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The study of geometric phase in quantum mechanics has so far be confined to discrete (or contin-
uous) spectra and trace preserving evolutions. Consider only the transmission channel, a scattering
process with internal degrees of freedom is neither a discrete spectrum problem nor a trace preserv-
ing process. We explore the geometric phase in a scattering process taking only the transmission
process into account. We find that the geometric phase can be calculated by the some method as
in an unitary evolution. The interference visibility depends on the transmission amplitude. The
dependence of the geometric phase on the barrier strength and the spin-spin coupling constant is
also presented and discussed.
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Berry’s phase was originally introduced for bound
states that an (discrete) eigenstate of the Hamiltonian
would accumulate a geometric phase[1], when the evolu-
tion of the system is adiabatic. This Berry’s phase pro-
vides us a very deep insight on the geometric structure of
quantum mechanics and gives rise to various observable
effects. The concept of the Berry phase has now become a
central unifying concept in quantum mechanics, with ap-
plications in fields ranging from chemistry to condensed
matter physics [2]. Recently the concept of Berry phase
has been renewed and generalized for mixed states[3–6].
All these studies have been confined to discrete spectra.

For continuous spectrum, there are two things that
can distinguish the geometric phase from bound states.
(1) We always have non-Abelian gauge as a connection
due to the degeneracy in this situation [7]; (2) The dis-
tortion of the Hamiltonian can not limited to a finite
set of parameters, and hence we have to take into ac-
count the problem in an infinite-dimensional space. With
these observations, the geometric phase factor has been
considered for continuous spectra in [7], showing that
the factor is exactly the scattering matrix. In Ref. [8],
the scattering phase shift is defined in a way analogous
to the adiabatic phase for bound states. This method
works when reflection is negligible. By defining a virtual
gap for the continuous spectrum through the notion of
eigen-differential and using the differential projector op-
erator, an explicit formula for a generalized geometrical
phase is derived in terms of the eigenstates of the slowly
time-dependent Hamiltonian[9]. These studies, in con-
trast with the case of discrete spectra, are all for systems
with continuous spectra.
A scattering process with particles that have (pseudo)

spin degrees of freedom is a typical phenomenon different
from the aforementioned: The (discrete) internal spin de-
grees of freedom of the scattering particles inevitably cou-
ple to the (continuous) motional dynamics [10]. Hence
such processes affect the state of the colliding spins ac-
cording to quantum maps, instead of unitary operations.
This makes the geometric phase acquired in such scat-
tering processes distinct and interesting. Our main mo-
tivation in the present paper is to study the geometric
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FIG. 1: (Color online) Illustration of a gedanken setup. A
mobile particle can propagate along a wire in each path. A
quantum impurity and two narrow potential barriers lie at
− a

2
and a

2
in one path, and at − b

2
and b

2
in another. Once

the mobile particle injected into one of the path, it undergoes
multiple reflections between the barriers and impurity. Even-
tually, the mobile particle transmitted froward or reflected
back. Consider only the transmission channel, this scatter-
ing process is not of trace-preserving. a (b) is the distance
between the two barriers that we will refer to the width of
structure in the text.

phase in a scattering process with pseudo spin degrees of
freedom. To tackle the problem, we focus on a gedanken
setup consisting a quantum impurity, a mobile particle
and two narrow potential barriers in each path of the
double-slit, as shown in Fig. 1.
The mobile spin-1/2 particle e can propagate along the

1D path. A quantum impurity I, modeled as a spin-S
scatterer, lies at x = 0, whereas two narrow potential
barriers are located at x = ±x0 (the x-axis is along the
path, x0 = a/2, b/2 in Fig.1 for the two paths, respec-
tively). The Hamiltonian for each path reads [11, 12]
(we set h̄=1 throughout)

