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We show that off-mass-shell effects arising from the internal structure of the proton provide a new
proton polarization mechanism in the Lamb shift, proportional to the lepton mass to the fourth
power. This effect is capable of resolving the current puzzle regarding the difference in the proton
radius extracted from muonic compared with electronic hydrogen experiments. These off-mass-shell
effects could be probed in several other experiments. A significant ambiguity appearing in dispersion
relation evaluations of the proton polarizability contribution to the Lamb shift is noted.
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The recent, extremely precise extraction of the proton
radius [1] from the measured energy difference between
the 2PF=2

3/2 and 2SF=1
1/2 states of muonic hydrogen (H)

has created considerable interest. Their analysis yields a
proton radius that is smaller than the CODATA [2] value
(extracted mainly from electronic H) by about 4% or 5.0
standard deviations. This implies [1] that either the Ryd-
berg constant has to be shifted by 4.9 standard deviations
or that the QED calculations for hydrogen are insuffi-
cient. Since the Rydberg constant is extremely well mea-
sured, and the QED calculations seem to be very exten-
sive and highly accurate, the muonic H finding presents
a significant puzzle to the entire physics community.
Our analysis is motivated by the fact that muonic hy-

drogen is far smaller than electronic hydrogen and there-
fore more sensitive to corrections arising from hadron
structure. In particular, we consider corrections associ-
ated with off-shell behavior of the photon-nucleon vertex,
showing that it may account for the difference reported
by Pohl et al.. Within our present knowledge of hadronic
physics it is not possible to provide a precise value for this
correction, so our result may be viewed as a phenomeno-
logical study of the sensitivity of muonic hydrogen to
important aspects of proton structure. It should spur
further study of processes which could be sensitive to off-
shell proton structure. In alternate language, our expla-
nation may be viewed as a new contribution from proton
polarization, unconstrained by dispersion relations, but
accessible in systems other than the hydrogen atom.
We discuss the relevant phenomenology. Pohl et al.

show that the energy difference between the 2PF=2
3/2 and

2SF=1
1/2 states, ∆Ẽ is given by

∆Ẽ = 209.9779(49)− 5.2262r2p + 0.0347r3p meV, (1)

where rp is given in units of fm. Each of the three coef-
ficients is obtained from extensive theoretical work [3–
7], typically confirmed by several groups. Studies of the
relevant atomic structure calculations and corresponding
efforts to improve those have revealed no variations large
enough to significantly affect the above equation [8, 9].
Using this equation, we see that the difference between
the Pohl and CODATA values of the proton radius would

be entirely removed by an increase of the first term on
the rhs of Eq. (1) by 0.31 meV=3.1× 10−10 MeV. Find-
ing a new effect of about that value resolves the puzzle,
provided the corresponding effect in electronic H is no
more than the current difference between theory and ex-
periment [3] (a few parts in a million).

The search to find such an effect has attracted consid-
erable interest. New physics beyond the Standard Model
must satisfy a variety of low-energy constraints and so
far no explanation of the proton radius puzzle has been
found that satisfies these constraints [10–13]. The third
term of Eq. (1) [14] has been studied, with the result that
its current uncertainties are far too small to resolve the
proton radius puzzle [15, 16].

We therefore seek an explanation based on the fact
that the proton is not an elementary Dirac particle, with
a significant anomalous magnetic moment. In particu-
lar, consider the electromagnetic vertex function which
must depend on all of the relevant invariants. For a
proton of initial four-momentum p, the most general ex-
pression must include a term, dependent on the proton
virtuality, that is proportional to p2 − M2 or 6 pN − M ,
where the subscript N denotes acting on a nucleon, and
M is the nucleon mass. Such terms have been dis-
cussed for a very long time in atomic [6, 7] and nuclear
physics [17]-[29], especially in relation to the difference
between free and bound deep inelastic structure func-
tions [17]-[20], nucleon-nucleon scattering [21] and elec-
tromagnetic interactions involving nucleons [22, 23], no-
tably quasi-elastic scattering [24]- [29]. Such off-shell ef-
fects arise naturally in quantum electrodynamics [30].

