however, difficult to achieve since
the diffusive motion of walkers is slow, proportional to
t1/2, while the growth of the noise is fast, proportional
to exp(∆BF t), where ∆BF is the difference between the
bosonic and fermionic ground-state energies.

The RN-DMC energy for 14 atoms with Reff/rs = 0.2
is shown in Fig. 3. The error bars are estimated from
eight independent runs with two million walkers each. In
the interval of EF t ≤ 0.2 after the nodal release the RN-
DMC energy gain appears to be very small and the error
bars preclude to make any statistically sound estimation
for longer projection times. The rapid loss of resolution
is expected since the difference between the bosonic and
fermionic ground states grows with the number of atoms.
Again, the RN-DMC signal exhibits little dependence on
α we choose.

In order to make a comparison with a case displaying a
clear fixed-node bias, we have carried out RN-DMC runs
using the Slater-Jastrow trial wave function, see Fig. 4.
Since this wave function has the nodal surface of the non-
interacting Fermi gas, the nodal surface is strongly dis-
torted. As a result, we see a pronounced released-node
signal. However, within the projection time interval of
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FIG. 4. (Color online) DMC energies for 14 atoms obtained
with the Slater-Jastrow wave function. The runs are for
Reff/rs = 0.2. The RN-DMC energy drops are significant
when compared to the RN-DMC signal from the BCS-Jastrow
wave function. The parameter ξ7,7 drops by ≈ 0.015 within
EF t ≈ 0.2 after the nodal release.

EF t ≤ 0.2, the energy drops by only ≈ 0.015 for the
largest α we tested. This is very small considering that
the true ground-state energy is at least an order of mag-
nitude lower, which illustrates the challenges of efficient
application of the released-node method, at least for the
present cases. Nevertheless, the released-node method
clearly detects the existence of the nodal errors associ-
ated with the Slater wave function. Although we can-
not make a definite assessment of the fixed-node errors
of our BCS wave functions, the comparison of Figs. 3
and 4 indicates that they are considerably smaller than
the fixed-node errors of the Slater determinant.

In order to quantify the pairing effects we calculate
the two-body density matrix which enables us to evaluate
the condensate fraction. The projected two-body density
matrix for spin-up and spin-down atoms is defined as

ρ(2)(r) =
N2

4V 2

∫
dRΦ(R)ΨT (R)ΨT (r1+r,r2+r)

ΨT (r1,r2)∫
dRΦ(R)ΨT (R)

, (13)

where N is the total number of atoms and V is the vol-
ume of the simulation cell. The density matrices have
been calculated for the fixed-node wave functions and
hence they correspond to the mixed estimators [28]. Nev-
ertheless, the mixed-estimator bias is negligible since the
variational Monte Carlo and DMC estimates of ρ(2) co-
incide within error bars. This is a further evidence of the
high accuracy of our trial wave functions.

The condensate fraction can be extracted from the two-
body density matrix as

c =
2V 2

N
lim
r→∞

ρ(2)(r) . (14)

The calculated density matrices are shown in Fig. 5 with
the condensate fraction estimated from the long-range
limit. The condensate fraction saturates for Reff ≤ 0.5
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FIG. 6. (Color online) Three-dimensional subsets of the nodal
hypersurfaces for three types of wave functions and corre-
sponding phases in the 14-atom system. The node is obtained
by scanning the simulation cell with a pair of spin-up and spin-
down atoms sitting on the top of each other while keeping the
rest of the atoms at fixed positions (tiny spheres). From the
left to the right, the columns show the nodal surfaces of the
wave functions corresponding to the free Fermi gas, the uni-
tary limit and the BEC side of the crossover. The lower row
displays the same surfaces rotated by 45 degrees around the
z-axis.

at c = 0.56(1). This value is not too far from the results
obtained previously [16, 18].

To illustrate the character of the nodal surfaces in the
BCS-BEC systems, we present three-dimensional scans
of the nodes for three wave functions corresponding to
the following scattering regimes: the free atomic gas with
no pairing, our best unitary-limit wave function, and the
wave function with enhanced pairing from the BEC side
of the BEC-BCS phase diagram (askF = 0.6592). The
left column of Fig. 6 displays the nodal surface of the free
atomic Fermi gas. The delocalized nature of the system

is apparent. At the unitary limit, shown in the middle
column of Fig. 6, the shape of the nodal surface is sig-
nificantly different as the pairing effects clearly dominate
and lead to a localized character of the nodes from the
perspective of a pair of up and down spin atoms. The
nodes on the BEC side (the right column) do not differ
much from the unitary limit, except for a slightly more
pronounced localization.

IV. CONCLUSIONS

We have carried out QMC calculations of the zero-
temperature, spin-unpolarized atomic Fermi gas in the
unitary limit. We show that non-vanishing interaction
range Reff impacts the resulting total energies signifi-
cantly while our data for finite Reff agree with compa-
rable results found in the literature. By extrapolating
Reff to zero we obtain the ratio E/Efree for 4, 14, 38 and
66 atoms to be 0.212(2), 0.407(2), 0.409(3) and 0.398(3).
These extrapolated results are ≈ 5% lower than the pre-
vious DMC calculation with similar quality of trial wave
functions [13, 14, 18], illustrating thus the importance
of extrapolation of Reff to zero for reaching the unitary
limit of the dilute atomic gas.

A similar study where an interaction-range extrapola-
tion was also performed was very recently published in
[29, 30]. The final result for the 66-atom system was
ξ33,33 = 0.383(2), which is approximately 4% lower than
ours. We believe that a large portion of the difference
can be attributed to differences in the functional forms of
the pair orbital. Some influence could also possibly come
from the differences between the extrapolation methods
employed in this work and in Ref. [30].

We have performed the released-node DMC calcula-
tions for 4 and 14 atoms with different types of wave
functions with intentionally varied nodes. Our release-
node results for 4 atoms indicate that fully optimized
BCS wave function is very accurate and the fixed-node
error is marginal for this small system. For larger sys-
tem of 14 atoms, we have found that the convergence to
the correct and asymptotically exact ground-state ener-
gies is unfavorably slow compared to the growth of the
statistical noise. We were able to identify only small en-
ergy gains within the simulation times that allowed for
acceptable signal to noise ratio. Despite that, our cal-
culations have shed new light on the remaining nodal
errors which are related to the less accurate description
of the low-probability regions of the configuration space.
As the concurrently obtained results [30] suggest, further
improvements of the BCS wave function nodes are prob-
ably not completely exhausted yet.

In addition to calculations of energies, we have eval-
uated the two-body density matrix and the condensate
fraction in the limit of zero interaction range, and we have
found only small changes in these quantities when com-
pared with the previous calculations. Our condensate
fraction from the fixed-node DMC simulations is 0.56(1).
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