H =
p2

2µ
+ Jδ(x)~s · ~S +G [δ(x− x0) + δ(x+ x0)] , (1)

where µ and p are the effective mass and momentum op-

erator of e, respectively, ~s and ~S stand respectively for
the spin operators of e and I, J is a spin-spin coupling
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constant and G is the potential-barrier strength. The
above paradigmatic model naturally matches within a
solid-state scenarios such as a 1D quantum wire [13] or
single-wall carbon nanotube [14] with an embedded mag-
netic impurity or quantum dot[15]. Potential barriers are
routinely implemented through applied gate voltages or
heterojunctions.
Clearly, all of the scattering probability amplitudes are

spin dependent due to the spin-spin contact potential

Jδ(x)~s · ~S in the Hamiltonian. As the overall spin space
is D-dimensional (D = [2× (2S + 1)]), the effect of scat-
tering is fully described by two D × D matrices whose
generic elements respectively represent the amplitudes of
reflection and transmission. These matrices can be de-
rived by noting that the squared total spin of e and I as
well as its projection along the z-axis are conserved. This
entails that the dynamics within the singlet and triplet
subspaces are decoupled. Consider only the transmission
channel and assume that the injected state is

|ϕin〉 = eikx| ↑〉 ⊗ |φm〉, (2)

the transmitted state takes,

|ϕout〉 = eikxt↑| ↑〉 ⊗ |φm〉+ eikxt↓| ↓〉 ⊗ |φm+1〉, (3)

where t↑ and t↓ are the probability amplitudes for trans-
mission with spin up and down, respectively. |φm〉
are the eigenstates of Sz (the z-component of ~S), i.e.,
Sz|φm〉 = m|φm〉, and k =

√
2µE with E > 0 being the

energy of the injected particle. | ↑〉 and | ↓〉 denote the
eigenstates of sz for the mobile particle. The dependence
of t↑ and t↓ on G, J and x0 can be established by

t↑ = t↑(x0) = {1 + i[χ− (m+ 1)j′]}/∆, (4)

t↓ = t↓(x0) = −ij′F/∆, (5)

where j′ = |W |2j/(2κ), ∆ = (1 + iχ)[1 + i(χ − j′)] +
S(S+1)j′2 and F = [(S−m)(S +m+1)]1/2, with W =
1 + g sin(2κα) + i2g sin2(κα), and χ = 2g[g sin(2κα) +
cos(2κα)]. To simplify the problem, the following di-
mensionless quantities were defined: j = J/(2aBε),

κ = kaB =
√

E/ε, g = G/(2kaBε), and α = x0/aB.
Here aB is the Bohr radius, ε = 1/(2µ)a2B and 2x0 is
the distance between the two potential barriers, which
we will call the width of structure in this paper.
Consider a situation where the width of the structure

on each path is different but the spin-spin coupling con-
stant and the barrier strength on both paths are the
same. We have interests in the phase difference between
the mobile particles transmitted through different paths.
This phase difference consists of a dynamical phase and a
geometrical part. Our task here is to extract the geomet-
ric phase from the total part Γ = arg〈ϕout(a)|ϕout(b)〉.
This can be done by either parallel transport of the state
or canceling the dynamical phase. The parallel transport
condition in this case is ℑ〈ϕout(x0)| ∂

∂x0
|ϕout(x0)〉 = 0,

leading to the geometric phase in the scattering process,

γs = arg

(

〈ϕout(a)|ϕout(b)〉e−iℑ(
∫

b

a

〈ϕout(x0)| ∂
∂x0

|ϕout(x0)〉

〈ϕout(x0)|ϕout(x0)
dx0)

)

, (6)

where ℑ(...) denotes the imaginary part of (...). We now
prove that γs defined in Eq. (6) is geometric, i.e., it
only depends on the trajectory traced out by |ϕout(x0)〉.
Define a quantum map by

M(b, a) = |ϕout(b)〉〈ϕout(a)|, (7)

the total phase Γ acquired in the scattering process can
be written as Γ = arg〈ϕout(a)|M(b, a)|ϕout(a)〉. Notice
that

M̄(b, a) = M(b, a)eiβ(b,a)|ϕout(a)〉〈ϕout(a)| (8)

with real parameters β(b, a) and β(a, a) = 0 gives the
same state |ϕ̄out(b)〉, since |ϕ̄out(b)〉 = eiβ(b,a)|ϕout(b)〉

differs from |ϕout(b)〉 only in an overall phase β(b, a).
Parallel transport condition ℑ〈ϕout(x0)| ∂

∂x0
|ϕout(x0)〉 =

0 leads to

ℑ〈ϕout(0)|M̄ †(x0, 0)
∂

∂x0
M̄(x0, 0)|ϕout(0)〉 = 0. (9)

Substituting Eq. (8) into Eq.(9), we have

β(b, a) = −
∫ b

a

ℑ〈ϕout(x0)| ∂
∂x0

|ϕout(x0)〉
〈ϕout(x0)|ϕout(x0)〉

dx0. (10)

