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Geometric phases arise naturally in a variety of quantum systems with observable consequences. They also
arise in quantum computations when dressed states are used in gating operations. Here we show how they arise
in these gating operations and how one may take advantage of the dressed states producing them. Specifically,
we show that that for a given, but arbitrary Hamiltonian, and at an arbitrary time τ , there always exists a set of
dressed states such that a given gate operation can be performed by the Hamiltonian up to a phase φ. The phase
is a sum of a dynamical phase and a geometric phase. We illustrate the dressed phase for several systems.
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I. INTRODUCTION

Quantum gates are the building blocks for quantum com-
puters and are necessary for a vast array of quantum mechan-
ical devices. Quantum gates appear in a wide variety of forms
and range in complexity from simple single-qubit rotations
to highly sophisticated multi-qubit, or more generally, multi-
qudit designs. An ideal gating operation will produce a co-
herent unitary evolution of a quantum state in such a way as
to realize the desired transformation of the system of interest
with perfect fidelity. Finding a universal set of these opera-
tions which can manipulate and entangle collections of qubits
is one of the most important tasks in quantum computing. In-
deed, unitary-evolution-based quantum computation relies on
a processor’s ability to manipulate superpositions as well as
create and destroy an entanglement using a sequence of these
gates. When a particular gate is required, for whatever the rea-
son may be, one typically has a specific Hamiltonian in mind
to generate the corresponding evolution. In some cases, the
implementation of a quantum gate can be carried out using
the interactions which are naturally available to the system,
as, for instance, in the case of transferring information be-
tween processors using the always-on Heisenberg interactions
occurring between neighboring sites in a spin chain [1]. The
situation is usually not so simple however, generally one needs
to control these gating operations using external fields or other
mechanisms, such as measurements. In order to accomplish a
specific computational goal one must first identify a physical
system which can effectively serve as a collection of qubits,
initiate the system to an appropriate state, and then force the
system to evolve according to the combined system/external
Hamiltonian. We will show here that there always exists a
complete set of states which, when acted upon by an arbitrary
evolution operator, can produce any given gate, up to an addi-
tional phase factor. It is interesting that a part of this phase fac-
tor has a geometrical nature similar to the Aharonov-Anandan
(A-A) phase [2].

Over the years the geometric phase has been a topic of cen-
tral interest in quantum mechanics [3]. Unlike the dynamical
phase which depends on the dynamical evolution of the sys-
tem, e.g., the speed at which the parameterized path is fol-

lowed or the arbitrary choice of gauge, the geometrical phase
is completely determined by a closed trajectory of the system
in the underlying parameter space and does not depend on the
details of the temporal evolution. The geometrical phase is a
measurable quantity and can be used to investigate the non-
trivial geometric properties of the parameter space. It can be
observed in the interference of two identically prepared sys-
tems as they develop a relative phase while either system is
adiabatically varied. It can also be observed in single quan-
tum systems which are prepared in superpositions of eigen-
states of the Hamiltonian. In this case each eigenstate can
establish a geometric phase as the Hamiltonian is varied, and
the differences between these phases can be observed by the
measurable properties of the system.

It was Berry [4] who first noticed the fact that a wave func-
tion, originally in a nondegenerate eigenstate of the initial
Hamiltonian, will acquire a geometrical phase factor in ad-
dition to the familiar dynamical phase if the evolution is in-
duced by a Hamiltonian which is varied adiabatically around
a closed path in parameter space. Later, Aharonov and Anan-
dan [2] examined a generalization of the Berry phase without
recourse to adiabaticity. Their work showed how any closed
path in the projective Hilbert space of state vectors modulo
phase factors has a geometric phase associated with it regard-
less of any adiabatic conditions.

Here, we introduce a family of geometric phases which are
associated with quantum gating operations. As we have just
mentioned, we will show that it is possible for any Hamilto-
nian to mimic the action of a specified yet arbitrary gate pro-
vided that the system is initialized to an appropriate state. The
geometrical contribution of the phase acquired by this quan-
tum evolution can be calculated in a way that is similar to the
usual prescription given by Aharonov and Anandan. In this
situation the geometrical phase associated with the gating op-
eration can be determined using a dressed Hamiltonian which
generates a cyclic evolution.

