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Scalable uniform construction of highly-conditional quantum gates

Svetoslav S. Ivanov and Nikolay V. Vitanov
Department of Physics, Sofia University, 5 James Bourchier blvd, 1164 Sofia, Bulgaria

We present a scalable uniform technique for construction of highly conditional Cn-NOT quantum
gates of trapped ion qubits, such as the Toffoli gate, without using ancilla states and circuits of an
exorbitant number of concatenated one- and two-qubit gates. Apart from the initial dressing of the
internal qubit states with vibrational phonons and the final restoration of the phonon ground state,
our technique requires the application of just a single composite pulse on the target qubit and is
applicable both in and outside the Lamb-Dicke regime. We design special narrowband composite
pulses, which suppress all transitions but the conditional transition of the target qubit; moreover,
these composite pulses significantly improve the spatial addressing selectivity.

PACS numbers: 03.67.Lx, 03.67.Ac, 32.80.Qk, 42.50.Dv

I. INTRODUCTION

One of the most important highly-conditional quan-
tum gates is the three qubit control-control-NOT gate,
known as the Toffoli gate, in which the target qubit is
inverted if both control qubits are in state |1〉, and is
left unchanged otherwise. This gate has a central role
in quantum error correction [1]; moreover, it forms with
the one-qubit Hadamard gate a universal set of quantum
gates [2]. The more general Cn-NOT gates are often used
in quantum computing, e.g. as oracles in Grover’s search
[3] and to simulate quantum walks [4].

The simplest decomposition of the Toffoli gate in the
circuit model of quantum computation uses six CNOT
gates [3], or five CNOT gates with an ancilla state [5].
Extending this approach to Cn-NOT gates with n > 2
is highly demanding for it requires the ability to con-
struct, with very high fidelity, many concatenated gates
of this type. It is hence desirable to seek simpler schemes
for conditional multi-qubit gates without sequences of
CNOT gates [6]. Recently, Monz et al. [7] have demon-
strated experimentally the Toffoli gate with 71% fidelity
with 40Ca+ ions by using a sophisticated sequence of 15
laser pulses in the Lamb-Dicke (LD) regime; it is not ob-
vious, however, how this approach can be extended to
higher Cn-NOT gates and outside the LD regime.

In this paper, we propose a simplified uniform scheme
for construction of Cn-NOT gates of arbitrary order n in
a linear ion string by using specially designed compos-
ite pulses. The method does not use ancilla states and
circuits of concatenated one- and two-qubit gates, and is
applicable both inside and outside the LD regime. We
design special narrowband (NB) composite pulses whose
excitation profiles allow us to drive only transitions be-
tween a pair of selected collective ionic states, thereby
manipulating the target qubit in a way, controlled by the
other qubits. The method allows us to construct Cn-
NOT gates of various orders n with essentially the same
composite sequences, and hence the same level of com-
plexity.
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FIG. 1: Left: Ratios of pulse areas Av,v+1/A4,5 with 2 6
v 6 7, vs the LD parameter η, needed for the Toffoli gate
when the ion chain is initialized with v0 = 5 phonons. Right:
Excitation profile produced by a three-component BB pulse,
B3, with composite phases (0, 0.65π, 0). Note that for a broad
range of pulse areas around π the transition probability p for
B3 is very close to 1, p & 1− 10−4 (horizontal dashed lines).

II. BASIC STEPS

Our method begins with the initialization of the string
of n + 1 ions in the collective vibrational ground state
|v = 0〉 [8]. We adopt the wavefunction notation |ψ〉|v〉,
where |ψ〉 = |q1q2 · · · qn+1〉 is the collective internal state
of the ion qubits, with qk = 0 or 1, and |v〉 is the collec-
tive phonon state. The Cn-NOT gate is constructed in 5
steps.

Step 1. The ion string is prepared in a common v0-
phonon Fock state of a selected phonon mode, |0〉 → |v0〉,
with v0 > n+1; this can be achieved with v0 alternating
blue- and red-sideband π pulses on an ancilla ion.

