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We describe how rescaling experimental data obtained from cold atom density profiles can re-
veal signatures of quantum criticality. We identify a number of important questions which can
be answered by analyzing experimental data in this manner. We show that such experiments can
distinguish different universality classes, and that the signatures are robust against temperature,
noise, and finite system size.
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I. INTRODUCTION

A. General Introduction

Attempts to understand zero temperature phase tran-
sitions have forced physicists to consider a regime where
the standard paradigms of condensed matter physics
break down [1–4]. These quantum critical systems lack a
simple description in terms of weakly interacting quasi-
particles, and instead sport a range of exotic emergent
properties. Most dramatically, theory predicts that uni-
versal scaling relationships describe their finite temper-
ature thermodynamics, and this scaling persists up to
remarkably high temperatures. Unfortunately, these uni-
versal functions are hard to calculate: for example there
are no reliable general techniques to calculate the scal-
ing functions for dynamics [4, 5]. Viewing a cold atom
experiment as a quantum simulator [6], we show how to
extract universal scaling functions from (non-universal)
atomic density profiles. Such experiments can resolve the
important open question of the Mott-Metal crossover’s
dynamic exponent in the Fermi-Hubbard model [7, 8] and
explore the poorly characterized crossover between O(2)
and dilute Bose gas physics captured by the finite den-
sity O(2) rotor model [1, 9]. Such results would directly
impact theories of, for example, high temperature su-
perconducting cuprates [10, 11], heavy fermion materials
[12], and graphene [13].

Motivated in part by preprints of this manuscript, sev-
eral theoretical [14–17] and experimental [18] papers have
appeared which address the same questions using similar
techniques. In section VI we explain in detail how the
concepts introduced in these various papers inter-relate.

Although our ideas are general, much of our discus-
sion will focus on cold bosonic atoms, such as 87Rb,
trapped in optical lattices. Current experiments on this
system are capable of observing quantum critical phe-
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nomena. This system displays multiple quantum phase
transitions, which reside in distinct and non-trivial uni-
versality classes [1]. We will also discuss a number of
other experimental realizations with rich quantum criti-
cal physics. Our protocols can be applied to any quantum
phase transition, and may even be useful outside of cold
atoms.

B. Bose Hubbard Model

Ultracold bosons in optical lattices are described by the
Bose-Hubbard model [6, 19, 20], defined by the Hamilto-
nian

H = −t
∑
〈i,j〉

b†i bj +
∑
i

[
U

2
b†i b
†
i bibi − µb

†
i bi

]
(1)

where
∑
〈i,j〉 indicates a sum over nearest neighbors i

and j, and the operators bi and b†i annihilate and create
bosons on site i. They satisfy the canonical commuta-

tion relation [bi, b
†
j ] = δij . The parameters t and U are

controlled by the depth V0 of the optical lattice defined
by V (r) = V0(cos(2πx/`) + . . .). Energies are typically
measured in terms of ER = h̄2π2/(2m`2).

Figure 1(a) illustrates this model’s phase diagram cal-
culated within a finite temperature Gutzwiller approx-
imation (see Appendix A). At low temperatures it fea-
tures a superfluid phase when the tunneling matrix el-
ement t is large compared to the on-site interaction U ,
and a Mott insulating phase in the opposite limit. The
superfluid phase is characterized by dissipationless mass
transport, analogous to the dissipationless charge trans-
port in a superconductor. It supports arbitrarily low-
energy excitations and has an order parameter ψ that
vanishes at the phase transition. The Mott insulating
phase (lobes shown in Fig. 1(a)) can be caricatured as
having a fixed integer number of particles per site, n, set
by the chemical potential µ. The Mott insulating state
has a excitation gap ∆, which vanishes at the transition.

The Mott insulating phase is strictly defined only at
zero temperature, but a phase transition between a su-
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FIG. 1: (Color Online, Wide) Quantum critical crossovers in the Bose-Hubbard model. a, Normal (Mott insulator) to
superfluid phase boundaries for (left to right) temperatures T/U = 0.00, 0.06, 0.12, . . . , 0.96, calculated via finite temperature
Gutzwiller mean field theory in d = 2. The parameters t, µ, and U are the tunneling rate, chemical potential, and on-site
interaction energy of the Bose-Hubbard model. Paths (1,2) are governed by the dilute Bose gas universality class, and path (3)
(passing through the tip) is governed by the O(2) universality class. b, Slice through the quantum phase transition at fixed
t/U . Slices with fixed µ/U are similar. The abbreviations “SF,” “MI,” and “QC” denote the superfluid, Mott insulator-like
normal fluid, and quantum critical regime, with the Mott insulator being strictly defined only at T = 0. The shaded region
indicates where the physics is governed by the quantum critical point. The dashed lines represent smooth crossovers between
the qualitatively distinct “QC” and “low temperature” regions. Deep in the former, T is the only relevant energy scale.

perfluid and a normal fluid persists to finite tempera-
ture. Figure 1(b) illustrates a slice through the finite
temperature phase diagram. This figure shows that the
normal fluid is divided into three qualitatively distinct
regions separated by smooth crossovers illustrated by
dashed lines. At large t/U , the superfluid (SF) can be
heated through a classical phase transition to a normal
fluid (NF) with properties similar to that of a weakly
interacting Bose gas. At small t/U the low temperature
properties of the normal fluid (MI) are determined by the
zero temperature Mott insulator’s gap. A quantum crit-
ical region intervenes between these two normal fluids.
Slices at fixed t/U look identical to slices at fixed µ/U .
In fact, this structure is typical of all second-order quan-
tum phase transitions: the disordered phase generically
divides into an analogous set of three regions [1].