Many possible forms [22, 23] include the effects of pro-
ton virtuality; we consider three that could be significant
here. The Dirac part of the vertex function for a pro-
ton of momentum p to absorb a photon of momentum
q = p′ − p is expressed as:

Γµ(p′, p) = γµ
NF1(−q2) + F1(−q2)F (−q2)Oµ

a,b,c, (2)
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with:

Oµ
a =

(p+ p′)µ

2M
[Λ+(p

′)
(p · γN −M)

M
+

(p′ · γN −M)

M
Λ+(p)]

Oµ
b = ((p2 −M2)/M2 + (p′

2
−M2)/M2)γµ

N

Oµ
c = Λ+(p

′)γµ
N

(p · γN −M)

M
+

(p′ · γN −M)

M
γµ
NΛ+(p).

Other terms needed to satisfy the Ward-Takahashi iden-
tity do not contribute to the Lamb shift and are not
shown. The proton Dirac form factor, F1(−q2) is em-
pirically well represented as a dipole F1(−q2) = (1 −
q2/Λ2)−2, (Λ = 840 MeV) for the values of −q2 ≡ Q2 > 0
of up to about 1 GeV2 needed here. F (−q2) is an off-
shell form factor, and Λ+(p) = (p · γN +M)/(2M) is an
operator that projects on the on-mass-shell proton state.
We take the off-shell form factor F (−q2) to vanish at

q2 = 0 so that the charge of the off-shell proton is the
same as that of a free proton. This is also demanded
by current conservation [22, 23]. We assume F (−q2) =

−λq2/b2

(1−q2/Λ̃2)1+ξ
. This is a simple, purely phenomenological

non-unique form. At large values of |q2|, FF1 has the

same fall-off as F1, if ξ = 0. We take Λ̃ = Λ here.
We briefly discuss the influence of using Eq. (2). The

ratio, R, of off-shell effects to on-shell effects, R ∼
(p·γN−M)

M λ q2

b2 , (|q
2| ≪ Λ2) is constrained by nuclear phe-

nomena such as the EMC effect (10-15%), uncertainties
in quasi-elastic electron-nuclear scattering [24], and devi-
ations from the Coulomb sum rule [25]. For a nucleon ex-
periencing a 50 MeV central potential, (p ·γN −M)/M ∼
0.05, so λq2/b2 could be of order 2. The nucleon wave
functions of light-front quark-models [31] contain a prop-
agator depending on M2. Thus the effect of nucleon vir-
tuality is proportional to the derivative of the propagator
with respect to M , or of the order of the wave function
divided by difference between quark kinetic energy and
M . This is about three times the average momentum of
a quark (∼ 200 MeV/c) divided by the nucleon radius or
roughly M/2. Thus R ∼ (p · γN −M)2/M , and λq2/b2

is again estimated as of order 2.
The lowest order term in which the nucleon is suffi-

ciently off-shell in a muonic atom for this correction to
produce a significant effect is the two-photon exchange
diagram of Fig. 1 and its crossed partner, an interference
between one on-shell and one off-shell part of the vertex
function. The change in the invariant amplitude, MOff ,
due to using Eq. (2) along with Oµ

a , to be evaluated be-
tween fermion spinors, is given in the rest frame by

MOff =
e4

M2

∫
d4k

(2π)4
F 2
1 (−k2)F (−k2)

(k2 + iǫ)2
(3)

×(γµ
N(2p+ k)ν + γν

N (2p+ k)µ)

×

[
γµ

(l · γ − k · γ +m)

k2 − 2l · k + iǫ
γν + γν

(l · γ + k · γ +m)

k2 + 2l · k + iǫ
γµ

]
,

where the lepton momentum is l = (m, 0, 0, 0), the vir-
tual photon momentum is k and the nucleon momentum