Step 2. A three-component broadband (BB) compos-
ite pulse is applied on each ion on the first blue sideband,
i.e. 3(n + 1) pulses in total. This sequence is “seen” as
a π pulse by the transitions |0〉|v〉 ↔ |1〉|v + 1〉, where
v0 − n − 1 6 v 6 v0 + n, and therefore the respective
states in these transitions are inverted. This is illustrated
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FIG. 2: Linkage diagram for a system of three ions, in which
the third ion is addressed with a laser tuned on the second
blue sideband of a selected vibrational mode. The laser field
couples states with v and v+2 phonons with coupling strength
dependent on v and the LD parameter η, Eq. (1).

for 3 ions in Fig. 1: if the transition |0〉|v〉 ↔ |1〉|v + 1〉
with v = 4 phonons “sees” a π pulse (A4,5 ≈ π), then
all transitions with 2 6 v 6 7 will “see” (with very
high fidelity) a π pulse too. Then the collective inter-
nal states will be dressed with a different number of
phonons conditional on the number of qubits in states
|0〉 and |1〉: a collective state with nk qubits in state |k〉
(k = 0, 1) will be dressed with |v0 + n1 − n0〉 phonons.
For 3 ions states |000〉|v0〉 and |111〉|v0〉 are mapped re-
spectively to states |111〉|v0+3〉 and |000〉|v0− 3〉, states
|100〉|v0〉 and |101〉|v0〉 are mapped respectively to states
|011〉|v0 + 1〉 and |010〉|v0 − 1〉, etc. Thus the collec-
tive states |q1q2 · · · qn+1〉|v〉 group into sets with the same
number of phonons, and the same total number of inter-
nal excitations, as shown in Fig. 2. Note that after this
step the state of each qubit is inverted, |qk〉 → |1− qk〉.
Step 3. A N -component composite pulse sequence is

applied on the target ion; this sequence is the core of our
method. It must act in such a way that the transition
|0102 · · · 0n0n+1〉 ↔ |0102 · · · 0n1n+1〉 “sees” an effective
π pulse and is inverted, while all other transitions “see”
effectively a 0π or 2π pulse, i.e. remain either unchanged
(for 0π) or all acquire the same phase π (for 2π). (It
turns out that the latter option is easier to realize.) Such
a discrimination is made possible by step 2, because the
couplings Ωv,v+2(t) depend on the LD parameter η and
the number of phonons v, which is different for the dif-
ferent sets [9, 10],

Ωv,v+2 =
Ω0η

2e−η
2/2L2

v

(

η2
)

√

(v + 1)(v + 2)
, (1)

where Lav(x) is the generalized Laguerre polynomial.
The different couplings produce different pulse areas,

Av,v+2 =
∫ tf
ti

Ωv,v+2(t)dt. Since two adjacent sets differ

by 2 phonons we have to address the ions on the second
blue vibrational sideband of a selected mode.
Consider a string of 3 ions needed for the Toffoli C2-

NOT gate. To perform the Toffoli gate conditional on the
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FIG. 3: Left: Ratios of pulse areas A6,8/A2,4 and A4,6/A2,4

vs the LD parameter η, when the ion chain is initialized with
v0 = 5 phonons. Right: Excitation profile produced by a NB
pulse N13. The range of gate operation is η . 0.3, where the
two pulse area ratios are in the vicinity of 2.

states of ions 1 and 2 we address only ion 3 on the second
blue sideband. The laser field then produces four sepa-
rate two-state systems with different couplings, as shown
in Fig. 2. We need a composite sequence, which is “seen”
as a π pulse by the transition |000〉|v0−3〉 ↔ |001〉|v0−1〉
but as a 2π pulse by the other three transitions. Here the
dependence of the couplings on the LD parameter η is es-
sential because the variation of η allows us to find ranges
where these conditions are fulfilled. For an initial phonon
number v0 = 5 the three subsystems in Fig. 2 have cou-
plings Ω2,4, Ω4,6 and Ω6,8. The dependence of the pulse
area ratios A6,8/A2,4 and A4,6/A2,4 on η are illustrated
in Fig. 3(left). The range of values of η where these ratios
are near 2 are suitable for realization of the Toffoli gate,
as indicated by the composite-pulse excitation profile in
Fig. 3(right). One can vary the initial phonon number
v0 and produce different behavior of the relative pulse
areas versus η according to Eq. (1), which allows one to
shift the η-range for the Toffoli gate to the experimentally
most convenient values.
Step 4. We repeat step 2 [11]; the phonon number in