This completes the proof. For our scattering problem,
simple algebra yields,
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γs = arg

[

(t∗↑(a)t↑(b) + t∗↓(a)t↓(b))e
−i
∫

b

a

1

|t↑|2+|t↓|2
(|t↑|

2 ∂φ↑
∂x0

+|t↓|
2 ∂φ↓

∂x0
)dx0

]

. (11)

50 52 54 56 58 60
−1

−0.5

0

0.5

1

x
0
 (in units of a

B
)

γ s (
in

 u
ni

ts
 o

f π
)

FIG. 2: (Color online) The geometric phase γs versus one
width of structure, while another width of structure is fixed
to 50aB (say, for example, the width of the lower structure is
50aB). Parameters chosen are: J → 0 (10−6) for blue circle;
J = 11 for red square and J = 50 for green triangle. The
other parameters: k = 0.8, aB = 1, G = 10, m = − 1
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FIG. 3: (Color online) Angle φ↑ and φ↓ (in units of π), and
cos(θ) as a function of the width of structure. J = 50 was
taken for the plot. The red dashed line in (b) is for J = 11.
The other parameters chosen are the same as in Fig.2. cos θ

was defined by cos θ ≡
|t↑|√

|t↑|
2+|t↓|

2
.

Here, φ↑(↓) was defined by

tanφ↑(↓) ≡
tI↑(↓)

tR↑(↓)
.

tI↑(↓) and tR↑(↓) denote the imaginary and real part of t↑(↓),

respectively. The geometric phase given in Eq.(11) rep-
resents the difference in geometric phase for the mobile
particle transmitted through the two paths. We will show
later that it coincides with the geometric phase acquired
in an unitary evolution treating the width as time t.
We have performed numerical calculations for Eq.(11),

results are presented in Fig.2– Fig.7. For simplicity,
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FIG. 4: (Color online) γs (in units of π) as a function of
the barrier strength G (in units of ε) and spin-spin coupling
constant J (in units of ε). (a) and (b) are same, but show the
dependence from different angle. In (c), different lines are for
different J , J → 0 for blue square line, J = 11 for green circle,
and J = 30 for red triangle. In (d), G = 0.1 for green dashed
line, G = 9 for blue square line, and G = 30 for red circle
line. k = 1.6 (in units of ε) is chosen for this plot. For other
parameters, see Fig. 2. The widths of the two structures are
50aB and 60aB , respectively.

S = 1
2 was specified without loss of generality. Fig.2

shows the dependence of the geometric phase γs on the
width difference (i.e., one width of the structure, say a,
is fixed to 50aB, while another changes from 50aB to
60aB in Fig.1) for different spin-spin coupling constant.
We find that the mobile particle acquires either 0 or −π
geometric phase when J → 0 (J = 10−6 was taken for
the plot). Sharp changes in the geometric phase hap-
pen periodically, regardless of what value J takes. More-
over we find that the geometric phase change its value
only at the points where t↑ and t↓ change abruptly, as
shown in Fig.3. We observe three resonances from Fig.3,
corresponding to cos θ = 1. As the spin-spin coupling
constant J approaches the barrier strength G, the res-
onance region becomes wide (see the red-dashed line in
Fig.3(b)). Further examination shows that these points
coincide with the condition for resonant widths given by
cot(2κα) = −g (i.e., |t↑| = 1). Besides, from Eqs (4) and
(5) we find that the width of structure x0 enters t↑ and
t↓ only through cos(2κα) and sin(2κα), this determines



4

0
5

10
15

20

0
10

20
30
0.9

0.95

1

J  (in units of  ε)G (in units of ε)

c
o

s
 (

θ)

0
10

20

0
10

20
30

−0.5
0

0.5

J  (in units of  ε)G (in units of  ε)

φ ↑
0

10
20 0

10

20

30
−0.5

0
0.5

G (in units of ε)
J (in units of ε)

φ ↓

FIG. 5: (Color online) Angle φ↑ and φ↓ (in units of π), and
cos(θ) as a function of the barrier strength G and spin-spin
coupling constant J . In this plot k = 1.6, the width of struc-
ture is 60aB . The other parameters chosen are the same as
Fig.2. Note that φ↓ = 0 when J → 0.

the period of these sharp changes. The spin-spin cou-
pling smooth the sharpness of the changes, this is due
to the broadening of the width resonance (see Fig.3(b),
red dashed line). The geometric phase keeps constant
except at the sharp change points, this results from the
fact that φ↑, φ↓ and cos θ are (almost) constant at the off-
resonant points (see Fig. 3). The physics behind these
observations can be understood as follows. At the res-
onant points where cos θ changes from 1 to 0 suddenly,
spin flips happens, and at the point of cos θ = 1/2, t↓
gains a π phase, due to the change in the width of struc-
ture.
The dependence of the geometric phase on the spin-

spin coupling is shown in Fig.4. Note that γs = 0
when G → 0, see Fig.4(c). This can be understood
by examining the limit of g → 0. In this limit, t↑ ≃
(1−i0.5j′)/(1−ij′+1.5j′2), t↓ ≃ (−ij′)/(1−ij′+1.5j′2).
Clearly, both t↑ and t↓ do not depend on the width of the
structure, thus the system can not acquire a geometric
phase as G → 0. This is, however, not the case for J → 0
as Fig.4 (d) shows. In the limit of J → 0, t↑ ≃ 1

1+iχ , and

t↓ ≃ 0. But ∂φ↓/∂t may be very large. Because χ de-
pends on the width, the geometric phase in this case is
not always zero. Note that by Eq.(5), J = 0, t↓ = 0. In
the strong spin-spin coupling (J → ∞) and large barrier
strength limit (g → ∞), we have φ↑ = φ↓ and t↓ = 2t↑,
this leads to the geometric phase,

γs = arg
(

t∗↑(a)t↑(b)e
−i2(φ↑(b)−φ↑(a))

)

. (12)

Therefore for fixed a and b, the geometric phase γs tends
to constants with J → ∞ and G → ∞ (see Fig. 4(a)
and (b)). This results from the dependence of φ↑, φ↓

and cos θ on J and G. In fact, for a width of structure
x0 = 60aB and injected energy k = 1.6ε, the spin up with
probability |t↑|2 dominates the transmission channel (see
Fig.5), as J and G tends to ∞, both φ↑ and φ↓ approach
−π

2 due to tI↑,↓ ≫ tR↑,↓.

Define γT = arg
(

t∗↑(a)t↑(b) + t∗↓(a)t↓(b)
)

as the total
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FIG. 6: (Color online) γT as a function of the barrier strength
G and spin-spin coupling constant J . In this plot k = 1.6. For
other parameters, see Fig. 2. The widths of the two structures
are 50aB and 60aB , respectively.

phase acquired in the scattering process, and

γd =

∫ b

a

1

|t↑|2 + |t↓|2
(|t↑|2

∂φ↑

∂x0
+ |t↓|2

∂φ↓

∂x0
)dx0

as the dynamical phase, we have from Eq. (11) that the
geometric phase is γs = γT − γd. The total phase as a
function of the spin-spin coupling constant and the bar-
rier strength is given in Fig.6. Clearly, as G and J tend
to ∞, γT approaches zero, suggesting that for large G
and J , the width difference has no contribution to the
geometric phase, this is confirmed by Fig. 5. Mathemat-
ically, both t↓ and t↑ take imaginary values when G and
J approach ∞, the total phase γT is then zero.
In Ref. [7], the authors consider the geometric phase

factor in quantum mechanics for the case of continuous
spectrum. At first glance, this paper presents nothing
for continuous degrees of freedom. Now we show that,
to a sense, the present study really sheds light on this is-
sue. As aforementioned, the transmission rate of injected
spin depends on the energy of the spin, and the wave-
function in the transmission channel is an eigenstate of
the kinetic Hamiltonian p2/2m, with the corresponding
eigenenergy k2/2m. k may take continuous value, imply-
ing that the spectrum is continuous. The initial energy
(state) of the mobile spin affects the geometric phase ac-
quired in the scattering process. The dependence of the
geometric phase γs on k of the injected spin is presented
in Fig.7. We find that for G → 0, the spin acquires null
geometric phase as k tends to ∞, whereas with J → 0,
the geometric phase approaches 0 or ±π when k → ∞.
This confirms the discussion made below Fig.4. These
results show that the initially continuous/motional state
of the injected spin can affect the geometric phase in the
scattering process. In this sense, the present study shed
light on the issue of geometric phase in continuous spec-
trum problem.
To explore the dependence of the geometric phase on

the initial state of the localized spin, we plot γs as a
function of m in Fig.8, where S, J and G are fixed for
each line. We find from Eq.(5) that t↓ = 0 when m = S,
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FIG. 7: (Color online)γs as a function of k of the injected
particle. (a), (b) and (c) are different for J and G. (a) J = 2.2
and G = 1.8; (b) J → 0 and G = 1.8; (c) G → 0 and J = 2.2.
The widths of the two structures are fixed to 50aB and 60aB ,
respectively.
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FIG. 8: (Color online)γs as a function of the initial state of
the localized spin characterized by m. In this plot, k = 1.6
and S = 15. Note that when m = S, the geometric phase is
zero (not shown in the figure) due to t↓ = 0. The widths of
the two pathes are 50aB and 60aB , respectively.