ℓ

P

ℓ− k

P

ℓ

FIG. 1: Direct two-photon exchange graph corresponding to
the hitherto neglected term. The dashed line denotes the
lepton; the solid line, the nucleon; the wavy lines photons;
and the ellipse the off-shell nucleon.

p = (M, 0, 0, 0). The intermediate proton propagator
is cancelled by the off-mass-shell terms of Eq. (2). This
graph can be thought of as involving a contact interaction
and the amplitude in Eq. (3) as a new proton polariza-
tion correction corresponding to a subtraction term in the
dispersion relation for the two-photon exchange diagram
[32]. The resulting virtual-photon-proton Compton scat-
tering amplitude, corresponds to the T2 term of conven-
tional notation [33], [34]. Eq. (3) is gauge-invariant; not
changed by adding a term of the form kµ kν/k4 to the
photon propagator.
Evaluation proceeds in a standard way by taking the

sum over Dirac indices, performing the integral over k0

by contour rotation, and integrating over the angular
variables. The matrix element M is well approximated
by a constant in momentum space, for momenta typi-
cal of a muonic atom, and the corresponding potential
V = iM has the form V (r) = V0δ(r) in coordinate
space [3]. Then the relevant matrix elements have the

form V0 |Ψ2S(0)|
2, where Ψ2S is the muonic hydrogen

wave function of the state relevant to the experiment of
Pohl et al. We use |Ψ2S(0)|

2 = (αmr)
3/(8π), with the

lepton-proton reduced mass, mr. The result

〈2S|V |2S〉 =
−α5m3

r

M2

8

π
λ
mM

b2
FL(m) (4)

FL(m) ≡
1

2β2

∫
∞

0

dx
2x2

(√
x2 + β − x

)
+ β

(
2
√
x2 + β − 3x

)

(1 + x2)5+ξ
,

β ≡ 4m2/Λ2, shows a new contribution to the Lamb shift,
proportional to m4 and therefore negligible for electronic
hydrogen. Using Oµ

a leads to a vanishing hyperfine HFS
splitting because the operator γµ

N is odd unless µ = 0.
We next seek values of the model parameters λ, b, ξ

of F (−q2). chosen to reproduce the value of the energy

shift, 0.31 meV, to resolve the puzzle. With ξ = 0, Λ̃ =
Λ, λ/b2 = 2.35/(79MeV)2 is required. With this value,
the corresponding change in the electronic H Lamb shift
for the 2S-state is about 9 Hz, significantly below the
current uncertainty in both theory and experiment [3].
If ξ is changed substantially from 0 to 1 our value of λ
would be increased by about 10%. Other tests of this
effect could show sensitivity to the value of ξ or Λ̃.
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The other operators appearing in Eq. (2) yield similar
results. Using Ob, gives a term of the T2 form with a
Lamb shift equal that of Oa, and also a HFS term that
is about -1/12 of its Lamb shift. The use of Oc, gives a
term of the T1 form and the same Lamb shift as Oa, as
well as a HFS term that is -1.7 times its Lamb shift. In
this case, the value of λ/b2 would be about - 3/2 times
that stated above. The HFSs are small enough to be
well within current experimental and theoretical limits
for electronic hydrogen.

It is necessary to comment on the difference between
our approach, which yields a relevant proton polariza-
tion effect, and the dispersion relation approaches of
others [34] (and also the very recent similar calcula-
tion [35]) which do not. We shall demonstrate these
approaches suffer from severe ambiguities when applied
to the present problem. These works use a current-
conserving representation of the virtual-photon proton
scattering amplitude in terms of two unmeasurable scalar
functions, T1,2. Dispersion relations are used to relate
T1,2 to their measured imaginary parts. But one must in-
troduce a subtraction to handle T1. This is unconstrained
by prior data [33] because the value of σL/σT at infi-
nite photon energy is not determined [36]. Pachucki [34]
(Eq.(31)), assumes a form proportional to q2 times the
very small proton magnetic polarizability. However we
are aware of no published derivation of this result, which
has been recently criticized [37].

