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A robust thermodynamic argument shows that a small reduction of the effective coupling constant
α of QED greatly enhances the low energy Compton scattering cross section and that the Thomson
scattering length is connected to a fundamental scale λ. A discussion provides a possible quantum
interpretation of this enormous sensitivity to changes in the effective coupling constant α.
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The process of the energy interchange between radia-
tion and matter provided by Compton scattering is rele-
vant in many areas of physics. For example, in cosmology
it keeps the matter at the same temperature as radiation
[1]. Compton scattering is also a unique spectroscopy for
condensed matter physics, which has acquired greater im-
portance with the advent of modern synchrotron sources
[2–4]. For instance, it has been used to extract informa-
tion about wave functions of valence electrons in a variety
of systems ranging from ice [5, 6], water [7], alloys [8] and
correlated electron systems [9]. Moreover, Compton scat-
tering can potentially help delineate confinements [10]
and spin polarization effects [11] in nanoparticles.
The Compton scattering cross section strength is de-

termined by the classical electron radius, also known as
the Thomson scattering length,

r0 =
e2

4πǫmc2
≈ 2.82× 10−13cm , (1)

where e is the electron charge, m is the electron mass,
c is the speed of light and ǫ is the dielectric constant.
Unfortunately, the small size of r0 makes Compton ex-
periments in condensed matter systems difficult. This is
why only few experiments have been done, even with the
best synchrotron sources. The classical proton radius is
even smaller by a factor M/m ≈ 1863, where M is the
proton mass. Therefore, nuclei are practically invisible
in X-ray Compton scattering experiments.
In 1952 Max Born suggested that the electronic ra-

dius r0 is connected to an absolute length scale λ [12].
Thus, if the electromagnetic interaction strength is mod-
ified, λ must change as well. Understanding this vari-
ation could enable us to enhance the Compton scatter-
ing cross sections by engineering an effective quantum
electro-dynamics (QED) interaction. The effective cou-
pling constant

α =
e2

4πǫh̄c
, (2)

can be modified through the dielectric response ǫ, for
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FIG. 1: Schematic diagram of the elementary scattering event
involved in the Compton scattering process. The incoming
photon scatters from the target to produce an outgoing pho-
ton and an electron and leaves the singly ionized target.

instance, if the incident photon energy is tuned near to
the binding energy of a deep core electron level in certain
materials.

This work shows that the Compton cross section can
depend strongly on the effective coupling constant α and
that a reduction of α as small as 1% may lead to an
increase the cross section by a factor 4. Moreover, the
present results connect r0 to a fundamental length λ and
thus are consistent old hypothesis by Max Born.

The triple-differential scattering cross section for the
process shown in Fig. 1, which is the elementary step
underlying Compton scattering, is given by [13, 14]

d3σ(n)

dω2dΩ2dΩe
= r20

ω2

ω1
(1 + cos2 θ)

×|gn(q)|
2δ(ω1 − ω2 − E

(n)
b −

p2n
2m

) , (3)

where θ is the scattering angle, gn(q) is the Fourier trans-
form of the occupied Dyson orbital gn(r) with binding en-
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ergyE
(n)
b , q is the momentum transferred to the final sys-

tem, ω1 and ω2 are respectively the energies of the photon
before and after the collision. The ejected electron state
is usually approximated by a plane wave with momentum

pn and energy E
(n)
e = p2n/(2m) if E

(n)
b ≪ E

(n)
e . In this

regime, Compton scattering is a unique window on the
electronic structure of matter because in contrast with
most structural analysis techniques which can only de-
liver information on the total electron densities, this spec-
troscopy allows direct measurements in momentum space
of the electron density associated to a single ionization
channel (i.e. a Dyson orbital in a one-electron picture).
In the low-energy limit (i.e. ω1 ≪ mc2), Thirring [15] has
shown that the Compton scattering cross section with all
radiative corrections reduces in the non-relativistic ex-
pression given by Eq. (3). The only effect of the vacuum
or the medium is to renormalize the Thomson scatter-
ing length r0. The Thirring theorem is a consequence of
Lorentz and gauge invariance [16, 17].
We now turn to a general thermodynamic argument