Sufficiently near the quantum phase transition (the
shaded region in Fig. 1b), the thermodynamic functions
obey scaling relationships. This scaling is typically con-
trolled by two energy scales that vanish at the quantum
critical point [1]. One scale is the temperature T , while
the other depends on the phase: it is the zero tempera-
ture superfluid stiffness ρs in the superfluid and the gap
to single particle excitations ∆ in the Mott phase. Ob-
servables, such as the density, can be written as the sum
of an non-universal part n0 plus a function nu that obeys
the scaling form

nu(T,∆) = T d/zΨn(∆/T ). (2)

Here d is the dimension of the system and Ψn is a univer-
sal scaling function. Below an upper critical dimension
dc, the dynamical exponent z and the universal function
Ψn are the same for a wide range of models and therefore

define universality classes: here dc = 4− z, and z will be
1 or 2 depending on what part of the Mott lobe one is
traversing. The non-universal contribution, n0(µ,U, T ),
is the density of the system for t = 0, and as explained in
appendix B is easily calculated or measured in indepen-
dent experiments. Although atypical, with fine tuning
it is possible to have situations where additional dimen-
sionless parameters enter. The finite density O(2) rotor
model discussed below is one example.

II. PROPOSAL

A. Scaling from Density Profiles

Here we introduce an experimental protocol to observe
universality and measure key properties such as the dy-
namic critical exponent. Our technique relies upon the
inhomogeneity of cold atoms experiments. Although typ-
ical observables in cold atoms, such as the density profile,
are non-universal, we show that with appropriate analysis
the absorption images of these trapped inhomogeneous
clouds reveal the universal properties of corresponding
homogeneous systems.

At first sight, this result is surprising. Given that crit-
ical points are associated with diverging length scales,
one would naively expect that all features of criticality
would be dominated by finite-size effects, and the prop-
erties of the trapped gas would be disjoint from those of
the uniform gas. For example, Wessel et al. [21], found
that in their Monte Carlo simulations of zero temperature
systems, critical properties could not be extracted from
their density profiles. Similarly, studies of finite temper-
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ature phase transitions typically find that it is difficult or
impossible to extract any critical properties from density
profiles [22–25]. These arguments, however, do not apply
to the measurements we are advocating.

We propose searching for signatures of quantum criti-
cality by comparing the density profiles of finite temper-
ature clouds. As one increases the temperature, moving
farther away from the quantum critical point, the corre-
lation length drops. As we explicitly show in section III,
there is a sizable temperature range where the correla-
tion length ξ is small compared to the cloud size L, yet
one is still in a universal regime where all local thermo-
dynamic properties are governed by the proximity to the
quantum critical point. At these intermediate tempera-
ture scales, scaling relations such as Eq. (2) hold, and one
can extract the equation of state from density profiles via
a local density approximation.

In particular, if ξ � L, the cloud can be considered
locally homogeneous, and at every point in space one may
define a local pressure, density, and chemical potential.
Standard hydrostatic equilibrium arguments [26, 27] then
force the chemical potential gradients to be balanced by
trapping forces: µ(r) = µ0 − V (r). Hence one can infer
a great deal of information about the equation of state
from a single density image. The key problem we address
is how quantum criticality is encoded in these density
profiles.

We will view trapped atomic systems as locally satis-
fying Eq. (2), with a gap ∆ that varies as a function of
position in space. As already emphasized, our analytic
and numerical results in trapped systems validate this
Thomas-Fermi approximation. Direct measurement of
∆(r) is difficult in cold atoms. Instead, we will relate the
gap to independently measurable thermodynamic quan-
tities.

We illustrate our procedure by taking the compressibil-
ity κ ≡ ∂n/∂µ as the independently measurable quan-
tity. This is appealing because κ can be extracted di-
rectly from the density profiles via κ = −(1/mω2r)∂n/∂r
or from shot-to-shot fluctuations in the density [28, 29].
Like the density, the compressibility is the sum of an eas-
ily determined non-universal part and a universal part,
κ = κ0 + κu, with

κu(T,∆) = T d/z−1Ψκ(∆/T ). (3)

Equation (2) is an implicit equation for ∆ which together
with Eq. (3) implies that

κuT
1−d/z = Υ(nuT

−d/z) (4)

where Υ = Ψκ◦Ψ−1
n is a universal function. Therefore, in

the quantum critical regime a graph of κuT
1−d/z versus

nuT
−d/z collapses onto a single curve independent of µ,

t, U , T , and any other microscopic couplings.

B. Further Refinements

Several authors [14, 15] have pointed out an impor-
tant variant of this approach which can help pinpoint
the critical point. Paralleling the technique often used in
extracting critical points from numerical experiments on
finite sized systems, they suggest plotting T−d/znu as a
function of µ. At the chemical potential of the quantum
critical point all of these curves should cross.

III. NUMERICAL RESULTS

We validate our approach by applying it to data from
“numerical experiments”. We calculate density profiles
of trapped atomic clouds and look for scaling properties.
In section III A we consider the 1D Bose-Hubbard model
with, where we are able to directly simulate the trapped
system by mapping it onto noninteracting fermions. In
section III B we look at the 2D Bose-Hubbard model,
using Monte Carlo techniques on small systems to infer
the properties of the trapped gas.