each collective internal state is restored to v0.
Step 5. Step 1 is applied in a reverse manner; the ion

chain is restored in its vibrational ground state |v = 0〉.
Steps 1-5 produce the transformation

|ψ〉|0〉 → [Cn-NOT|ψ〉]|0〉, (2)

with 8(n+1) single pulses and a composite sequence. The
number of pulses in the composite sequence from step 3
can vary, e.g., from 5 for C2-NOT (Toffoli) gate to 13 for
C6-NOT gate, as shown below. Because the number of
pulses in the composite sequence is about 2n, the total
number of pulses is about 10n.
Our method generalizes the original idea of Monroe

et al. [12] who constructed a CNOT gate by exploiting
the v-dependence of the LD parameter η to select such
a “magic” value of η, for which the ratio of the two rel-
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standard NB pulses

N5 (1.160; 0.580)

N9 (1.130; 0.820; 0.110; 1.390)

N13 (1.270; 0.440; 1.020; 0.770; 1.850; 1.730)

N17 (1.600; 0.550; 1.090; 0.890; 0.620; 1.540; 0.150; 1.570)

N21 (1.070; 0.920; 0.130; 1.830; 1.160; 0.720; 0.100; 1.520;

0.810; 1.950)

N25 (1.750; 0.380; 1.420; 0.710; 1.070; 0.910; 0.780; 1.470;

0.550, 1.740, 0.160, 1.650)

optimized NB pulses

No
5 (1.190; 0.630)

No
9 (1.157; 0.888; 0.218; 1.529)

No
13 (0.585; 1.352; 0.914; 1.186; 0.020; 0.089)

TABLE I: Phases (φ2;φ3;φ4; . . . ;φm+1) (in units π) for stan-
dard (NN) and optimized (No

N) NB sequences of N = 2m+1
pulses of area A: A0Aφ2

Aφ3
· · ·Aφm+1

· · ·Aφ3
Aφ2

A0.

evant couplings equals a rational odd/even or even/odd
number. This approach cannot be extended with a single
pulse to higher gates as they require specific values of the
ratios of three or more couplings. We can satisfy these
conditions in various η-ranges because composite pulses
can modify the excitation profile in any desired manner.

III. COMPOSITE SEQUENCES FOR Cn-NOT

GATES

The technique of composite pulses was introduced in
nuclear magnetic resonance (NMR) [13, 14] as a powerful
tool for control of spins by magnetic fields. A compos-
ite pulse is a train of N pulses with well-defined relative
phases φk (k = 1, 2, . . . , N), which are used as control
parameters in order to compensate the imperfections of
a single pulse and/or to shape up the excitation pro-
file in a desired manner. We have designed special com-
posite pulses for the Cn-NOT gates by using a recently
developed simple method [15, 16]. We use equal pulse
areas A and an odd number of pulses, N = 2m + 1, al-
though these restrictions are not essential. We consider
symmetric “anagram” composite sequences, with phases
φk = φN+1−k (k = 1, 2, . . . ,m); this condition pro-
duces symmetric excitation profiles. Because the over-
all phase of the composite sequence is irrelevant we set
φ1 = φN = 0; hence we are left with m different phases.
Three families of composite pulse sequences are par-

ticularly important: broadband (BB), narrowband (NB)
and passband (PB) [14]. The BB pulses stabilize pop-
ulation inversion to values p ≈ 1 around the pulse area
π (flat-top excitation profile). The NB pulses stabilize p
to values p ≈ 0 around the pulse area 0π (or 2π) (flat
bottom). The PB pulses stabilize p both to values p ≈ 1
around area π and to values p ≈ 0 around area 0π (or
2π) (flat-top and flat-bottom).