in order to derive how the electron volume V = 4πr30/3
depends on the the effective coupling constant α. Since
the classical electron radius r0 is the length at which
QED renormalization effects become important, our ar-
gument must be consistent with differential equations
of the renormalization group [18]. Thermodynamics is
widely considered as a fundamental theory, since it has a
universal applicability [19, 20]. Indeed it does not need
any modification due to either relativity or quantum the-
ory [21]. The first law of thermodynamics gives the vari-
ation of internal energy

dE = TdS − PdV +mc2dα , (4)

where T is the temperature, S is the entropy and P =
−Es/V is a pressure imposed by a fictitious piston on the
volume V in order to set the units scale for a given α [22].
Thus, the energy scale is characterized by Es = αx mc2,
where x represent a positive integer exponent to be deter-
mined. The negative sign of the pressure P is explained
by the fact that the electromagnetic vacuum fluctuation
(i.e. the Casimir effect) try to pull the piston back into
the system. Similar inward pressures are produced by
cosmological constants [23]. The third term in Eq. (4) is
similar to a chemical potential term since the number of
virtual photons is proportional to the effective coupling
constant α. Thus, we are assuming that the electron mass
m determines the chemical potential of the virtual pho-
tons and that it is generated by the Coulomb field of the
electron. In adiabatic conditions the term TdS vanishes.
Moreover, at equilibrium dE = 0, thus the renormaliza-
tion group β function [18] deduced from Eq. (4) is given
by

β(α) = r
dα

dr
= −3αx . (5)

The solutions for x = 0, 1, 2 show that the electron local-
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FIG. 2: Cross section enhancement η as a function of the
inverse of the effective coupling constant α. Both η and α are
pure numbers (without units).

izes (i.e. r0 becomes small) when the interaction strength
increases. When x = 0, the radius scales as

r0 = rmax exp(−α/3), (6)

and has a maximal finite size rmax corresponding at α =
0 while for x = 1, the scaling is

r0 =
λ1

α1/3
, (7)

where λ1 is radius corresponding at α = 1. The exponent
x = 2 is consistent with the QED β function [18]. The
Born hypothesis is also verified when x = 2, since the cor-
responding solution admits a minimal length λ different
from zero. In this case, the Thomson scattering length
depends on 1/α by an exponential function

r0 = λ exp

(

1

3α

)

, (8)

where λ is a certain small length to be determined. More-
over, the corresponding pressure P = α2 mc2 sets the
the atomic energy units. In fact, the atomic units are
as natural as the fundamental Planck units [24]: their
ratios to the fundamental units can be explained within
our present argument connecting the Thomson scattering
length to the fundamental scale. Interestingly, the vol-
ume renormalization factor Q(α) is exp(1/α) for x = 2.
This term is similar to the Boltzmann distribution in sta-
tistical mechanics (where α plays the role of an effective
temperature).
The cross section enhancement defined by

η =

[

Q(α)

Q(1/137)

]2/3

(9)
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is shown in Fig. 2 for the case x = 2: a reduction of α
by few percents induces a huge increase in η. Therefore,
cross section enhancements obtained by tuning the inci-
dent photon energy near the binding energy of a deep
core electron level can be described by the behavior for
x = 2 while the cases x = 0, 1 give negligible cross section
enhancements for small variations of α. The trend of η
illustrated in Fig. 2 can be produced by a change ∆ǫ of
the dielectric response near an absorption edge.

Standard inelastic X-ray scattering experiments with-
out the measurement of the kinematics of the outgoing
(recoil) electron contain many other processes in addi-
tion to the elementary scattering event of Fig. 1. There-
fore, coincidence (γ, eγ) experiments [13] are needed in
order to separate the X-ray Compton scattering with
nearly free electrons from complicated processes. Some
(γ, eγ) spectrometers are already available for hard X-
rays [25]. Unfortunately, standard (γ, eγ) experiments
can be tremendously challenging. Instead, one could use
a soft-x-ray fluorescence spectrometer by Carlisle et al.

[26]. By tuning the incident photon at the K edge of
graphite, enhancement effects of the total cross section
have been already observed. A coincidence measurement
detecting the electrons escaping from the sample can then
be used to separate Compton from other types of inelastic
scattering. In this much simpler setup multiple scatter-
ing of the electrons in the sample are not an impediment
for extracting the Compton contribution.

Realistic dielectric data for graphite provided by
Draine [27] illustrates how tuning the incident photon en-
ergy near the binding energy of the K core level changes
the dielectric response and thus the effective coupling
constant for the valence electrons. When x = 2, a Comp-
ton cross section enhancement η of almost a factor four is
predicted in graphite by using Draine’s dielectric data as
shown in Fig. 3. We note that a similar variation of the
dielectric function for diamond has been previously re-
ported by Nithianandam and Rife [28]. Besides, a calcu-
lation based on the finite difference method for near-edge
structure? (FDMNES) [29] agrees with dielectric data of
Draine. FDMNES shows that the anomalous scattering
factor near the K edge of graphite becomes greater in
amplitude than the number of electrons causing the real
part of ǫ/ǫ0 to be greater than unity (ǫ0 is the vacuum
permittivity).

Next, we justify a value for λ. According to Veneziano
[30], a consistent quantum gravitational theory should
obey the Born principle of reciprocity [31], a symmetry
law under the interchange of space-time coordinates and
the energy-momentum coordinates, which naturally leads
to harmonic oscillators and to the normal modes of vi-
brating strings. In such theory it is natural to take as
the action quantum the square of the Planck length [32]

λ = ℓP =

√

hG

c3
≈ 4.05× 10−33cm , (10)
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FIG. 3: Top: ǫr (ratio of the real part of the dielectric function
ǫ and the vacuum permittivity ǫ0) near the K edge of graphite.
E is the incident photon energy. The points are from Draine
[27]. Symbol size is representative of error bars. Bottom:
corresponding cross section enhancement η.

where h is the Planck constant and G is the gravitational
constant. Indeed, by using Eq. (8) with the Planck length
λ and α = 1/137.03604, the calculated Thomson scatter-
ing length is r0 = 2.79 × 10−13cm, which differs about
1% from its exact value. Minor renormalization effects
of the gravitational constant G could improve the agree-
ment [33].

Finally, we could also reverse the logic. In our treat-
ment the length λ is not fixed a priori. Therefore, we can
use data from X-rays experiments in graphite to get in-
formation about the size of λ. This would strongly vivify
a big portion of the existing literature in quantum grav-
ity for which the presence of an effective minimal length
is assumed to describe the discretization of a quantum
space-time. Presently, in the absence of any experimen-
tal signature for quantum gravity such a minimal length
is generically set between the electroweak scale ∼ 10−16

cm and the Planck length. As a result we are opening
the door to the possibility of determining an extreme
energy effect with sophisticated low energy experiments.
In addition since preliminary data seem to support the
idea that λ = ℓP up to 1 %, we can get more strin-
gent constraints about the extension of the conjectured
additional spatial dimensions with respect to what we
currently know from the observed short scale deviations
of Newton’s law [20, 34].

In conclusion, we suggest that the low energy Compton
cross section for the valence (i.e. nearly free) electrons
of graphite can be described within the framework of the
Thirring theorem implying that the only effect of medium
is to renormalize the Thompson scattering length r0. Be-
sides, a general thermodynamic argument shows that the
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Compton scattering cross section grows exponentially if
the effective coupling constant α decreases. In particular,
a striking enhancement is predicted when the incident
photon energy is tuned near the binding energy of the K
core level of graphite. The present enhancement effect is
also consistent with the QED renormalization group.
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