We will begin our discussion of these results in Sec. II with
an example that clearly illustrates the nature of the geometri-
cal phase obtained by the cyclic evolution of a state of a spin
chain. The example should help clarify part of the motivation
behind this work, as it indicates the origin of a geometrical



2

phase acquired by the non-cyclic evolution of a state through
a gating operation. Geometrical effects arising from the trans-
mission of a quantum state through a spin network have been
studied and we refer the interested reader to Ref. [5].

We will present our main results in Sec. III where we dis-
cuss the geometrical phase which arises in quantum gating
operations. We will then provide specific examples in Sec.’s
IV, V, and VI. Finally, we describe an experimental proposal
for a physical demonstration of these dressed phases in Sec.
VII before concluding in Sec. VIII.

II. EXAMPLE OF PERFECT STATE TRANSFER

Let us start with an example of perfect state transfer [6]
through a spin chain. Consider an N -site nearest neighbor
XY model H =

∑
j Jj(σ

+
j σ
−
j+1 + σ+

j+1σ
−
j ). When we engi-

neer the tunneling integrals such that Jj = J
√
j(N − j)/2,

the Hamiltonian becomes H = JLx, where Lx is the x-
component of the quasi-angular momentum operator.

At time τ the evolution operator associated with this Hamil-
tonian becomes [10]

U(τ) = exp(−iJτLx) . (1)

When τ = π/2J, a spin-up state |↑〉1 at site 1 is per-
fectly transferred to r |↑〉N at the last site N, where r =
exp (iπ(N − 1)/2) .

We first consider the situation when τ = π/J , the system
evolves cyclically, |↑〉1 → r2 |↑〉1, except for a phase factor
r2. If the number of sites N is even, r2 = eiπ(N−1) = −1,
which is apparently a geometric phase factor since it origi-
nates from the geometrical length of the chain and is not re-
lated to the dynamics. More precisely, it is an Aharonov-
Anandan (A-A) phase factor. The A-A phase factor exists
for any cyclic evolution of a quantum system, defined by
|ψ(τ)〉 = eiφ |ψ(0)〉. It has been shown that cyclic evolutions
of this type universally exist in any quantum system, regard-
less of the specific Hamiltonian which generates the evolution,
provided the system begins in an appropriate state [7]. Now,
we assume that the wave function is driven by the Schrödinger
equation

H(t) |ψ(t)〉 = i
d

dt
|ψ(t)〉 (2)

where we let ~ = 1 throughout. Aharonov and Anandan
found an expression which removed the the dynamical part
from the total phase φ

β = φ+

∫ τ

0

〈ψ(t)|H |ψ(t)〉 dt = i

∫ τ

0

〈
ψ̃(t)

∣∣∣ d ∣∣∣ψ̃(t)
〉

where
∣∣∣ψ̃(t)

〉
= e−if(t) |ψ(t)〉 and f(τ) − f(0) = φ. β is

known as the A-A phase and is uniquely defined up to 2πn
for some integer n. It is a quantity that is independent of both
φ and the underlying Hamiltonian H . It is easy to check that
for the example above we have eiβ = r2 or β = π(N − 1)
mod 2π.

The process of perfect state transfer |↑〉1 → r |↑〉N does not
correspond to a cyclic evolution. However, the above analysis
implies that the phase factor r, which originates similarly to
the A-A phase factor r2, should possess geometric attributes
as well. We will exhibit the occurrence of similar phenomena
in various systems after general discussions.

III. GEOMETRIC PHASE ORIGINATING FROM
QUANTUM GATES

Consider a quantum unitary gate G, such as a swap gate,
or a CNOT gate, and the system evolution operator U(t).
The evolution operator is related to the Hamiltonian through
the operator Schrödinger equation H(t) = iU̇(t)U†(t). The
combined operator W (t) = G†U(t) is also unitary since
W †(t)W (t) = U†(t)GG†U(t) = 1. As with any unitary op-
erator, the operator W (τ), at time t = τ, can be diagonalized
and has a complete set of orthonormal eigenvectors {Ψk(0)}τ
and exponential eigenvalues {exp(iφk)}τ . A vector Ψk(0) in
the set obeys the eigenequation:

W (τ)Ψk(0) = exp(iφk)Ψk(0). (3)

Consequently, if the initial state |ψ(0)〉 is one of the Ψk(0)’s,
the wave function evolves as |ψ(τ)〉 = exp(iφ) |ψ(0)〉, driven
by an effective Hamiltonian

H(t) = iẆ (t)W †(t) = G†iU̇(t)U†(t)G = G†H(t)G.