A. 1D Bose Hubbard Model

Figure 2b shows a plot of the scaled compressibility
versus scaled density, extracted from the density pro-
files (Fig. 2a) of the t/U → 0 (hard core) trapped one-
dimensional Bose-Hubbard model for N = 70 particles.
These density profiles are efficiently calculated by map-
ping the system onto non-interacting fermions (see Ap-
pendix C). The figure not only demonstrates the univer-
sal collapse in the quantum critical regime, but also val-
idates the Thomas-Fermi approximation. The success of
the Thomas-Fermi approximation is due to the fact that
as one increases temperature above the quantum critical
point the coherence length ξ shrinks, and throughout the
quantum critical regime it is typically much smaller than
the cloud size. As one approaches the classical phase
transition, ξ diverges. Hence even though our technique
quite readily detects quantum criticality, signatures of
the classical transition may be much harder to see [25].

As shown in Fig. 2b, collapse occurs in a region around
the quantum critical point, but deviates at sufficiently
large densities and temperatures. In this case, the data
collapses within 10% for a density range of roughly 0.9 <
n < 1.1 and temperatures range of T ∼< t/4. This is
a generic feature of quantum criticality: the physics is
universal only near the quantum critical point, with the
size of the universal region determined by microscopic
details.

The universal scaling functions in Fig. 2 correspond
to those of the dilute Bose gas universality class (the
same universality class which governs the edge of all
cold bosonic clouds). Although this universality class
is quantitatively understood[1, 30], at larger t/U (near
the tip of the lobe) the Bose-Hubbard model falls into
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FIG. 2: (Color Online, Wide) Extracting universal behavior and dynamical critical exponents from density profiles
of the trapped one-dimensional Bose-Hubbard model. a, Exact density profiles of the one dimensional harmonically
trapped hard core Bose-Hubbard model for N = 70 particles at temperatures T̄ ≡ T/t = 0.1, 0.24, 0.38, with larger temperatures
corresponding to lower central density. Here, r is the radial displacement in the trap and d is the lattice spacing. These density
profiles are non-universal: for example, they depend on temperature. b, Our construction for obtaining universal scaling curves
applied to this system, plotting κ̄T̄ d/z versus n̄/T̄ 1/z (defining κ̄ ≡ κ − κ0, n̄ ≡ n − n0, and T̄ = T/t) for this d = 1, z = 2
transition and temperatures T̄ = 0.1, 0.17, 0.24, 0.31, 0.38 (from closest to the grey curve to farthest). The compressibility
is approximated by κ = ∂n/∂µ ≈ (∂n/∂r)/(mω2r), where ω is the trap frequency, and ∂n/∂r is obtained by numerically
differentiating the density. Lower temperatures display a larger region of collapse. We observe good collapse up to T ∼ 0.25t,
and see that the analysis accurately reproduces the homogeneous infinite system’s scaling curve (shaded gray line) within

∼< 10% for T ∼> 0.05t for the transition near n = 1 (n̄ < 0) and for T ∼> 0.15t for the transition near n = 0 (n̄ > 0). This

collapse occurs even for drastically different density profiles obtained by adjusting the trap depth in place of temperature (not
shown). With moderately larger particle numbers (N ∼ 200, not shown), the simulated data at low temperatures even more
accurately reproduces the infinite homogeneous system’s universal scaling function (the extracted curve lies within the shaded
gray region).

the less trivial O(2) universality class, for which open
questions remain. In particular, the quantitative struc-
ture of the dynamic scaling functions is unknown and no
general methods exist to compute these. Furthermore,
there is a more intricate “finite density O(2)” universal
structure governing the crossover between the O(2) and
dilute Bose gas universality classes, about which even
less is known[9, 13]. We give a simple picture of this
physics and its relevance to the Bose-Hubbard model in
section IV B.

B. 2D Bose Hubbard Model

Figure 3 shows that in addition to measuring univer-
sal scaling functions and the size of the universal re-
gion, our method enables one to distinguish the univer-
sality classes of the two-dimensional square lattice Bose-
Hubbard model using only the density profiles. We calcu-
late the equation of state n(µ) for a set of µ’s realized in
a typical cold atoms experiment, employing the numer-
ically exact worm algorithm quantum Monte Carlo as
implemented in the ALPS package [31]. To mimic the ef-
fect of the trapping potential, we calculated each density
for a finite size 10 × 10 system. This length scale corre-
sponds to a trapping potential variation of ∼ 1% along
the radial direction under typical conditions. We calcu-

late κ(µ) using the lowest order finite difference derivative
on this data. The stochastic error in the quantum Monte
Carlo yields results with some noise (∼ 0.1%), similar
to that found applying finite differences to real exper-
imental data (∼ 1% noise in radially averaged density
profiles, e.g. in Gemelke et al.’s experiments[28]). Ap-
pendix E gives a discussion of signal-to-noise issues, and
more details about numerical parameters. Larger scale
simulations of the trapped system [15] verify that this
approach correctly captures the physics of criticality in
the trapped gas.

The values t/U = 0.01, 0.0585 shown in Fig. 3 cor-
respond to lattice depths of V0/ER = 18.1, 11.4, re-
spectively, for 87Rb in a lattice with spacing ` =
532nm. This is found by numerically solving the non-
interacting lattice problem and using the relations[20] t =

−
∫
d3r w(r− ri)

[
− h̄2

2m∇
2 + V (r)

]
w(r− rj) and U =

4πh̄2

m a
∫
d3r |w(r)|4, where w(r) is the Wannier state, and

ri, rj are the locations of neighboring sites.

Figure 3 shows that for t/U = 0.0400 the compress-
ibility vs density curves collapse if we use a dynamical
critical exponent z = 2, corresponding to the dilute Bose
gas universality class. Similarly the t/U = 0.0585 data
collapses if we use z = 1, as one expects for the O(2) uni-
versality class. Like Fig. 2, the collapse occurs only suf-
ficiently close to the critical point. The behavior persists
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Figure 3 FIG. 3: (Color Online, Wide) Extracting universal behavior and dynamical critical exponents from density profiles

of the trapped two-dimensional Bose-Hubbard model. Each panel shows an application of our analysis procedure to
simulated density profiles (as described in text) for temperature T/t = 1/4, 1/2, 1, 2, and 4 using the data in a density range
|n−1| < 0.15. The symbols n̄, κ̄, and T̄ are defined in Fig. 2. Lower temperature curves are identified by noting that they span
a wider n̄ range. On the left (a and c), we plot κ̄ versus n̄T̄−1, while on the right (b and d) we plot κ̄T̄−1 versus n̄T̄−2: these
will show collapse if the dynamical critical exponent is respectively z = 2, 1. Top (a and b) shows data with t/U = 0.0400,
which should be described by the dilute Bose gas universality class (z = 2). Bottom (c and d) shows data with t/U = 0.0585,
which should be better described by the O(2) rotor model universality class (z = 1): the tip of the n = 1 Mott lobe in the
homogeneous system is at t/U = 0.0593. As expected, we see collapse in a and d. The scatter in data points corresponds to
stochastic noise in our Monte Carlo simulations amplified by the differentiation. This noise is of comparable size to what would
be seen in an experiment.

up to temperatures on the order of ∼> t and for a density
range of roughly 0.9 < n < 1.1 Since we are at the upper
critical dimension of the dilute Bose gas model, we ex-
pect logarithmic corrections to scaling that are hard to
identify on these plots. Consistent with our discussion of
the Thomas-Fermi approximation’s validity, there is no
clear signature of the classical phase transition in these
graphs.

IV. OUTLOOK

In this section we discuss how these techniques can
be used to answer important questions about the quan-
tum critical behavior of systems of interest to condensed
matter physics. The most exciting direction is to apply
our method to Fermi lattice systems [32, 33], for exam-
ple those emulating the two-dimensional square lattice
Fermi-Hubbard model. There are also some interesting
open questions in the dynamical response functions of

the finite density O(2) model.

A. Fermi Hubbard Model

As a first example of important questions which can be
addressed by these techniques, we propose studying the
nature of the Mott-metal crossover in the Fermi Hubbard
model at temperatures t2/U � T � t. Many believe
that in real materials, such as transition metal oxides,
this crossover is a manifestation of a preempted quantum
critical regime and should display universal physics anal-
ogous to that of the Bose-Hubbard model’s normal fluid
to Mott insulator crossover (see the discussion in Refs.
[1, 7]). If one analyzes the square lattice fermion density
profiles with the procedure we have introduced and sees
collapse onto universal curves, it would be compelling ev-
idence that in the Fermi-Hubbard model the crossover is
governed by a quantum critical point. Although most
current experiments [32, 33] are three-dimensional, and
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thus likely above the upper critical dimension, signatures
of scaling (only with mean field exponents) would remain
if this quantum criticality is the correct description of
the crossover. If the quantum critical regime persists to
the same temperature scales as the Bose-Hubbard model,
then current atomic experiments are already sufficiently
cold to determine if the universal Mott-metal crossover
scenario is correct.

Beyond determining if the system is critical, this anal-
ysis would also provide the dynamical critical exponent:
a quantity whose value is currently unknown for many
models, including the 2D square lattice Fermi-Hubbard
model. Depending on the character of the metallic
state, some filling-controlled Mott-metal transitions dis-
play z = 2, while others display z = 4 [7]. To deter-
mine this exponent one would analyze two-dimensional
lattice fermions’ density profiles with our scaling tech-
niques: only when z is chosen correctly will collapse oc-
cur, and thus our protocol is capable of distinguishing
between the various theoretical scenarios. As we already
argued, the present generation of experiments is already
in the correct regime to conduct such studies. Future ex-
periments at lower temperatures T � t2/U will be able
to access even more exotic features of quantum criticality.

One can explore an even broader range of open ques-
tions if in addition to measuring density profiles one also
employs spectroscopic probes to measure dynamical re-
sponse functions. For example, for lattice systems exper-
imentalists have successfully measured modulation spec-
tra [34], Bragg spectra [35], and radio-frequency spec-
tra [36]. In the quantum critical regime, these response
functions satisfy universal scaling forms χ(ω, T,∆) =
T ηΨχ(∆/T, ω/T ). In both fermionic and bosonic sys-
tems the details of these dynamic scaling functions are
largely unknown, especially the low frequency dynamic
behavior and how it connects to higher frequency behav-
ior. Note, however, that the Thomas-Fermi approxima-
tion’s validity for spectra in the quantum critical regime
has not been explicitly checked in our work, and its valid-
ity as well as other issues such as sufficient signal-to-noise
remain open questions.

Up to this point, all of our discussion has focused on
what can be achieved with present experimental capa-
bilities. As experiments reach lower temperatures, our
analysis technique can be used to probe ever more fun-
damental physics. For example, one can argue that even
the simplest symmetry breaking transitions of a Fermi
liquid, that to a spin density wave, is ill-understood:
beyond the Hertz-Millis theory, there exist an infinite
number of marginally relevant coupling constants and
its universality class is unclear [37, 38]. By measuring
density profiles in a system displaying similar quantum
phase transitions, such as dipolar fermions’ transition to
a Wigner crystal (charge density wave) or near-resonant
fermions transition to an “FFLO” state (charge density
wave + superfluid order), our techniques can measure z,
and thus provide valuable information about these tran-
sitions’ universality classes. Additionally, the competing

instabilities (e.g. to d-wave superconductivity, nematic-
ity, etc.) seen in transition metal oxides have analogs in
lattice fermion experiments, and offer an important and
even richer set of open questions regarding quantum crit-
ical behavior and “avoided quantum criticality” [2–5, 39].

B. Finite density O(2) model

A second area where one can advance our understand-
ing of quantum criticality is through studying the “finite
density O(2) model”. This rich model describes the Bose-
Hubbard model near the particle-hole symmetric point
on the superfliud-insulator boundary. It features phase
transitions in two different universality classes, and a
crossover between them. Sachdev and Müller have ar-
gued that aspects of the dynamics in this regime are
related to dynamics near the Dirac point in graphene
[13], and cold atoms may probe (among other things) the
general relations between universal constants that should
appear in both cases.

Figure 4 gives a guide to the relevant physics, illus-
trating the two universality classes and the crossovers
between them. Along the Mott lobe edges, the physics
is that of the dilute Bose gas (Fig. 4(a), shaded blue re-
gions). On the large-µ side of the Mott lobe, the relevant
excitations are a dilute Bose gas of particles, while on the
small-µ side, they are holes. Near the line of particle-hole
symmetry passing through the tip of the lobe, both par-
ticles and holes are equally important and the physics is
in the O(2) universality class (Fig. 4(a), shaded orange
region).

The physics of these regions, and the crossovers be-
tween them (the entire shaded green region in Fig. 4(a))
can be described by the imaginary time action S =∫
ddrdτL(r, τ) defined by the Lagrangian

L = −φ∗
[
(∂τ − µ)

2 − c2∇2 + s
]
φ+

g

2
|φ|4 (5)

where φ is a complex bosonic field, evaluated at position
r and time τ . Here µ is the chemical potential, which
controls the relative energy cost of holes and particles,
s is the tuning parameter for the µ = 0 phase transi-
tion, c the excitation velocity when µ = 0, and g is the
effective interaction strength. When µ is non-zero, at
sufficiently low energies this reduces to the dilute Bose
gas Lagrangian, LDBG = ψ∗

[
∂τ − µ−∇2/(2m)

]
ψ +

(g/2) |ψ|4, (with ψ a simple rescaling of φ) since the
quadratic time derivative is irrelevant in the renormal-
ization group sense. When µ = 0, this reduces to
the O(2) model defined by the Lagrangian LO(2) =

φ∗
(
−∂2

τ − c2∇2 + s
)
φ + (g/2) |φ|4. The model defined

by Eq. (5) predicts a scaling function[9, 40, 41]

nu(∆+,∆−, T ) = T dΨO(2)+µ

(
∆+

T
,

∆−
T

)
(6)

where ∆± are the relevant gaps/superfluid stiffnesses at
T = 0. This scaling function is universal and reduces to
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FIG. 4: (Color Online, Wide) Universality classes of the Bose-Hubbard model. a, Annotated zero temperature Bose-
Hubbard model phase diagram (cf. Fig. 1). Transitions via paths (1-2) are described by the dilute Bose gas (DBG) universality
class while path (3) is described by the O(2) universality class. Shaded regions schematically depict where each universality
class holds: DBG physics governs the (blue) region along the lobe edge and O(2) rotor physics governs the (orange) “bowtie”
shaped region near the tip. The entire (green) region in the area around the tip – including both the bowtie and part of the lobe
edge – is described by the finite density O(2) model. b, Finite temperature phase diagram along path (4). At zero temperature,
this path crosses two quantum phase transitions going from a superfluid to a Mott insulatorfs and back. Each phase transition
is in the DBG universality class and displays a quantum critical fan, inside of which the temperature sets the only length scale.
O(2) physics is recovered in the particle-hole symmetric regions where the quantum critical fans overlap. The “finite density
O(2)” model universally governs this entire phase diagram including all of the crossovers (dashed lines) and phase transitions
(solid lines) shown in this panel.

the dilute Bose gas and O(2) scaling in the appropriate
limits.

To see this reduction in the dilute Bose gas case,
note that if for large ∆−/T the scaling function goes to
Ψ(∆+/T,∆−/T ) → (∆−/T )d/2Ψr(∆+/T ) then nu →
T d/2∆

d/2
− Ψr(∆+/T ). This reproduce the z = 2 scal-

ing expected for the resulting dilute Bose gas case if

Ψn(∆+/T ) = ∆
d/2
− Ψr(∆+/T ) is identified as the uni-

versal dilute Bose gas scaling function introduced in the
main text.

A particularly insightful way to view the finite density
O(2) crossovers is illustrated in Fig. 4b. This corresponds
to a slice through Fig. 4a in the region described by Equa-
tion (6). The low temperature behavior is dominated by
the two dilute Bose gas quantum critical points, and the
O(2) physics emerges at higher temperatures where the
two fans overlap. Not only does the scaling in Eq. (6)
describe the physics in these fans, it also describes the
low temperature phases.

V. FURTHER CONSIDERATIONS

Here we discuss a few somewhat tangential points:
other probes of quantum criticality, other examples of
cold atom systems with quantum critical points, and fi-
nite size scaling.

A. Time of flight expansion

As suggested by the work of Kato et al. [42], time
of flight expansion provides another probe of quantum
criticality. In such an experiment the trapping potential
and interactions are turned off and the cloud is allowed
to expand. At long times this maps the momentum dis-
tribution of the particles to the real space distribution.
At low momenta, the system’s behavior is fully universal.
Kato et al. [42] show a representative calculated image of
the momentum distribution in a quantum critical regime
of the Bose-Hubbard model.

In typical cold atom experiments the inhomogeneous
broadening from the trap makes it very difficult to ex-
tract quantum critical signatures from the expansion im-
ages: multiple regions of the trap contribute to the ob-
served momentum distribution, including those far from
the quantum critical regime (although the critical cou-
pling value may be extracted, see e.g. Trotzky et al.[24]
and Pollet et al.[25]). This difficulty can be somewhat
circumvented by engineering a flat bottomed trapping
potential. Such flat traps may also be advantageous for
density probes of quantum criticality.

B. Other cold atoms systems displaying quantum
criticality.

Here we provide a partial list of other quantum phase
transitions in cold atoms systems. The most experimen-
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tally mature systems are: magnetic transitions in spinor
gases [43], nematic transitions in dipolar gases [44], su-
perfluid and magnetic transitions in partially polarized
resonant Fermi gases [45], and transitions from fully po-
larized or fully paired phases to a partially polarized
(FFLO) phase in one dimensional clouds of fermions [46].
There are also potentially a large variety transitions be-
tween of magnetic phases in multicomponent gases and
mixtures [6]. Finally, there are ample opportunities to
study the trivial dilute gas to vacuum transitions, gov-
erned by the chemical potential tuned zero temperature
phase transition from a state with non-zero to zero den-
sity. This physics is found near the edge of every atomic
cloud. Although well understood, these latter transitions
are a good test of the analysis techniques.

Universal scaling behavior has already been experi-
mentally studied in the two-dimensional dilute trapped
Bose gas using techniques related to the ones we discuss
here [47]. In the two dimensional Bose system which
they were looking at, dimensional analysis alone suffices
to provide the collapse: all of the irrelevant couplings are
zero in the bare Hamiltonian describing this system.

C. Finite-size scaling.

We found by exact calculations of the trapped 1D hard
core Bose-Hubbard model (and by mimicking the trapped
2D Bose-Hubbard model) that our procedure could ex-
tract the homogeneous system’s universal scaling func-
tion within a ∼< 10% accuracy assuming the Thomas-
Fermi approximation holds, despite the finite particle
number and trapping inhomogeneity. Nevertheless, it is
possible to improve this further by accounting for the fi-
nite size scaling in the trap[14, 25, 48]. The trapping po-
tential introduces a length scale L, and when this length
is large compared to microscopic lengths, universal scal-
ing in ξ/Lθ for some non-trivial θ results. For small val-
ues of this argument, the homogeneous system scaling
is recovered. Accounting for this, some have explicitly
demonstrated how to improve the accuracy of the naive
Thomas-Fermi approach to determining critical coupling
values (e.g., µc and Tc) [14, 25].

VI. OTHER RECENT WORK

Given the excitement surrounding the possibility of ob-
serving quantum criticality in cold atoms, the field has
evolved substantially since this manuscript was first cir-
culated as a preprint. Most importantly, scaling collapse
has been observed in density profiles from a recent set of
experiments on cesium atoms trapped in optical lattices
[18]. Further, sophisticated numerical simulations have
confirmed the results we showed in section III B. A fair
amount of progress has also been made in understanding
signatures of quantum criticality in the 1D gas. Guan

and Ho [16] have used approximate solutions of the ther-
modynamic Bethe ansatz to study attractive fermions.

We would like to give special attention to Zhou and
Ho’s recent Letter which gives very similar arguments to
those given here [14]. Given the similarities, we feel com-
pelled to enumerate the differences between our works.
This comparison also provides an opportunity to sum-
marize our results. We owe several refinements of our
arguments to discussions with Zhou and Ho, and we be-
lieve it is quite likely that their work was influenced to
some extent by our results.

The main purpose of both our paper, and Zhou and
Ho’s, is to present techniques for observing universal col-
lapse near a quantum critical point. We advocate plot-
ting density vs. compressibility, while Zhou and Ho rec-
ommend density vs. chemical potential. While both are
viable approaches, we feel that the primary benefit of
our method is that both n and κ are local observables.
In contrast, µ can only be determined if one knows the
central chemical potential µ0. In principle, µ0 can be ex-
tracted by fitting the density profile at the edge of the
cloud where the equation of state is simple. In practice
there are technical issues with this approach, including
the fact that one must have the entire cloud in global
equilibrium. In our method one only needs equilibrium
in the part of the cloud contributing to the critical re-
gion [49, 50]. As a technical aside, Zhou and Ho’s scal-
ing prefactors (powers of temperature) look more com-
plicated than ours, however, as discussed in appendix D,
since density is a conserved quantity their results reduce
to ours. For other observables, one must use their more
general form.

In order to show that our techniques are practical, both
our paper, and Zhou and Ho’s, use numerical simulations
to model a trapped gas. These studies show that finite
size effects are small in current experiments, and signal
to noise levels are sufficiently high. While both papers
include discussion of the d = 1 Bose-Hubbard model in
the hard core limit, ours also looks at d = 2 and U <∞.
This lets us demonstrate that our technique can distin-
guish different universality classes, and explore the inter-
play between O(2) and dilute Bose gas physics.

Finally, our paper gives a number of concrete and
non-trivial open questions involving quantum criticality
which can be studied in the near term by cold gas experi-
ments. These include determining the dynamical critical
exponent for the Mott-metal crossover, the dynamics of
the finite density O(2) model, and the validity of Hertz-
Millis theory to describe various symmetry breakings of
strongly interacting Fermi liquids.

Zhou and Ho’s paper also contains important results
that are not found in our paper – namely a study of fi-
nite size scaling, a procedure to find the critical chemical
potential of quantum phase transitions, and some discus-
sion of classical phase transitions. We found that reading
their paper also helped us view technical aspects of our
procedure in a new light and helped us improve our ap-
proach to subtract off the non-universal contribution to
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the density.

VII. CONCLUSIONS

We have shown that universal quantum critical behav-
ior can survive in trapped cold atomic systems, for real-
istic experimental conditions. We showed that from ap-
propriate analysis of non-universal in situ density images
one can infer universal quantum critical scaling functions.
To demonstrate this, we exactly calculated the expected
behavior of the trapped Bose-Hubbard model in the hard-
core 1D limit and in general in 2D, mimicking the trap
with small finite system sizes. We also demonstrated on
the 2D Bose-Hubbard model that the procedure allows
one to identify the dynamic critical exponent z, and thus
distinguish many important universality classes.

Using these results, we outlined how the techniques
can be used with ongoing experiments on fermionic and
bosonic atoms in optical lattices. We have shown that
fermionic lattice experiments can answer important open
questions regarding the Fermi-Hubbard model’s univer-
sality class at intermediate temperatures. We have also
argued that the bosonic lattice experiments can deter-
mine for the first time the quantitative structure of the
dynamics of the finite-density O(2) rotor model. We have
also mentioned other open questions that ongoing cold
atoms experiments can impact. Lastly, we outlined some
of the very recent theoretical and experimental progress
in the field.
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Appendix A: Finite temperature Gutzwiller theory.

We calculated the schematic finite temperature phase
diagram in Fig. 1 within a finite temperature Gutzwiller
approximation. Although only approximate this ap-
proach provides a qualitative picture of the role of tem-
perature. More accurate phase diagrams can be obtained
by using quantum Monte Carlo techniques.

Following Fisher et al. [19] and Sachdev [1], we per-
form a Hubbard-Stratonovitch transform to decouple lat-
tice sites: we introduce a new free field φ into the Bose-
Hubbard Lagrangian and couple it to the b operators by

terms −
∑
i(b
†
iφ
†
i + H.c.). The new fields’ Lagrangian is

chosen so that upon integrating out φ the original Bose-
Hubbard Hamiltonian is reproduced. This field φ can
be interpreted as the order parameter of the superfluid
state. We formally integrate out the b fields and expands
the Lagrangian for the φ fields to quartic order in φ and
second order in derivatives to obtain

Lφ = L0 + φ∗(s+K1∂τ +K2∂
2
τ −∇2)φ+ u/2|φ|4.(A1)

where the constants s, L0, K1, K2, and u can be ex-
pressed as integrals (L0 will give a non-universal con-
tribution to the free energy considered in the next part).
The mean field phase boundary is given by setting s(T ) =
0. At T = 0 this reproduces the standard Gutzwiller the-
ory. The explicit form for s is

s(T ) =
1

zt
+

1

N

[ ∞∑
m=0

m+ 1

Um− µ

(
e−β(U/2)m(m−1)+βµm

−e−β(U/2)m(m+1)+βµ(m+1)

)]
(A2)

with N ≡
∑∞
m=0 e

−β((U/2)m(m−1)−µm). The sums con-
verge rapidly, reducing the finding of the found boundary
to the finding the solution of a nonlinear equation in one
variable.

Appendix B: Non-universal contributions

In order to see the collapse described in the main text,
one needs to subtract off the non-universal contributions
to the density (n0) and compressibility (κ0). One can
readily calculate these non-universal contributions or, as
described below, extract them from numerical or empir-
ical measurements.

For example, consider the Bose-Hubbard model, where
the non-universal contributions arise from the constant
term L0 in Eq. (A1). This corresponds to the free en-
ergy density of decoupled sites, implying that the non-
universal contribution to any on-site observable is found
by evaluating the observable at t = 0 and at the U , T ,
and µ of interest. One finds

n0 =

∑∞
n=0 ne

−βεn∑∞
n=0 e

−βεn
(B1)

with

εn =
U

2
n(n− 1)− µn. (B2)

These sums converge quickly with n, and typically only
a few terms are needed. In principle, one can also mea-
sure the function n0(T, µ, U) by performing experiments
at small t. In practice, there are a number of technical
hurdles: equilibration is difficult in deep lattices [50], as
is control and measurement of temperature [51], and for
very deep lattices the Bose-Hubbard description breaks
down [36, 52–59].
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As explained by Zhou and Ho [14], a more generic
approach to accounting for the non-universal contribu-
tions is to expand about the quantum critical point.
By construction n0 is an analytic function, n0(µ, T ) =
n̄+O(µ− µc, T ), where n̄ = n(µc, 0) is a constant. Suf-
ficiently close to the critical point, Eq. (3) simplifies to

T 1−d/z(κ− κ̄) = Υ

(
n− n̄
T d/z

)
, (B3)

and the only remnant of the non-universal functions n0

and κ0 are the constants κ̄ and n̄. In the examples in
this paper κ̄ = 0 and n̄ = 0 (vacuum to superfluid tran-
sition) or n̄ = 1 (n=1 Mott to superfluid transition). In
circumstances where these constants are nontrivial, they
may be extracted by fitting experimental or numerical
data. Zhou and Ho give a discussion of carrying out this
expansion to higher order.

Using Eq. (B3) we observe equally good collapse as we
find from subtracting off the full n0 in Eq. (B1). In addi-
tion to its simplicity, the expression in Eq. (B3) is com-
pletely in terms of simple constants and local observables.
This can be contrasted with Eq. (B1), where one needs
the central chemical potential in the trap. Additionally,
Eq. (B3) is particularly powerful in that it applies even
if one has only local equilibrium through the quantum
critical regime [49].

Appendix C: Calculating density profiles of
one-dimensional hardcore bosons.

For Fig. 2 we calculate our density profiles by mapping
the one-dimensional, hardcore (U →∞), trapped lattice
bosons described by the Hamiltonian

H = −t
∑
i

[
b†i bi+1 + H.c. +

U

2
b†i b
†
i bibi + (Vi − µ)b†i bi

]
,

(C1)
with harmonic trapping potential Vi, onto non-
interacting fermions by the Jordan-Wigner transforma-
tion [60]

fi ≡

∏
j<i

(1− 2b†jbj)

 bi. (C2)

Note that fi and f†i satisfy the canonical anticommuta-

tion relation for fermions, {fi, f†j } = δij . This gives the
non-interacting Fermi Hamiltonian

H =
∑
i

[
−t
(
f†i+1fi + H.c.

)
+ (Vi − µ)f†i fi

]
. (C3)

We numerically find the single particle eigenstates φ
(α)
i

with energy Eα. The bosonic density at site i is then

equal to the fermionic density at site i by Eq. (C2), and
thus

ni =
∑
α

1

eβEα + 1
|φ(α)
i |

2. (C4)

Appendix D: Universality

As we have emphasized, our procedure allows the ex-
traction of universal scaling curves from non-universal
observables such as density profiles. Here, we make pre-
cise the meaning of this universality and offer a fairly
detailed derivation of the scaling forms. This summa-
rizes some of Fisher et al.’s [19] scaling arguments in the
present notation (see also Sachdev’s book [1]). First we
present the argument for a general observable. We ad-
ditionally discuss the simplification that occurs when we
specialize observables to the density and its derivatives,
which take a simpler form due to the conservation of
charge [40].

1. Scaling near a quantum critical point.

First, we consider a general observable O(g1, . . . , gn)
that is a function of n coupling constants, chosen to van-
ish at the critical point. Using a coarse graining or renor-
malization group procedure, both O and the gj ’s can be
defined as functions of the scale `. Near the fixed point
of a renormalization group flow one generally has

gj(`) = gj`
1/νj (D1)

as ` → ∞. The exponents νj define scaling dimensions
for the corresponding couplings gj , and gj is defined as
gj ≡ gj(` = 1). Since the flow of coupling constants is
defined to preserve the physics up to the scale,

O (g1(`), . . . , gn(`)) = `αOO (g1, . . . , gn) (D2)

where αO is related to the scaling dimension of O. We
may solve Eq. (D2) for O(g1, . . . , gn) and choose ` such
that ` = (A/gn)νn for some constant A, yielding

O (g1, . . . , gn) = A−αOνngαOνnn (D3)

×O

(
g1A

νn/ν1

g
νn/ν1
n

, . . . ,
gn−1A

νn/νn−1

g
νn/νn−1
n

, A

)
.

Thus, we see that the dependence of O on all the coupling
constants is captured, up to a non-universal scale in both
O and its arguments (determined by A), by a universal
function. This is frequently abbreviated

O(g1, . . . , gn) = gαOνnn ΨO

(
g1

g
νn/ν1
n

, . . . ,
gn−1

g
νn/νn−1
n

)
with it implicitly understood that each argument and the
overall factor has an associated non-universal scale. This
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is the sense in which our main text’s equations should be
understood as universal. We conventionally choose gn to
be the temperature T , obtaining

O(g1, . . . , gn) = A−αO/zTαO/z (D4)

×O
(
g1A

1/(zν1)

T 1/(zν1)
, . . . ,

gn−1A
1/(zνn−1)

T 1/(zνn−1)
, A

)
since T ∝ ξ−z ∝ `z by the definition of the dynamical
critical exponent z.

2. Hyperscaling

The scaling dimension of O is related to the scaling di-
mension νO of the conjugate coupling constant gO, where
O = ∂F/∂gO. Under a renormalization group trans-
formation, the free energy scales as F ∝ `d+z for uni-
versality classes satisfying hyperscaling (as is generally
the case for those relevant to quantum criticality). Thus
O ∝ `d+z−1/νO , yielding αO = d+ z − 1/νO and

O(g1, . . . , gn) = T 1+d/z−1/(zνO) (D5)

×O
( g1

T 1/(zν1)
, . . . ,

gn−1

T 1/(zνn−1)

)
,

where for notational clarity we have omitted the A’s.
In the case of a conserved quantity, such as density,

Sachdev [40] shows that one can relate νO to z. Under
an RG transformation, n ∝ `d, requiring αn = d. Thus
νn = 1/z and

nu = T d/zΨn

( g1

T 1/(zν1)
, . . . ,

gn−1

T 1/(zνn−1)

)
(D6)

Zhou and Ho’e expression [14] emerges directly from
Eq. (D5) when µ is the only relevant coupling. As
seen from Eq. (D6), their expression simplifies to nu =
T d/zΨu

(
µ−µc
T

)
regardless of the universality class of the

phase transition.

Appendix E: Quantum Monte Carlo parameters and
signal-to-noise

We calculate the densities for the two-dimensional
square lattice Bose-Hubbard model using worm algo-
rithm quantum Monte Carlo algorithm [61] as imple-
mented in the ALPS simulation package [31]. We
performed a sufficient number of equilibration sweeps
(10,000) and evaluation sweeps (30,000) to obtain accu-
rate estimates of the density. Typical stochastic errors in
the density were ∼ 0.1%, but these are amplified when
we take derivatives to extract the compressibility. This
stochastic error is comparable to imaging noise of radially
averaged density profiles in real experiments [28] (1%).
As seen in Fig. 3, our approach is robust against such
noise. Even using the simplest finite difference approxi-
mations to derivatives — which greatly amplify noise —

our technique provides accurate scaling curves up to noise
levels of ∼< 1%. More sophisticated multi-point differen-
tiation schemes are more robust to noise, and we expect
these to be robust to noise of perhaps ