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I. INTRODUCTION

Analytic descriptions of two-body interactions are highly desirable if any systematic understanding of quantum
few-body and quantum many-body systems is to be expected or achieved. The best-known example may be the
Gross-Pitaevskii theory of identical bosons [1], with its simplicity and generality depending intimately on our ability
to parametrize the low-energy two-body interaction using the effective range theory (ERT) [2–4]. The same is true
for quantum few-body theories in the universal regime (see, e.g., Refs. [5, 6]).

In a companion paper [7], referred to hereafter as paper I, we have discussed the limitations of the standard ERT
[2–4] in describing atomic interactions at low temperatures, and how such limitations are overcome using expansions
derived from the quantum-defect theory (QDT) for −1/r6 type of long-range potentials [8–10]. The focus was on the
case of a single channel, both out of the necessity of theoretical development, but also to provide a set of single-channel
universal behaviors that will serve as benchmarks for understanding other types of behaviors.

This article extends this discussion to atomic interaction around a magnetic Feshbach resonance [11–13] in an
arbitrary partial wave l. It is a nontrivial extension with considerable new physics as a Feshbach resonance is
necessarily a multichannel phenomenon [11–13], for which few analytic results have been derived in any general
context. The theory includes the parametrization of the resonance, the rigorous definitions of “broad” and “narrow”
resonances [12–15], and an analytic description of the atomic scattering properties around them. Such understandings,
which have been mostly limited to the s wave [12, 13], are not only of interest by themselves, they are also prerequisites
for understanding atomic interaction in an optical lattice [16], and behaviors of quantum few-atom and many-atom
systems around a Feshbach resonance. For nonzero partial waves, the theory here is a necessity as ERT fails [7, 8, 17,
18]. Even for the s wave, it offers much improved analytic description, especially for narrow resonances around which
the energy dependence of the scattering amplitude can become so significant that it has to be incorporated into the
corresponding few-body [19] and many-body theories (See, e.g., Refs. [20–23]).

There are three main steps in developing an analytic description of a magnetic Feshbach resonance. The first is the
reduction of the underlying multichannel problem, as formulated in a multichannel quantum-defect theory (MQDT)
of Ref. [24] to an effective single channel problem. The second is an efficient parametrization of a magnetic Feshbach
resonance. The third is to apply the theory of paper I [7] to obtain the desired results such as the scattering properties
around the threshold, to be addressed in this article.

The paper is organized as follows. The reduction to an effective single-channel problem is carried out in Sec. II.
The parametrization of a magnetic Feshbach resonance is addressed in Sec. III. In particular, we derive in Sec. III B
the magnetic-field dependence of scattering lengths and the generalized scattering lengths introduced in paper I [7].
We show in this section that regardless of l, the scattering length, or the generalized scattering length for l ≥ 2, can be
parametrized around a magnetic Feshbach resonance in a similar fashion as the s wave scattering length [12, 13, 25].
The parametrization is further developed in Sec. III C in terms of scaled parameters. It leads not only to more
concise analytic formulas, but more importantly, to rigorous definitions of “broad” and “narrow” Feshbach resonances
of arbitrary l. In Sec. IV, we present the QDT expansion [7] that provides an analytic description of ultracold
scattering around a magnetic Feshbach resonance of arbitrary l. As sample applications of the QDT expansion,
Sec. V presents and discusses the generalized effective range expansion [7] for ultracold scattering around a magnetic
Feshbach resonance. It includes a relationship between the (generalized) effective range and the (generalized) scattering
length that is applicable to both broad and narrow resonances, and resonances of arbitrary l. It substantially extends
a previous relationship [7, 8, 20, 26] that is applicable only to broad resonances. Two special cases of interest in
cold-atom physics, the case of infinite scattering length (the unitarity limit) and the case of zero scattering length,
are also discussed in this section as examples of the QDT expansion. The conclusions are given in Sec. VI.

II. REDUCTION OF A MULTICHANNEL PROBLEM TO AN EFFECTIVE SINGLE-CHANNEL
PROBLEM

In cold-atom physics, most of the interest in atomic interaction lies in a small range of energies around the lowest
threshold (of a certain symmetry), below which we have true bound states. Ignoring weak couplings between different
partial waves due to the magnetic dipole-dipole [25, 27] and the second-order spin-orbit interaction [28–30], we can
label the single channel of partial wave l that is associated with this lowest threshold “a”, and all the other channels
of partial wave l by “c”. Above the lowest threshold and below the energies at which the second or more channels
becomes open, it is already clear from Ref. [24] that the MQDT for atom-atom interaction reduces to an effective
single-channel problem with an effective short-range K-matrix, Kc, given by

Kc
eff = Kc

aa +Kc
ac(χ

c
cc −Kc

cc)
−1Kc

ca . (1)
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Here Kc
aa, K

c
ac, K

c
ca, K

c
cc, are submatrices of Kc corresponding to the separation of all channels into a single “a”

channel and Nc closed “c” channels. χc
cc is an Nc ×Nc diagonal matrix with elements χc

l (ǫsi), which is the universal
χc
l function, as given, e.g., by Eq. (54) in paper I, evaluated at properly scaled channel energies. This reduction to an

effective single-channel problem is a result of the standard channel-closing procedure, and occurs in similar fashion
in any type of multichannel scattering theories. What is important, and maybe less well-known, is that the energies
of the multichannel bound states below the threshold “a” can also be reduced to an effective single-channel problem
with the very same effective Kc as given by Eq. (1). A proof is given in the Appendix A.
With this reduction, the scattering below the second threshold and the multichannel bound states below the

threshold “a” are all described by an effective single-channel QDT [8–10] with an effective short-range Kc matrix
given by Kc

eff. Specifically

Kl = tan δl = (Zc
gcK

c
eff − Zc

fc)(Z
c
fs − Zc

gsK
c
eff)

−1 , (2)

gives the scattering K matrix between the lowest and the second thresholds, and the solutions of (see Appendix A)

χc
l (ǫs) = Kc

eff , (3)

give the bound spectrum below the lowest threshold. Here Zc
xy(ǫs, l) are universal QDT functions for −1/r6 potential,

as given, e.g., by Eqs. (4)-(7) of paper I. They, and χc
l (ǫs), are all evaluated at a scaled energy relative to the lowest

threshold of angular momentum l, ǫs = ǫ/sE = (E − Ea)/sE, with sE = (h̄2/2µ)(1/β6)
2 being the energy scale, and

β6 = (2µC6/h̄
2)1/4 being the length scale associated with the −C6/r

6 van der Waals interaction in channel “a”. We
note that other than the ignorance of weak interactions that couple different l states, there is no further approximation
associated with this reduction to a single channel.
This effective single-channel problem differs from a true single-channel problem in that the energy dependence of

Kc
eff is generally not negligible, unlike the Kc parameter for a single channel [9]. As will become clear throughout

this work, it is this energy dependence, which originates from the energy dependence of χc
cc in Eq. (1), that leads to

deviations from single-channel universal behaviors of paper I [7], and makes the behaviors of a “narrow” Feshbach
resonance to differ substantially from those of a “broad” Feshbach resonance. As another difference from a true
single-channel problem, the l dependence of χc

cc also makes Kc
eff l-dependent. The same formalism applies to atomic

interaction in an external magnetic field [31], which has the additional effect of making Kc
eff to depend parametrically

on B. We will use the notation of Kc
eff(ǫ, l, B), when necessary, to fully specify its dependences.

The equivalence, around the lowest threshold, of the multichannel atomic interaction in a B field to an effective single
channel problem with an effective short-range Kc

eff(ǫ, l, B) makes most results of paper I [7] immediately applicable,
except for a few that made explicit use of the energy- and/or l-insensitivity of Kc. In particular, if we define a Kc0

l
parameter, which is more convenient for descriptions of near-threshold properties [7, 10], as

Kc0
l (ǫ, B) =

Kc
eff(ǫ, l, B)− tan(πν0/2)

1 + tan(πν0/2)Kc
eff(ǫ, l, B)

, (4)

where ν0 = (2l + 1)/4 for −1/r6 type of potential, the locations of the zero-energy magnetic Feshbach resonances in
an arbitrary partial wave l, B0l, namely the magnetic fields corresponding to having a bound or quasibound state
right at the threshold, can be conveniently found as the roots of Kc0

l (ǫ = 0, B) [7, 32], namely as the solutions of

Kc0
l (ǫ = 0, B0l) = 0 . (5)

The scattering length or the generalized scattering length for an abitrary l is given by the zero-energy value of Kc0
l

through Eq. (48) of paper I [7], namely,

ãl(B) = āl

(
(−1)l +

1

Kc0
l (ǫ = 0, B)

)
, (6)

where āl = āslβ
2l+1
6 is the mean scattering length (with scale included) for partial wave l that was defined in paper I

[7], with

āsl =
π2

24l+1[Γ(l/2 + 1/4)Γ(l+ 3/2)]2
, (7)

being the scaled mean scattering length. Recall that the generalized scattering length, ãl, reduces to the regular
scattering lengths whenever they are well defined, namely for the s and p partial waves.
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Computationally, a similar theory based on MQDT [24] has been shown by Hanna et al. [31] to give an accurate
description of magnetic Feshbach resonances over a wide range of magnetic fields using only three parameters for alkali-
metal systems. Even better results can be expected by incorporating the energy and/or partial wave dependences
of Kc

S and Kc
T [24] using a few more parameters. Further calculations for specific systems and especially nonzero

partial waves will be presented elsewhere. Here we focus on the parametrization of one particular resonance and the
analytic description of atomic interaction around it. Specifically, a parametrization of the energy and the magnetic
field dependences of the Kc0

l parameter around a magnetic Feshbach resonance, to be developed in the next section,

will enter into the description of the K
(D)
l term of paper I [7], to describe the deviation of the phase shift from the

Born term (∼ k4) around the resonance.

III. PARAMETRIZATION OF A MAGNETIC FESHBACH RESONANCE

A. Derivation and general considerations

As the second step towards developing an analytic description of a magnetic Feshbach resonance, we need a simple
parametrization of Kc

eff or the corresponding Kc0
l . For any isolated resonance, the second term in Eq. (1) has a simple

pole at ǭl(B), determined by det(χc−Kc
cc) = 0. It represents the “bare” location of a Feshbach resonance and depends

on the magnetic field. (Here “bare” means no coupling to the open channel “a”.) Around such a simple pole, the
effective Kc parameter, Eq. (1), can always be parametrized as

Kc
eff = Kc

bgl −
Γc
l /2

ǫ− ǭl(B)
, (8)

sufficiently close to the pole. Here Γc
l is a measure of the width of the resonance, ǫ and ǭl are energies that are

conveniently chosen to be relative to channel “a”, e.g., ǫ = E −Ea, and Kc
bgl is a background Kc parameter, namely

the Kc for energies and magnetic fields away from the resonance, such that |ǫ− ǭl(B)| ≫ Γc
l . Using the fact that χc

l
is a piecewise monotonically decreasing functions of energy [9], namely, dχc

l /dǫs < 0, one can further show rigorously
that Γc

l > 0, a property that will put important constraints on other forms of parametrizations, all of which will be
derived from Eq. (8).
In writing Eq. (8), we have adopted a notation that avoids unnecessary confusions without getting into the details

of the MQDT [24] for atomic interaction in a magnetic field [31]. Rigorously speaking, the Kc matrix itself, and
therefore the parameters Kc

bgl and Γc
l in Eq. (8), also depend on B. This dependence, however, is only significant over

a field range of the order of ∆Ehf/µB, where ∆Ehf is the atomic hyperfine splitting, and µB is the Bohr magneton.
Since our focus here is on the parametrization of an individual resonance, the width of which is always much smaller
than the hyperfine splitting [13], we adopt the notation of Eq. (8) to emphasize that over the range of B field of
interest here, the most relevant B field dependence is that of the “bare” Feshbach energy, ǭl(B).
As discussed in paper I [7], analytic properties around the threshold are more conveniently described using the

short-range parameter Kc0
l . Substituting Eq. (8) into Eq. (4), we have

Kc0
l (ǫ, B) = Kc0

bgl −
Γc0
l /2

ǫ− ǭl(B) − fEl
, (9)

where Kc0
bgl is the background Kc0

l parameter corresponding to Kc
bgl

Kc0
bgl =

Kc
bgl − tan(πν0/2)

1 + tan(πν0/2)Kc
bgl

, (10)

with a corresponding generalized background scattering length of [7]

ãbgl = āl

(
(−1)l +

1

Kc0
bgl

)
, (11)

and

Γc0
l = Γc

l

1 + tan2(πν0/2)

[1 + tan(πν0/2)Kc
bgl]

2
. (12)
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The fEl in Eq. (9) is not an independent parameters. It is related to Kc0
bgl and Γc0

l by

fEl =
1

2
Γc0
l

tan(πν0/2)

1− tan(πν0/2)Kc0
bgl

. (13)

In describing a Feshbach resonance in terms of Kc0
l , the fact that Γc

l > 0 translates into the condition of Γc0
l > 0, as

is clear from Eq. (12).
From Eq. (9), the most general parametrization of a magnetic Feshbach resonance is that of Appendix B. We adopt

here a slightly less general parametrization that uses parameters that have more direct physical interpretations, and
are more closely aligned with those already well established for the s wave [12, 13, 25].
For Kc0

bgl 6= 0 (ãbgl 6= ∞), namely in all cases when there is no background bound or quasi-bound state right at the

threshold [32], it is more convenient to rewrite Eq. (9) as

Kc0
l (ǫ, B) = Kc0

bgl

ǫ− ǫl(B)

ǫ− ǫl(B)− dEl
, (14)

= Kc0
bgl

(
1 +

dEl

ǫ − ǫl(B)− dEl

)
, (15)

where

ǫl(B) = ǭl(B) +
Γc
l/2

Kc
bgl − tan(πν0/2)

, (16)

and

dEl = (Γc
l /2)

1 + tan2(πν0/2)

[tan(πν0/2)−Kc
bgl][1 + tan(πν0/2)Kc

bgl]
. (17)

In this form for Kc0
l , the location of the zero-energy magnetic Feshbach resonance, B0l, determined by Eq. (5),

translates into the solution of ǫl(B0l) = 0. And since we are interested here only in a range of B that covers a
single Feshbach resonance, the ǫl(B) in Eq. (15) can be approximated, around B0l, by ǫl(B) ≈ δµl(B − B0l), where
δµl = dǫl(B)/dB|B=B0l

is the difference of magnetic moments between the molecular state and the separate-atom

state [13]. This approximation, together with Eq. (15), gives the following parameterization of the effective Kc0
l

around a magnetic Feshbach resonance,

Kc0
l (ǫ, B) = Kc0

bgl

(
1 +

dEl

ǫ− δµl(B −B0l)− dEl

)
. (18)

It is a parametrization in terms of four parameters B0l, K
c0
bgl, δµl, and dEl, with the condition of Kc0

bgldEl < 0 due to

Γc0
l > 0. These parameters, together with either the C6 coefficient or the corresponding energy scale sE for a total

of five parameters, provide a complete characterization of atomic interaction around a magnetic Feshbach resonance,
through Eqs. (2) and (3). It is applicable for all partial waves l and for either broad or narrow Feshbach resonances (the
precise definition of which will be addressed in in Sec. III C), or anything in between. It fails only in the special case
of having a background bound or quasibound state right at the threshold, which can happen only by pure coincidence.
This special case, together with an alternative parametrization of magnetic Feshbach resonances that is applicable for
all cases, is discussed in Appendix B.

B. Tuning of the scattering lengths and generalized scattering lengths

Contained in the parametrization of Kc0
l is the magnetic-field dependence of the scattering length or the generalized

scattering length for an abitrary l. Defining Kc0
l (B) ≡ Kc0

l (ǫ = 0, B) to simplify the notation, we have from Eq. (18)

Kc0
l (B) = Kc0

bgl

(
1−

dBl

B −B0l + dBl

)
, (19)

where dBl = dEl/δµl. Upon substitution into Eq. (6), we obtain, for ãbgl 6= 0,

ãl(B) = āl

(
(−1)l +

1

Kc0
l (B)

)
(20)

= ãbgl

(
1−

∆Bl

B −B0l

)
. (21)
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Here ãbgl is the (generalized) background scattering length defined earlier by Eq. (11), and

∆Bl = −dBl/[1 + (−1)lKc0
bgl] , (22)

= −

(
1− (−1)l

1

ãbgl/āl

)
dBl . (23)

For ãbgl = 0, we obtain

ãl(B) = −(−1)lāl
dBl

B −B0l
. (24)

Equation (21) shows that around a magnetic Feshbach resonance of arbitrary l, the (generalized) scattering length is
tuned in a similar fashion by the magnetic field as around an s wave resonance, and can be parametrized in a similar
manner [12, 13, 25].
The parametrization of the s wave scattering length in the form of Eq. (21) has been popular for a good reason:

every parameter in it has the simplest and the most direct experimental interpretation. It is worth pointing out,
however, that theoretically it is not the most general parametrization possible as it fails for both ãbgl = ∞ and
ãbgl = 0. As discussed in Appendix B, the failure of Eq. (21) at ãbgl = ∞, and the corresponding failure of Eqs. (18)
and (19) at Kc0

bgl = 0, is a necessary sacrifice for using B0l, which has a more direct physical interpretation than the

B̄0l parameter of Appendix B, but does not exist for ãbgl = ∞. Its failure at ãbgl = 0 is the price we pay for using
the parameter ∆Bl. An alternative parametrization of the scattering length, which remains applicable for ãbgl = 0, is

ãl(B) = ãbgl +
ãbgl − (−1)lāl
(B −B0l)/dBl

. (25)

It can be obtained, e.g., by substituting Eq. (23) for ∆Bl into Eq. (21). This parametrization is well defined, and
reduces to Eq. (24) for ãbgl = 0.

C. Parametrization in terms of scaled parameters and the definitions of “broad” and “narrow” resonances

Of the five parameters required to completely characterize the atomic interaction around a Feshbach resonance,
such as B0l, K

c0
bgl, dEl, δµl, and sE (or C6), two of them, Kc0

bgl and dEl can be replaced by ãbgl and ∆Bl, used in the

parametrization of the (generalized) scattering length. The resulting parametrization, in terms of B0l, ãbgl, ∆Bl, δµl

and sE (or C6), gives an alternative that is the most direct generalization of the s wave parametrization [13] to other
partial waves. Both sets, however, have the limitation that they are not fully transparent to the distinction between
broad and narrow resonances.
The effective single channel Kc0

l parameter for a magnetic Feshbach resonance, as characterized, e.g., by Eq. (18),
is generally energy-dependent. Depending on the relative importance of this energy variation, as compared to those
due to the long-range van der Waals interaction, a Feshbach resonance can be classified either as “broad” or “narrow”.
For a broad Feshbach resonance, the energy dependence of Kc0

l is insignificant compared to those induced by the
van der Waals interaction. The atomic interaction around such a resonance follows, to a large extent, the single-
channel universal behavior of paper I [7] with a tunable (generalized) scattering length. A narrow Feshbach resonance
corresponds to the opposite limit in which the energy dependence of Kc0

l dominates. The atomic interaction around
such a resonance can differ completely from the single-channel universal behavior.
To better characterize the relative importance of the energy dependence of Kc0

l and therefore the definition of broad
and narrow resonances, we need to first put it on the same energy scale as the other energy-dependent functions,
namely on the energy scale sE = (h̄2/2µ)(1/β6)

2 that is associated with the van der Waals interaction [7]. Defining

gres = dEl/sE , (26)

and

Bs = (B − B0l)/dBl , (27)

Eq. (18) can be written as

Kc0
l (ǫs, Bs) = Kc0

bgl

(
1 +

gres
ǫs − gres(Bs + 1)

)
. (28)
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FIG. 1. (Color online) Illustrations of the parameters describing the energy dependence of Kc0
l (ǫs, Bs) on the van der Waals

energy scale. Γc0
l > 0 (Kc0

bglgres < 0) implies that Kc0
l is piecewise monotonically increasing function of energy. The significance

of its energy dependence is determined by comparing it with that induced by the van der Waals interaction, the order-of-
magnitude of which can be measured by the energy dependence of the θl ≈ −ǫs/(2l + 3)(2l − 1) function. The dashed line
illustrates the θl function for l = 1. The energy variation of θl is less significant for higher partial waves.

It describesKc0
l as a function of the scaled energy ǫs and a scaled magnetic field Bs using two dimensionless parameters,

Kc0
bgl and gres, the meaning of which are illustrated in Fig. 1. Kc0

bgl is the background Kc0
l , namely its value away

from the resonance. gres is a measure of the width of the resonance. More specifically, Kc0
l (ǫs, B) goes to infinity at

ǫs = gres(Bs+1). It crosses zero ǫs = gresBs. The distance between the two locations is |gres|, which measures the width
of resonance. The parametrization of Kc0

l using Eq. (28) divide the parameters characterizing a magnetic Feshbach
resonance into three parameters, B0l, dBl, and sE , for location and scaling, and two dimensionless parameters, Kc0

bgl
and gres, for the shape. Feshbach resonances with the same shape parameters differ from each other only in scaling.
The condition of Γc0

l > 0 implies that the two shape parameters Kc0
bgl and gres are constrained by Kc0

bglgres < 0.

With the parametrization given by Eq. (28), we are now in position for rigorous definitions of broad and narrow
resonances. The gres parameter, which measures the width of the resonance on the scale of sE , gives a rough, yet
still imprecise, classification of “broad” (|gres| ≫ 1) and “narrow” (|gres| ≪ 1). It is not precise because the energy
variation due to the van der Waals interaction over a scale of sE is different for different partial waves. This is
especially true for large l, for which the energy variation around the threshold due to the van der Waals interaction
is much less significant than that for the s wave.
For a more precise definition of “broad” and “narrow”, we first recognize that the leading energy variation due to

the van der Waals interaction is characterized by the θl ≈ −ǫs/(2l+3)(2l−1) function defined by the Eq. (35) of paper
I [7] (repeated as Eq. (43) in Sec. IV). This energy variation, as measured by |∂θl/∂ǫs(ǫs = 0)| = |1/(2l+3)(2l−1)|, is
what should be compared with the energy variation of the Kc0

l at zero energy, as measured by ∂Kc0
l /∂ǫs(ǫs = 0, Bs =

0) = −Kc0
bgl/gres. This leads to the definition of an auxiliary parameter

ζres ≡
gres

(2l + 3)(2l− 1)Kc0
bgl

, (29)

which gives a precise characterization of “broad” and “narrow”. For a broad resonance with |ζres| ≫ 1, the energy
variation of the effective short-range parameter is insignificant compared to that due to the van der Waals interaction,
just like the case of a single channel [7]. The atomic interaction around such a resonance can be expected to follow
the single channel universal behavior. For a narrow resonance with |ζres| ≪ 1, the energy variation of the effective
short-range parameter dominates. Within such a resonance, the atomic interaction deviates substantially from the
single channel behavior. The constraint Kc0

bglgres < 0 implies that ζres is always positive for l = 0, and always negative

for l ≥ 1. Specializing to the s wave, the ζres parameter is similar in spirit to the parameter sres of Chin et al. [13],
which is equivalent to the 1/η parameter of Köhler et al. [12].
To finish our discussion on parametrization, we summarize here the explicit relations between two sets of parameters

that we will use for the complete characterization of a Feshbach resonance. The first set is B0l, ãbgl, ∆Bl, δµl and
sE (or C6), which is more closely correlated with the parametrization of the (generalized) scattering length and the
standard s wave parametrization [13]. The second set is B0l, K

c0
bgl, gres, dBl, and sE (or C6), which is much more

convenient with the QDT expansion of Sec. IV, and correlates much more closely with the distinction of broad and
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TABLE I. Sample parameters for selective s wave magnetic Feshbach resonances, illustrating a vast range of ζres values, from
very narrow (|ζres| ≪ 1) to very broad (|ζres| ≫ 1). It shows, for example, that 6Li-6Li and 133Cs-133Cs systems have the best
resonances for the purpose of investigating universal behaviors. Here a0 is the Bohr radius and µB is the Bohr magneton. The
data sets of B0l, ∆Bl, abgl, and δµl are taken from Table IV of Chin et al. [13]. The channel identification also follows the
same reference. Note that there are many resonances that are not broad. The atomic interaction around them do not follow
single-channel universal behavior and is much better described using the QDT expansion presented here.

system sE/kB(µK) ch. B0l(G) ∆Bl(G) abgl/a0 δµl/µB Kc0
bgl gres dBl(G) ζres references

6Li6Li 7368 ab 834.1 -300 -1405 2.0 -0.02083 5.356 293.8 85.73 [33]

ac 690.4 -122.3 -1727 2.0 -0.01701 2.192 120.2 42.96 [33]

bc 811.2 -222.3 -1490 2.0 -0.01966 3.974 217.9 67.37 [33]

ab 543.25 0.1 60 2.0 0.9923 -0.00363 -0.1992 0.00122 [34]
7Li7Li 5849 aa 736.8 -192.3 -25 1.93 -0.5540 1.901 85.76 1.144 [13, 35, 36]
23Na23Na 933.1 cc 1195 -1.4 62 -0.15 2.255 -0.04921 4.557 0.00727 [13, 37, 38]

aa 907 1 63 3.8 2.143 -0.8597 -3.143 0.1337 [13, 37, 38]

aa 853 0.0025 63 3.8 2.143 -0.00215 -0.00786 0.00033 [13, 37, 38]
40K40K 257.3 ab 202.1 8.0 174 1.68 0.5542 -5.454 -12.43 3.280 [13, 39]

ac 224.2 9.7 174 1.68 0.5542 -6.613 -15.07 3.978 [13, 40]
85Rb85Rb 75.58 ee 155.04 10.7 -443 -2.33 -0.1506 18.82 -9.089 41.66 [41]
87Rb87Rb 72.99 aa 1007.4 0.21 100 2.79 3.759 -2.566 -0.9994 0.2275 [13, 42, 43]

aa 911.7 0.0013 100 2.71 3.759 -0.01543 -0.00619 0.00137 [13, 44]

aa 685.4 0.006 100 1.34 3.759 -0.03521 -0.02855 0.00312 [13, 43, 44]

aa 406.2 0.0004 100 2.01 3.759 -0.003521 -0.00190 0.00031 [13, 44]

ae 9.13 0.015 99.8 2.00 3.795 -0.1324 -0.07193 0.01163 [45]
133Cs133Cs 31.97 aa -11.7 28.7 1720 2.30 0.05945 -146.9 -30.41 823.9 [13, 46, 47]

aa 547 7.5 2500 1.79 0.04015 -29.34 -7.801 243.5 [13]

aa 800 87.5 1940 1.75 0.05235 -338.6 -92.08 2156 [13]

narrow resonances. They differ in three parameters that are related by

Kc0
bgl =

1

ãbgl/āl − (−1)l
, (30)

gres = −
ãbgl/āl

ãbgl/āl − (−1)l

(
δµl∆Bl

sE

)
, (31)

dBl = −
ãbgl/āl

ãbgl/āl − (−1)l
∆Bl . (32)

The condition of Γc
l > 0 translates into the constraint δµlãbgl∆Bl > 0 for the first set of parameters, and into

Kc0
bglgres < 0 for the second. Table 1 gives examples of both sets of parameters for selective s wave magnetic Feshbach

resonances. The first set is taken from Table IV of Chin et al. [13]. The second set is calculated from the first using
Eqs. (30)-(32). They are given here both for convenient applications of the QDT expansion, and to illustrate the vast
range of ζres, from very narrow |ζres| ≪ 1 to very broad |ζres| ≫ 1. Since the parametrization is new for nonzero
partial waves, no parameters are yet available for them. Tentative theoretical predictions of resonances and their
parameters for nonzero partial waves, using MQDT as briefly outlined in Sec. II, will be presented elsewhere. It is
hoped that they will stimulate further experiment and theory for their more precise characterization. Previous works
on nonzero partial waves, such as those in Ref. [13, 31, 40, 48–55], can also be re-analyzed to extract the parameters.
The second set of parameters describes Kc0

l through Eq. (28). A useful variation, which relates Kc0
l explicitly to

its value at zero energy, is given by

Kc0
l (ǫs, Bs) =

Kc0
l (Bs)−Kc0

bglη(Bs)ǫs

1− η(Bs)ǫs
, (33)
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where

Kc0
l (Bs) = Kc0

l (ǫs = 0, Bs) = Kc0
bgl

Bs

Bs + 1
, (34)

is the value of Kc0
l at zero energy, given earlier by Eq. (19), expressed in terms of the scaled magnetic field, and we

have defined

η(Bs) =
1

gres(Bs + 1)
. (35)

This representation of Kc0
l makes it clear that Kc0

l (ǫs, Bs) ∼ Kc0
l (Bs) in the broad-resonance limit of |gres| → ∞.

It also makes it easier, if ever desirable, to represent Kc0
l (ǫs, Bs) in term of (generalized) scattering length and

(generalized) background scattering length, using Eqs. (30)-(32), and

Kc0
l (Bs) =

1

ãl(B)/āl − (−1)l
, (36)

which is a direct consequence of Eq. (20).

IV. QDT EXPANSION FOR ULTRACOLD SCATTERING AROUND A MAGNETIC FESHBACH
RESONANCE

In deriving the QDT expansion for single-channel ultracold scattering of paper I [7], the only quantities expanded
are the universal QDT functions, with no assumptions made about the behavior of the short-range parameter Kc0

l ,
including its energy dependence. Thus the same expansion is applicable to the effective single-channel problem that
describes the magnetic Feshbach resonance. Specifically, we have for ǫs > 0 [7],

tan δl ≈ K
(B)
l (ǫs) +K

(D)
l (ǫs, Bs) , (37)

where

K
(B)
l ≈ −π(ν − ν0)

≈
3π

(2l + 5)(2l+ 3)(2l + 1)(2l− 1)(2l− 3)
ǫ2s , (38)

is the Born term (see, e.g., Ref. [56]), and

K
(D)
l (ǫs, Bs) = −Ãsl(ǫs, Bs)k

2l+1
s , (39)

describes the deviation from the Born term. Here

Ãsl(ǫs, Bs) = āsl

[
(−1)l +

1 +Kc0
l (ǫs, Bs)θl

Kc0
l (ǫs, Bs)− θl − π(ν − ν0)/2

]
, (40)

= āsl

[
(−1)l +

(2l+ 3)(2l − 1)−Kc0
l (ǫs, Bs)ǫs

(2l + 3)(2l− 1)Kc0
l (ǫs, Bs) + ǫs + wlǫ2s

]
, (41)

with the wl in Eq. (41) being given by

wl =
3π

2(2l+ 5)(2l+ 1)(2l− 3)
, (42)

and the θl in Eq. (40) being given by

θl ≈ −
1

(2l+ 3)(2l − 1)
ǫs . (43)

Equations (37)-(41), with a Kc0
l that depends explicitly on energy and parametrically on the magnetic field B, as

described by either Eq. (28), Eq. (33), or Eq. (B1) of Appendix B, give the QDT expansion for scattering around a
magnetic Feshbach resonance in an arbitrary partial wave l. It is applicable to both broad and narrow resonances, or
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FIG. 2. (Color online) Comparison of near-threshold s wave scattering properties for narrow and broad Feshbach resonances.
The solid line represents results for the 6Li ab channel narrow resonance located at 543 G. The dash-dot line represents results
for the 6Li ab channel broad resonance located at 834 G. In both cases, magnetic fields are chosen to give the same s wave
scattering length corresponding to al=0(B)/āl=0 = +10. The figure also shows that the Feshbach resonance at 834 G is sufficient
broad that the scattering properties around it is well approximated by the single-channel universal behavior (dashed line).
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FIG. 3. (Color online) The same as Fig. 2 except it is for al=0(B)/āl=0 = −10. sin2 δl is plotted, instead of the partial cross
section to give better visibility to both sets of data on the same figure. The single-channel universal behavior is indistinguishable
from the broad-resonance results (dash-dot line) and is not plotted. Note that even though both set of data correspond to the
same scattering length, the case of narrow Feshbach (solid line) has a resonance feature in the threshold region that is absent
for a broad Feshbach. (See also Ref. [13].)

anything in between, and has the same energy range of applicability as its single-channel counterpart, limited only by
ǫs being much less than the critical scale energy ǫscl, as discussed in more detail in paper I [7]. There is no restriction
on the magnetic field except that imposed by the validity of the isolated resonance.
While the QDT expansion for scattering around a magnetic Feshbach resonance may be formally similar to QDT

expansion for true single channel cases [7], it contains considerable new physics beyond those of a single channel,
including dramatically different behaviors for broad and narrow resonances. For broad resonances with |gres| ≫ 1,
or more precisely |ζres| ≫ 1, the energy dependence of Kc0

l (ǫs, Bs) is negligible. The QDT expansion approaches
the single-channel universal behavior [7] defined by replacing Kc0

l (ǫs, Bs) in Eqs. (40) and (41) with its zero-energy
value of Kc0

l (Bs). In such cases, multichannel scattering behaves the same as a single channel with a tunable
(generalized) scattering length not only at the threshold, but over a range of energies around the threshold with
an energy dependence determined primary by the van der Waals interaction. This is illustrated in Figs. 2 and 3
using a broad resonance of 6Li-6Li. Narrow resonances behaves very differently with a much more complex energy
dependence that is determined both by the properties of the resonance and by the van der Waals interaction. They
change scattering in a narrow range of energies around the resonance. Away from it, atomic interaction evolves
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FIG. 4. (Color online) A plot of sin2 δl vs ǫs and Bs for the p wave, with parameters Kc0
bgl = −0.03 and gres = 0.02. It illustrates

the avoided crossing between a background shape resonance located in the threshold region and a narrow Feshbach/shape
resonance.

towards a single channel universal behavior determined not by Kc0
l (Bs), but by Kc0

bgl or equivalently the background

(generalized) scattering length ãbgl, with

K
(D)
l ∼ −āslk

2l+1
s

[
(−1)l +

(2l+ 3)(2l − 1)−Kc0
bglǫs

(2l + 3)(2l− 1)Kc0
bgl + ǫs + wlǫ2s

]
. (44)

Figures 2 and 3 contain illustrations of narrow-resonance behavior using an example from 6Li-6Li scattering. Further
conceptual understanding of the differences between broad and narrow resonances can be found in the next section, in
connections with the generalized effective range expansion and examples for infinite and zero (generalized) scattering
lengths.
As an illustration of the breadth of the physics contained in the QDT expansion for a magnetic Feshbach resonance,

Figure 4 shows its description of an avoided crossing between a narrow p wave Feshbach/shape resonance and a
background p wave shape resonance in the threshold region. It is an example of the coupling of a bound state to a
highly “structured” continuum, and is used here to emphasize that the only restriction on the applicability of the
QDT expansion is ǫs ≪ ǫscl [7].
For nonzero partial waves, a Feshbach resonance above the threshold manifests itself as a Feshbach/shape resonance.

The qualitative characteristics of such a resonance, such as its position and width, are contained within the QDT
expansion, in a manner similar to the case of a single channel [7]. We defer their discussions to a following paper,
since they need to be combined with the binding energy of a Feshbach molecule to give a complete picture of the
evolution of a resonance across the threshold.

V. SAMPLE APPLICATIONS

A. The generalized effective range expansion around a magnetic Feshbach resonance

One of the ways to understand some of the physics contained in the QDT expansion for atomic interaction around
a magnetic Feshbach resonance is through the generalized effective range expansion contained within it. As in paper
I [7], the QDT expansion, given by Eqs. (37)-(41), can be approximated by an generalized effective range expansion

k2l+1 cot(δl − δ
(B)
l ) = −

1

ãl
+

1

2
r̃elk

2 +O(k4 ln k) , (45)

where δ
(B)
l = −π(ν − ν0) is approximated by Eq. (38). It reduces to the standard effective range expansion [2–4]

for l = 0, and serves to define the generalized scattering length and the generalized effective range for other l [7].
For scattering around a magnetic Feshbach resonance, both the (generalized) scattering length and the (generalized)
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effective range become magnetic-field dependent. The (generalized) scattering length, ãl, is tuned by the magnetic
field according to Eq. (21). From the QDT expansion, it is straightforward to show that the (generalized) effective
range is given by

r̃el(B) = −
2ālβ

2
6

(2l + 3)(2l− 1)[ãl(B)]2

[
1 +

(
(−1)l −

ãl(B)

āl

)2
]

−

(
h̄2

µãbglδµl∆Bl

)(
∆Bl

B −B0l −∆Bl

)2

, (46)

= −
2ālβ

2
6

(2l + 3)(2l− 1)[ãl(B)]2

[
1 +

(
(−1)l −

ãl(B)

āl

)2
]

+

(
1

ζres

)
2β2

6

(2l + 3)(2l− 1)āl

(
∆Bl

B −B0l −∆Bl

)2

, (47)

= −
2ālβ

2
6

(2l + 3)(2l− 1)[ãl(B)]2

[
1 +

(
(−1)l −

ãl(B)

āl

)2
]

+

(
1

ζres

)
2ālβ

2
6

(2l + 3)(2l− 1)[ãl(B)]2

[
ãl(B)− ãbgl

āl

]2
. (48)

It consists of two terms. The first corresponds to the single-channel universal behavior of paper I [7] and is due to
the long-range van der Waals interaction. The second term is due to the energy dependence of the effective Kc0

l that
comes from the coupling to a bound state in closed channels. It is given here in three different forms with distinctive
insights.
In the broad-resonance limit of |ζres| → ∞, the energy dependence of the effective Kc0

l is negligible, and the
the result reduces to the single-channel universal behavior [7], in which the (generalized) effective range is uniquely
determined by the (generalized) scattering length, ãl(B), independent of the other details of the resonance. Within
a narrow resonance, the (generalized) effective is changed substantially from the universal behavior, which is one
way to understand its substantially different near-threshold behavior as illustrated in Figs. 2 and 3. This change, as
characterized by the second terms in Eqs. (46)-(48), depends sensitively both on the location within the resonance
and on specific characteristics of the resonance, which are described, for instance, by the ζres and ãbgl parameters in
Eq. (48). Away from the resonance, namely for |B − B0l| ≫ |∆Bl|, the second term goes away and the (generalized)
effective range evolves back towards a single-channel universal result [7] determined by the (generalized) background
scattering length, ãbgl.
It is useful to note that the contribution to the (generalized) effective range due to the coupling to a bound state in

closed channels, the second term, is always negative. It comes from the constraint of Γc > 0 discussed earlier, which
translates into δµlãbgl∆Bl > 0 for parameters used in Eq. (46), and into ζres > 0 for l = 0 and ζres < 0 for all other
partial waves, for parameters used in Eqs. (47) and (48) (see Sec. III C). The implication is that r̃el(B) is always
negative for l > 0 as its corresponding first term is also always negative [7]. For the s wave, the two terms are always
of opposite signs and the end result can be either positive or negative.
Specializing to the case of s wave, the second term in Eq. (46) is the expression for the effective range that is adopted

by Zinner and Thogersen [23] in their investigation of Bose-Einstein condensate (BEC) around a narrow Feshbach
resonance. It comes from the work of Bruun et al. [57], which ignores the effect of van der Waals interaction.
Having only the second term in their theories means that that their results are applicable only for narrow resonances
(|ζres| ≪ 1), and only in the resonance region where the scattering length differs substantially from the background
scattering length.
We note that while the generalized effective range expansion is useful both as a connection to previous theories and

for studies of dilute quantum gases at ultracold temperatures [20, 22, 23], it has its limitations. Similar to the case of
a single channel [7], it fails around ãl(B) = 0, and has generally a much more limited range of applicability compared
to the QDT expansion, from which it is derived.

B. Examples of infinite and zero (generalized) scattering lengths

Both for the purpose of illustrating explicit energy dependences contained in the QDT expansion for magnetic
Feshbach resonances, and to facilitate future applications, we give here explicit QDT expansion for two special cases
of interest in cold-atom physics. One is the case of infinite (generalized) scattering length, the so-called unitary limit.
The other is the case of zero (generalized) scattering length.
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For infinite (generalized) scattering length, which occurs at B = B0l, or equivalently, at Bs = 0, the QDT expansion

for K
(D)
l , Eqs. (39) and (41), becomes

K
(D)
l = āslk

2l−1
s

(2l + 3)(2l− 1)gres − ǫs

[
(2l + 3)(2l− 1)−Kc0

bglǫs

]

(2l+ 3)(2l − 1)Kc0
bgl + ǫs + wlǫ2s − gres(1 + wlǫs)

− (−1)lāslk
2l+1
s . (49)

In the broad resonance limit of |gres| → ∞, it reduces to Eq. (51) of paper I [7]. For a narrow resonance with |ζres| ≪ 1,

scattering around the threshold follows that of an infinite (generalized) scattering length, with K
(D)
l ∼ k2l−1

s [7], only
in a very small energy range of 0 < ǫs ≪ |gres| around the threshold. Outside this region, namely for energies
ǫs ≫ |gres|, it evolves into the background scattering described by Eq. (44), as discussed in the previous section in a
more general context.
Another special case of interest, where the effective range expansion, including the generalized version of Sec. VA,

fails completely, is that of zero (generalized) scattering length. It occurs at the magnetic field B = B0l + ∆Bl, or,
equivalently at Bs = −[1 + (−1)lKc0

bgl]
−1, where Eqs. (39) and (41) becomes

K
(D)

l
= āslk

2l+3
s

Kc0

bgl
gres(2 + wlǫs) −

[
(−1)l + Kc0

bgl

]{
(2l + 3)(2l − 1)Kc0

bgl
+ ǫs + wlǫ

2
s + (−1)l

[
(2l + 3)(2l − 1) − Kc0

bgl
ǫs

]}

Kc0
bgl

gres

[
(2l + 3)(2l − 1)Kc0

bgl
− (−1)lǫs − (−1)lwlǫ

2
s

]
+ (−1)l

[
(−1)l + Kc0

bgl

]
ǫs

[
(2l + 3)(2l − 1)Kc0

bgl
+ ǫs + wlǫ

2
s

] , (50)

In the broad resonance limit of |gres| → ∞, it reduces to Eq. (50) of paper I. For a narrow resonance with |ζres| ≪ 1,

it behaves as scattering of zero (generalized) scattering length, with K
(D)
l ∼ k2l+3

s [7], only in a small energy range of
0 < ǫs ≪ |gres|. Outside this range it becomes that determined by the background scattering, as given by Eq. (44).
Equations (49) and (50) illustrate the kind of energy dependences contained in the QDT expansion for magnetic
Feshbach resonances, and the complexity required to describe two types of behaviors, one determined by Kc0

l (Bs) or
ãl(B) sufficiently close to the threshold, and one by Kc0

bgl or ãbgl away from the resonance, and the evolution between
the two.

VI. CONCLUSIONS

In conclusion, we have presented an analytic description of a magnetic Feshbach resonance in an arbitrary partial
wave l and the atomic scattering around it at ultracold temperatures. It is derived by showing, in a very general con-
text, that a multichannel problem below the second threshold, all the way through the bound spectrum, is equivalent
to an effective single-channel problem with a generally energy- and partial-wave-dependent short-range parameter.
The relative significance of this energy dependence, in comparison with those induced by the long-range interaction,
leads to the classification of Feshbach resonances of arbitrary l into broad and narrow resonances, with vastly different
scattering characteristics around the threshold.
We have shown that, except for the special case of Kc0

bgl = 0 (corresponding to ãbgl = ∞, and discussed further in

Appendix B), a magnetic Feshbach resonance of arbitrary l can be parametrized in a similar fashion as an s wave
Feshbach resonance [12, 13, 25], in terms of five parameters, which can be either B0l, ãbgl, ∆Bl, δµl and sE (or C6),
or B0l, K

c0
bgl, gres, dBl, and sE (or C6). These parameters, together with the QDT expansion, give accurate analytic

descriptions of atomic interactions around a magnetic Feshbach resonance, not only of the scattering properties
presented here, but also of the binding energies of a Feshbach molecule and of scattering at negative energies [10], to
be presented in a following publication. Such descriptions can now be incorporated into theories of atomic interaction
in an optical lattice [16], using, e.g., the multiscale QDT of Ref. [17], and theories of few-atom and many-atom systems
around a Feshbach resonance, especially around a resonance that is not broad (See, e.g., Refs. [14, 19–23]).
Accurate determinations of Feshbach parameters will generally require a combination of theoretical and experimental

efforts, as have been done previously for the s wave [13]. The derivation of the parametrization, as presented in Sec. II-
III and Appendix B, also constitutes an outline of a theory for these parameters and how they can be computed from
the MQDT formulation for atomic interaction in a magnetic field [24, 31]. The detailed implementation of the theory
and results for specific systems will be presented elsewhere. They will answer questions such as “are there any broad
resonances in p or higher partial waves, and which systems have them?”. By comparing theoretical predications and
experimental measurements over a wide range of magnetic fields, we will also learn about the energy and the partial
wave dependences of the short-range Kc

S and Kc
T parameters of Ref. [24], which are due to interactions of shorter

range such as the C8/r
8 term in the potential. Such variations, once determined, will allow MQDT to provide a

basically analytic description of atomic interactions over a wide range of temperatures, from zero kelvin to 1 kelvin,
and beyond [24].
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Finally, it should be clear that while the focus of this article is on magnetic Feshbach resonances, many of the
concepts are much more generally applicable. In particular, the theoretical development followed here provides a very
general methodology on how analytic descriptions of certain aspects of a multichannel problem may be developed and
understood. The theory is also a necessary step towards resolving one remaining difficulty in the analytic description
of ultracold atomic interaction, which is to efficiently incorporate the weak magnetic dipole-dipole and second-order
spin-orbit interactions [25, 27–30]. Before one can describe how such anistropic interactions can, e.g., couple a d wave
resonance into the s wave [13], it is first necessary to efficiently characterize the resonances without such coupling.
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Appendix A: Reduction of an N channel bound state problem to an effective Na < N channel bound state
problem

In MQDT for −1/rn type of potentials with n > 2 [24], the bound states energies for an N channel problem is
given generally by the solutions of

det(χc −Kc) = 0 , (A1)

where Kc is an N ×N real and symmetric matrix, and χc is an N ×N diagonal matrix with elements χ
c(ni)
l (ǫsi).

Separating the N channels into Na “a” channels and Nc = N −Na “c” channels, the Kc matrix can be written in
a partitioned form as

Kc =

(
Kc

aa Kc
ac

Kc
ca Kc

cc

)
, (A2)

where Kc
aa is a Na × Na submatrix of Kc, Kc

cc is a Nc × Nc submatrix, Kc
ac is a Na × Nc submatrix, and Kc

ca is a
Nc ×Na submatrix. From det(xy) = det(x) det(y), we can write

det(χc −Kc) = det

(
χc
aa −Kc

aa Kc
ac

Kc
ca χc

cc −Kc
cc

)

= det

[
A

(
χc
aa −Kc

aa Kc
ac

Kc
ca χc

cc −Kc
cc

)
A−1B

]

= det(A) det

[(
χc
aa −Kc

aa Kc
ac

Kc
ca χc

cc −Kc
cc

)
A−1B

]
. (A3)

Here A is an arbitrary nonsingular matrix, and B is an arbitrary matrix with det(B) = 1. Choosing

A =

(
I 0

0 χc
cc −Kc

cc

)
, (A4)

and

B =

(
I 0

−Kc
ca I

)
, (A5)

where I represents an unit matrix, we obtain

det(χc −Kc) = det(χc
cc −Kc

cc) det(χ
c
aa −Kc

eff) , (A6)

where

Kc
eff = Kc

aa +Kc
ac(χ

c
cc −Kc

cc)
−1Kc

ca . (A7)
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Equation (A6) means that if the channels “a” and channels “c” are not coupled, namely Kc
ac = 0, the bound

states separate into two sets, one for channels “a”, given by det(χc
aa −Kc

aa) = 0, and one for channels “c”, given by
det(χc

cc−Kc
cc) = 0. (SinceKc, like any otherK matrix, is real and symmetric,Kc

ac = 0 also impliesKc
ca = (Kc

ac)
T = 0.)

If they are coupled, which is the case that we are interested in, the solutions of det(χc
cc − Kc

cc) = 0 are no longer
solutions of det(χc −Kc) = 0. This can be proven by taking the limit of E → Ē in Eq. (A6), where Ē is one of the
solutions of det(χc

cc −Kc
cc) = 0, namely one of the bare resonance energies. Thus in the coupled case, all bound state

energies are given by the solutions of

det(χc
aa −Kc

eff) = 0 , (A8)

with the effective Kc matrix being given by Eq. (A7).
This procedure can in principle reduce an N channel bound state problem to an effective Na < N channel problem

with Na being an arbitrary number smaller than N . In reality, the choice of Na is of course determined by the
underlying physics. While we are using Na = 1 in this paper, in which case Eq. (A8) reduces to Eq. (3), other choices
are possible, and are likely to be important in future treatments that incorporate the magnetic dipole-dipole and
second-order spin-orbit interactions [25, 27–30].

Appendix B: An alternative parametrization of magnetic Feshbach resonances and the special case of infinite
(generalized) background scattering length

As stated in the main text, the parametrization adopted, Eqs. (18) for the Kc0
l (ǫ, B) and the corresponding Eq. (21)

for the generalized scattering length, have the limitation that they fail for Kc0
bgl = 0, corresponding to an infinite

(generalized) background scattering length ãbgl = ∞. We show in this appendix that this is not an intrinsic difficulty
of the theory, but due simply to the desire of using parameters that have more direct experimental interpretations.
There are parametrizations of Kc0

l and ãl that would work for arbitrary background scattering lengths, provided that
we are willing to sacrifice using B0l.
It is not surprising that any parametrization based on B0l would have difficult atKc0

bgl = 0 (ãbgl = ∞), corresponding
to having a bound or quasibound background state right at the threshold. The interaction of this background state
and the “bare” Feshbach state is such that B0l no longer exists, meaning that there can never be, in this case, a
(coupled) bound state right at the threshold due to avoided crossing. This is reflected in the fact that the effective
Kc0

l , given by Eq. (9), does not have a solution for Kc0
l (ǫ = 0, B0l) = 0 in the special case of Kc0

bgl = 0.

This difficulty can be overcome by expanding ǭl(B) in Eq. (9) around B̄0l, determined by ǭl(B̄0l) = 0, which is the
magnetic field at which the “bare” Feshbach resonance is crossing the threshold. This gives us ǭl(B) ≈ δµ̄l(B − B̄0l),
where δµ̄l = dǭl(B)/dB|B=B̄0l

. Equation (9) now becomes

Kc0
l (ǫ, B) = Kc0

bgl −
Γc0
l /2

ǫ− δµ̄l(B − B̄0l)− fEl
. (B1)

It is a parametrization with four parameters, Kc0
bgl, B̄0l, δµ̄l, and Γc0

l . [The fEl is not an independent parameter and

is still given by Eq. (13).] The corresponding parametrization of ãl is

ãl(B) = āl
[1 + (−1)lKc0

bgl](B − B̄0l + f̄Bl) + (−1)lΓc0
Bl/2

Kc0
bgl(B − B̄0l + f̄Bl) + Γc0

Bl/2
. (B2)

where f̄Bl = fEl/δµ̄l and Γc0
Bl = Γc0

l /δµ̄l. Equations (B1) and (B2) work for both infinite and zero (generalized)
background scattering lengths. For example, in the case of Kc0

bgl = 0 (ãbgl = ∞), Eq. (B2) becomes

ãl(B) = āl

[
(−1)l + tan(πν0/2) +

B − B̄0l

Γc0
Bl/2

]
. (B3)

The disadvantage of this parametrization is that the parameter B̄0l does not have as direct of an experimental
interpretation as B0l. It is more of a theoretical concept corresponding to the magnetic field at which a “bare”
Feshbach resonance is crossing the threshold. The utility of this parametrization is, however, beyond conceptual
completeness. Depending on the range of magnetic field of interest, it can be the preferred parametrization for special
cases with large background scattering lengths (see, e.g., Ref. [58]), and can be used with the QDT expansion in a
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similar manner as the one adopted in the main text.
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