In other words, the dynamics driven by the effective or dressed
Hamiltonian H(t) is cyclic if the initial state |ψ(0)〉 is one of
the Ψk(0)’s. The corresponding φ is a sum of the dynamic
phase of the effective HamiltonianH(t) and the A-A geomet-
ric phase β, which we refer to as the dressed A-A phase. The
essence of the A-A phase β being geometric is based on the
effective dynamics governed by H(t). However the effective
Hamiltonian may correspond to multiple operators i.e., H(t)
does not change if we replace W (t) → W (t)V when V is
unitary.

On the other hand, the wave function |ψ(τ)〉 driven by the
bare Hamiltonian H(t) satisfies

|ψ(τ)〉 = U(τ) |ψ(0)〉 = exp(iφ)G |ψ(0)〉

This indicates that for an arbitrary Hamiltonian and at an ar-
bitrary time τ , there universally exists a set of states such that
a given gate operation can be performed by this Hamiltonian
up to a phase φ. In the case where G is a unit operator, the
dressed A-A phase becomes the normal A-A phase [7].

In the example above, a perfect state transfer through a spin
chain requires a gate to exchange states at the first and last
sites. The operator G = r∗ exp(iπLx) plays this role, where
G2 = 1. It is easy to check that β = φ = π(N−1)/2 mod 2π
or eiβ = r. Although the evolution is not cyclic, we are able
to extract the geometrical phase associated with the evolution
since it can be described by a gating operator which then de-
fines the effective Hamiltonian H(t). |↑〉1 is an eigenstate of
the operator W (τ) for τ = π/2J, and thus evolves cyclically
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under the action of the dressed HamiltonianH(t). This allows
us to use the expression for the A-A phase, with H replaced
with H, in order to determine the dressed phase associated
with this process.

IV. UNIVERSAL SET OF GATES IN QUANTUM
COMPUTATION AND THEIR COEXISTING PHASES

In the case that G = exp(−iθ0σx), we will consider a non-
perturbative time-dependent Hamiltonian,

H(t) =

{
$σz, 0 < t < δ
ωσx, t > δ

where σx, σy and σz are the Pauli matrices. Here, the evolu-
tion operator is given by

U(t) =

{
exp(−i$tσz), 0 < t < δ

exp(−iω(t− δ)σx) exp(−i$δσz), t > δ
,

We can control the time such that ω(τ −δ) = θ0 at time t = τ
and W (τ) = exp(−i$δσz). The eigenstates and eigenvalues
are Ψ↑,↓(0) = |↑, ↓〉 and φ↑ = −$δ; φ↓ = $δ. It is eas-
ily calculated that

∫ τ
0
〈ψ(t)|H(t) |ψ(t)〉 dt = ±$δ cos 2θ0,

where the sign + (-) corresponds to the initial state being
|↑〉 (|↓〉). The A-A phases here are β↑ = −$δ(1 − cos 2θ0)
and β↓ = $δ(1− cos 2θ0). At time τ, the system evolves as

|ψ(τ)〉 = e−i$δ exp(−iθ0σx) |↑〉

if it is initially in the state |↑〉 . Likewise, |ψ(τ)〉 =
ei$δ exp(−iθ0σx) |↓〉 for the initial state |↓〉.

V. ADIABATIC CASES

Now consider a slowly changing effective Hamiltonian
H(t), whose instantaneous eigenequation is H(t) |n(t)〉e =
En(t) |n(t)〉e. For non-degenerate systems and a periodic
HamiltonianH(τ) = H(0), the adiabatic theorem shows that

|ψ(τ)〉e = exp(iφn) |n(0)〉e
where φn = −

∫ τ
0
En(t)dt +

∫ τ
0 e 〈n(t)| d |n(t)〉e for a sys-

tem that is initially in the state |n(0)〉e. For the bare system
we have |ψ(τ)〉 = exp(iφ)G |n(0)〉e. In this case, both the
dressedH(t) and bare H(t) Hamiltonians are periodic.

Now let us consider an ion with two ground states |0〉 , |1〉
and one excited state |e〉 [8]. The Hamiltonian for the ion-
laser interaction can be approximated by

H(t) = |e〉 (Ω0 〈0|+ Ω1 〈1|) + h.c.

in the rotating frame, where Ω0,Ω1 are controllable slow-
varying Rabi frequencies. If we chose the operator G =
|1〉 〈0| + |0〉 〈1| + |e〉 〈e| , and if we choose Ω0 = cos θ2 and
Ω0 = − sin θ

2e
iϕ and Ω1 = cos θ2 , then the effective Hamil-

tonian H(t) will have a dark eigenstate (state with the zero-
eigenvalue)

|D〉 = cos
θ

2
|0〉+ sin

θ

2
eiϕ |1〉 .

The dynamical phase vanishes in this case while the Berry
phase is given by Φ =

∫
sin θdθdϕ. If the parameters (θ, ϕ)

undergo a cyclic evolution, starting and ending at the point
θ = 0 in the bare system, then the corresponding evolution
will be |ψ(τ)〉 = exp(iΦ)G |0〉. In this case the system expe-
riences an evolution from |0〉 to |1〉, along with an additional
all-geometric phase factor, when the dressed system makes a
cyclic evolution.

VI. SUPERPOSITION OF EIGENSTATES

Since the set of eigenvectors {Ψk(0)}τ is complete we
can expand any initial wave function Ψ(0) as Ψ(0) =∑
k αkΨk(0). Despite the fact that Ψ(0) is gener-

ally not an eigenstate of W (τ), i.e., W (τ)Ψ(0) =∑
k αk exp (iφk)Ψk(0), an arbitrary Hamiltonian can still be

used to execute any given gate G up to a phase φ at time τ
provided the eigenvalues associated with the states {Ψk(0)}τ
obey certain conditions. To establish these conditions notice
that if we require

U(τ)Ψ(0) = exp (iφ)GΨ(0) (4)

then we must have∑
k

αk[exp (iφk)− exp (iφ)]Ψk(0) = 0. (5)

For indices k such that αk 6= 0 there is set of requirements
imposed on the corresponding eigenvalues, namely φ = φk +
2πm for some integer m.

As an example, let us reexamine the case above for G =
exp(−iθ0σx). If we again choose the time t = τ such that
ω(τ − δ) = θ0 we obtain the two eigenvalues exp (±i$δ)
of W (τ). Suppose we expand an arbitrary qubit state Ψ(0)
in the basis Ψ↑,↓(0) = |↑, ↓〉 so that Ψ(0) = cos (ξ) |↑〉 +
sin (ξ)eiγ |↓〉. In order to satisfy Eq. (4) the phase φ must
satisfy both φ = −$δ + 2πm and φ = $δ + 2πm′. Since
this requires that $δ = πn for some integer n, the evolution
operator becomes U(τ) = ± exp (−iθ0σx) = ±G.

For an arbitrary initial state Ψ(0) → Ψ(t) we
have

∫ τ
0
〈Ψ(t)|H(t) |Ψ(t)〉 dt = θ0 sin (2ξ) cos (γ) +

δ$[cos (2ξ) cos (2θ0) + sin (2ξ) sin (2θ0) sin (γ)]. Since
$δ = πn and φ = πn for some integer n, the geo-
metric phase angle acquired during the subsequent evolu-
tion of Ψ(0) is given by β = πn + θ0 sin (2ξ) cos (γ) +
πn[cos (2ξ) cos (2θ0) + sin (2ξ) sin (2θ0) sin (γ)]. Fig. 1
shows the real part of the geometric phase eiβ as a function
of the initial state parameters ξ and γ for n = θ0 = 1.

Having a knowledge of the geometrical phase acquired by
an arbitrary quantum state as it undergoes a unitary evolu-
tion can help one to predict the outcome of an interference
experiment designed to test the effects associated with the
interaction of two or more systems. We will discuss the in-
terference effects which should be obtained in an experiment
involving two bosonic spin chains next. There we will con-
sider quantum state transfer through chains described by the
Hubbard model in which perfect state transfer has been pre-
viously studied [9, 10]. Although we limit our discussion to
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FIG. 1: (Color online) The real part of the dressed phase eiβ acquired
by the initial state Ψ(0) = cos (ξ) |↑〉+ sin (ξ)eiγ |↓〉 after evolving
according to Eq. (4). In this example, we illustrate the behavior of
the dressed phase for the gate G = exp(−iθ0σx)

.

only two chains here, the generalization to an arbitrary num-
ber of chains should be a straightforward.

VII. EXPERIMENTAL PROPOSAL

It was recently shown that interference can arise in a two-
dimensional bosonic lattice when a quantum state is trans-
ferred perfectly from one site to another [10]. An experimen-
tal setup based on this result can be used to demonstrate the
geometric phase according to the field intensity at an appro-
priate site. To exemplify this effect imagine a ring of bosonic

A B

FIG. 2: (Color online) Schematic of a boson ring which can be used
to demonstrate the geometric phase according to the intensity at site
B. Quantum interference can arise at site B since the optical path
lengths of the upper and lower paths are equal but contain different
numbers of atoms.

atoms as depicted in Fig. 2. The ring can be thought of as
two separate chains which share first and last sites, denoted
respectively by A and B in the figure. Both the upper and
lower chains are assumed to have equal length but the num-
ber of sites contained in either chain can be different. In our
example here we have NU = 7 and NL = 5 sites for the up-
per and lower paths. We will consider the dynamics of bosons

governed by the Bose-Hubbard Hamiltonian

H = −
∑
<i,j>

Ji,j(â
†
i âj+ â†j âi)+U

∑
i

n̂i(n̂i−1)+
∑
i

εin̂i,

where < i, j > indicates that the sum is restricted to nearest
neighbors in the lattice and â†i (âi) denotes the creation (anni-
hilation) operator of a boson at site i. Also, n̂i = â†i âi gives
the total number of bosonic atoms at site i. This Hamiltonian
can allow for a perfect state transfer through both the upper
and lower paths of the ring (see Ref. [10]). When this occurs
at time t0 we have

U†(t0)â†iU(t0) = râ†N−i+1,

where r = exp(−iπ(NU − 1)/2) for the upper path and
r = exp(−iπ(NL − 1)/2) for the lower path. The expres-
sion above is given for a linear chain containing N sites. It
should be understood that in the situation we are considering,
where the chain is not open-ended but instead forms a closed
loop, two indices i and i′ should be used above, one for the
upper chain and one for the lower. Now, let us expand the
field operators at t = 0 in the Wannier basis

ψ(x) =
∑
i

[âUi w(x− xUi ) + âLi w(x− xLi )],

where âUi and âLi act on the upper and lower chain, respec-
tively. We see that the operators will evolve to

ψ(x, t0) =
∑
i

[râUi w(x−xUNU−i+1) + âLi w(x−xLNL−i+1)]

at time t0. Here we have set r = 1 for the lower path. Al-
though r = −1 for the upper path in Fig. 2, we are keep-
ing the expression in a more general form in order to exam-
ine the interference effects when the number of sites is var-
ied. The average field intensity at x is given by I(x, t0) =<
ψ(x, t0)†ψ(x, t0) >, where < ... > denotes the expectation
value for the initial state. This can be calculated to be

I(x, t0) =< â†1â1 > |w(x− xN )|2(2 + r + r∗),

where âU1 = âL1 ≡ â1 and xUNU
= xLNL

≡ xN .
The intensity varies with different values of the signature

r, in the situation depicted in Fig. 2 we have I(x, t0) = 0.
Constructive, destructive, and in-between interference effects
can be obtained by varying the number of sites in either path.

We note that recent experimental developments support the
feasibility of this proposal [11, 12].

VIII. CONCLUSION

We have shown that any Hamiltonian can be used to ad-
minister any given gate up to a phase during an arbitrary time
interval provided the system is initialized to an appropriate
state. The “dressed” phase accompanying this evolution is
found to contain both geometrical and dynamical contribu-
tions. The evolution of a quantum system determined by the
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chosen Hamiltonian will not necessarily be cyclic, neverthe-
less, we are able to determine the geometrical part of this
phase using the dressed Hamiltonian associated with the gat-
ing operation. We have also provided an experimental pro-
posal for the demonstration of this dressed phase. The pro-
posal is similar to that which was given in Ref. [10] as a means
to verify interference effects arising from the Z4 group cyclic
nature of the signature factor associated with state transfer
through bosonic chains. However, the purpose here is to ver-
ify interference effects associated with the dressed geometric
phase.

It should be mentioned that we have not considered the ef-
fects of decoherence in our analysis. It would be interesting to

explore the effects a realistic environmental interaction would
have on the geometric phase acquired by a mixed state during
a particular gating operation.
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