We shall now show that there are unknown terms in
the dispersion relation which are not proportional to the
magnetic polarizability. The problem with the dispersion
relations is that terms with intermediate nucleon states
are separated and evaluated using the Feynman diagrams
involving an intermediate Dirac propagator. This allows
the removal of an infrared divergence by subtracting the
first iteration of the effective potential that appears in the
wave function. But the Feynman diagrams involve inter-
mediate off-shell nucleons, so that their evaluation for
composite particles must be ambiguous. On shell form
factors are used in evaluating these diagrams, and there is
no fundamental reason for doing this [37]. Moreover, us-
ing the Dirac propagator to represent composite-fermion
intermediate states, as done in [34, 35], has been known
to be incomplete for a long time [38]. This has significant
consequences for physics [39].

We provide an example to explain. The proton Born
term is typically evaluated by using the vertex func-
tion Γµ

1 = γµF1 + iσµνqνF2 (where F2 is the Pauli
form factor) in a Feynman diagram. This form is de-
termined from measurements that involve evaluating the
vertex function between on-shell nucleon spinors. For
such measurements, there is an equivalent form Γµ

2 =
γµ(F1 + F2)− (P + P ′)µ/(2M)F2. However, using these
to evaluate the Born diagrams gives different results. We
isolate the resulting ambiguity by considering the prop-

agators as evaluated in the rest frame

6P± 6k +M

(P ± k)2 −M2 + iǫ
=

∑
s u(±

~k, s)ū(±~k, s)

(P ± k)2 −M2 + iǫ

+
γ0

M − iǫ+
√
M2 + ~k2 ± k0

. (5)

The first term of Eq. (5) corresponds to the nucleon pole
term and using it with either of Γµ

1,2 yields the same
result. The second term corresponds to part of the left
and right hand cut terms related to the production of
anti-nucleons. This is also included in the contribution
to the dispersion integral arising from inelastic states, so
there is over counting. Evaluations using the first term
do not depend on choice of vertex function, but using the
second term does.
Define the resulting difference in the virtual photon

proton scattering amplitudes as

∆T µν ∼
Γµ
1γ

0Γν
1 − Γµ

2γ
0Γν

2

M − iǫ+
√
M2 + ~k2 + k0

+ (µ, ν, k0) → (ν, µ,−k0),

with ∆T µν ∝ F2. To gauge the size of such effects,
we compute the contribution to the energy, ∆E of the
2S state caused by ∆T µν . This is given by ∆E ∝∫
d4kLµν∆T µν/(k2+ iǫ)2, where Lµν is lepton tensor in-

cluding propagators. Explicit evaluation shows that this
∆E is about a substantial 0.4 meV. This is the same
value as needed to resolve the proton radius puzzle. This
means that previous calculations of the proton polariz-
ability effects are not well-defined.
The ambiguities in the dispersion relation approach as

applied to composite (non-Dirac) fermions, indicate that
additional (as yet unmeasured) proton structure prop-
erties need to be introduced. One constructive way to
evaluate proton polarization effects is to use our postu-
lated form of off-mass shell form factor, Eq. (2), and test
its consequences in different physical environments.
In conclusion, we have shown that a simple off-shell

correction to the photon-proton vertex, which arises nat-
urally in quantum field theory and is consistent with
gauge invariance, is capable of resolving the discrepancy
between the extraction of the proton charge radius from
Lamb shift measurements in muonic and electronic hy-
drogen. Off-shell effects of the proton form factor were an
explicit concern of both Zemach [6] and Grotch & Yen-
nie [7]. It is only with the remarkable improvement in
experimental precision recently achieved [1] that it has
become of practical importance. The effect postulated
here can be investigated in lepton-nucleus scattering via
the binding effects of the nucleon, as well as by lepton-
proton scattering in arenas where two photon (or γ, Z)
effects are relevant.
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