The composite phases for the BB sequence used in
steps 2 and 4 are (0, 0.65π, 0). Other examples of BB
sequences can be found in [16].
In step 3 all but one of the couplings must fall in the

region where p ≈ 0, hence stabilization is needed around
this value; the remaining coupling must fall in the range
where p ≈ 1, i.e. near π. This condition suggests to use
NB pulses because of their flat-bottom excitation profiles
around areas 0π and 2π. None of the existing NB com-
posite pulses, however, produces excitation profiles with
sufficiently wide bottoms to satisfy these conditions with
high fidelity; for this reason we construct here new NB
composite sequences. We derive the NB phases from the
conditions

[∂kAU
(N)
11 ]A=2π = 0 (k = 2, 4, . . . , 2m), (3)

with ∂kA ≡ ∂k/∂Ak; the skipped derivatives vanish identi-

cally for “anagram” sequences. U(N) is the full propaga-
tor, U(N) = U0Uφ2

Uφ3
· · ·Uφm+1

· · ·Uφ3
Uφ2

U0, with

Uφ =

[

cos(A/2) i e−iφ sin(A/2)

i eiφ sin(A/2) cos(A/2)

]

. (4)

Examples of NB sequences suitable for Cn-NOT gates are
presented in Table I. A typical NB excitation profile is
plotted in the right frame of Fig. 3. These NB sequences
are “all-purpose” ones, i.e. they are suited whenever an
increased selectivity of excitation, or suppression of un-
wanted excitation is needed, e.g. for local addressing in a
lattice of closely spaced qubits [15]. We have constructed
special NB sequences which optimize the performance of
the Cn-NOT gates; they are listed in Table I as well.
Their phases are obtained by starting from a particu-
lar “all-purpose” NB pulse and minimizing the error in
the high-fidelity region of the respective Cn-NOT gate in
the (η,A) control landscape. We can always accommo-
date more couplings (that have to be suppressed) within
the no-transition bottom of the excitation profile around
2π (and 0π) by adding more pulses to the composite se-
quence in order to broaden this bottom.
After the NB sequence the state of the target ion is

changed as |0〉 → e−iϕ|1〉 and |1〉 → eiϕ|0〉, where

ϕ = (−1)m (π/2 + φm+1)− 2

m
∑

k=2

(−1)kφk. (5)

This phase can be compensated, if necessary, with an
additional Stark pulse focused on the target ion.

IV. SIMULATION OF Cn-NOT GATES

We have simulated numerically different Cn-NOT
gates Cn by using our approach presented above. The
fidelity of the simulated gate Sn is defined as the uni-
form average over infinitely many random states |ψ〉:

F = meanψ
∣

∣〈ψ|S†
nCn|ψ〉

∣

∣

2
. Figure 4 shows the fidelity of
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FIG. 4: Simulated fidelity of the Toffoli gate with NB compos-
ite sequences from Table I for initial phonon number v0 = 4
(solid lines) and 5 (dashed lines) vs. the LD parameter η and
the pulse area A. Left: standard NB sequences N5 (top) and
N9 (bottom). Right: optimized NB sequences No

5 (top) and
No

9 (bottom). The area is divided by Amin = Av0−3,v0−1, that
is the (smallest) pulse area which has to be “seen” as a π pulse
by the transition |000〉|v0 −3〉 ↔ |001〉|v0 −1〉, cf. Figs. 2 and
3.

the Toffoli gate constructed with standard (left) and opti-
mized (right) NB sequences from Table I for 5 (top) and
9 (bottom) ingredient pulses. Fidelity above 99%, and
even 99.9%, can be obtained with just 5 pulses. Higher
fidelity can be obtained with longer sequences, e.g. over
99.99% with the No9 pulse. The high-fidelity η ranges can
be varied by varying the initial phonon number v0, as
evident from the examples with v0 = 4 and 5 in Fig. 4:
a larger v0 shifts the high-fidelity η-range toward η = 0.