leading to a null geometric phase in this case. In addition,
when J and G are small with respect to S, j′ ≪ S(S+1),
if F defined in Eq.(5) is much smaller than |∆|, |t↓| can
be ignored, then the spin acquires no geometric phase.
This is exactly the case when |m| ≃ S, see square red
line and triangle green line in Fig. 8. A common feature
in Fig. 8 is that the line is not symmetric about m = 0,
this can be interpreted as different contributions of −m
and m to Eqs (4) and (5).

It is interesting to note that m = 0 and m = −1 give
the same F defined in Eq.(5), then t↓(m = 0) = t↓(m =
−1). As spin-spin coupling becomes stronger and the bar-
rier strength tends to larger, the changes of the geometric
phase with m become more evident. We interpret this
feature as the sensitivity of the geometric phase to the
state to the localized spin, i.e., the larger the G and J
are, the more sensitive of γs to m.

Now we are in a position to explore, in terms of geomet-
ric phase, what is the difference between the normalized
and non-normalized transmitted state. To this end, we
define

cos θ ≡ |t↑|
√

|t↑|2 + |t↓|2
,

the transmitted state can be rewritten as,

|ϕout〉 = cos θeiφ↑ | ↑〉⊗|φm〉+sin θeiφ↓ | ↓〉⊗|φm+1〉. (13)

We point out that by the conservation of current proba-
bility, we have |t↑|2+ |t↓|2 = 1−|r↑|2−|r↓|2 ≤ 1. Here we
consider only the transmission channel, and the trans-
mitted state has been normalized, this would only affect
the visibility of the interference fringes but not shift the
patterns. By the definition of geometric phase for an
unitary evolution, we have

γ′
s = arg

(

(cos θ(b) cos θ(a)ei(φ↑(b)−φ↑(a)) + sin θ(b) sin θ(a)ei(φ↓(b)−φ↓(a)))e
−i
∫

b

a
(φ̇↑ cos2 θ+φ̇↓ sin2 θ)dx0

)

, (14)

where φ̇↑ ≡ ∂φ↑

∂x0
, φ̇↓ ≡ ∂φ↓

∂x0
. Recall that the real part of

〈ϕout(a)|ϕout(b)〉 represents the visibility of the interfer-
ence pattern, we conclude that the geometric phase for
the non-normalized and normalized transmitted state are
the same, namely, γ′

s = γs. This observation connects
the conventional interpretation of the geometric
phase to the geometric phase acquired in this
scattering process. I.e., the geometric phase ac-
quired in a scattering process can be understood
as the solid angle on the Bloch sphere, character-
ized by θ and φ. One may concern about the observa-
tion of the geometric phase, in particular worry about the

separation of the geometric phase from the total phase.
In general, by varying the width difference (b − a), it is
possible to make the dynamical part of phase the same
for the two beams.

In conclusion, the geometric phase in a scattering pro-
cess is studied in this paper. Consider only the transmis-
sion channel, the scattering process is neither a trace-
preserving dynamics nor a discrete spectrum problem.
Instead it concerns the coupling between the internal
degrees of freedom and the motional dynamics, and it
can be described by quantum map to replace the unitary
evolution. We have defined and calculated the geomet-
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ric phase in such a process and show the dependence of
the geometric phase on the spin-spin coupling constant
and the barrier strength. We find that the geometric
phase changes sharply at the points of resonance
scattering, where the system (the moving parti-
cle) jump from one point on the Bloch sphere to
the others. At the points far from resonance scat-
tering, the geometric phase tends to a constant (0,

or π)when one of the parameters (e.g., the bar-
rier strength G, the spin-spin coupling constant
J , and the momentum k) tends to infinity, while
the others keep constants. Possible observation of
the geometric phase is suggested and discussed.
This work is supported by NSF of China under grant Nos
61078011 and 10935010.
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