We have simulated several higher-order Cn-NOT gates
with n = 3 to 6 using the NB sequences from Table I;
the fidelities for the optimized NB pulse No13 are shown in
Fig. 5. High fidelity can be achieved in various ranges of
η by changing the initial phonon number v0 because the
ratios of the couplings depend on both η and v0; larger
v0 push the high-fidelity range again toward smaller η.
In this manner, one can adjust the operation of the Cn-
NOT gate to a range of values of η, which is most suit-
able experimentally. Fidelity can always be increased,
and the high-fidelity ranges can be expanded, by adding
more pulses to the composite sequence, which will allow
enhanced optimization. It is remarkable that the same
composite pulse No13 implements all gates up to n = 6
efficiently, in similar ranges of η and A. We have checked
that this same pulse No13 can be used with over 99% fi-
delity for Cn-NOT gates up to n = 10. The lower gates
with n = 3 and 4 can be implemented efficiently also with
the shorter pulse No9 (not shown), which has been used
in Fig. 4. This uniformity is strikingly different from the
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FIG. 5: Simulated fidelity of Cn-NOT gates with n = 3
to 6 with the optimized NB sequence No

13 from Table I vs.
the LD parameter η and the pulse area A. The area is di-
vided by Amin = Av0−n−1,v0−n+1, that is the (smallest) pulse
area which has to be “seen” as a π pulse by the transition
|00 · · · 00〉|v0 − n− 1〉 ↔ |00 · · · 01〉|v0 − n+ 1〉. Note that the
same composite sequence No

13 implements all gates efficiently.

circuit model, in which the complexity of implementation
increases rapidly with n, which makes the demonstration
of most algorithms still impossible with current technol-
ogy [7]. We have verified that, for up to n = 20, NB
composite sequences of about 2n ingredient pulses are
sufficient for efficient construction of the Cn-NOT gate.

V. DISCUSSION AND CONCLUSION

The proposed method offers a conceptually simple and
scalable implementation of Cn-NOT gates of trapped-
ion qubits of arbitrary order n, as it requires, besides the
usual initial dressing and the final undressing of the col-
lective qubit states with phonons, just a single NB pulse
applied on the target ion qubit. This method uses the
basic physical notion of destructive interference of un-
wanted transitions rather than quantum circuits of a vast
number of concatenated one- and two-qubit gates. The
ensuing simplicity and universality make our method eas-
ily scalable to arbitrary Cn-NOT gates with essentially
the same level of complexity. The constructed NB se-
quences produce Cn-NOT gates with very high fidelity
using relatively few ingredient pulses. We have found
that a NB composite sequence of about 2n pulses suffices
for a Cn-NOT gate; including the dressing and undress-
ing steps, the total number of pulses is about 10n. This
makes possible the creation of Cn-NOT gates for up to
n = 15−20 ion qubits with the existing ion trap technol-
ogy [17]. We point out that the NB composite sequences
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are very convenient in another respect: they eliminate
spatial imperfections of local addressing [15], which are
often a limiting factor in experiments [7].
We note that the use of blue-sideband pulses is not

mandatory; one can use red-sideband pulses too. One can
also replace the NB composite sequences, which minimize
the number of ingredient pulses, by PB sequences, which
require a few more ingredient pulses but provide in return
greater robustness against variations in the pulse area.
We point out in conclusion that the initial dressing of

the qubit states with phonons and the final restoration of

the phonon ground state, each of which requires about 4n
pulses, can be optimized for each Cn-NOT gate to fewer
pulses, about n for each of the dressing and undressing
steps [18]. The procedure described above is, however,
universal (applicable to arbitrary n) and flexible, for it
applies to large ranges of values of the LD parameter η;
the latter feature allows one to operate outside the LD
regime and hence speed up the gate operation.
This work is supported by the European Commis-
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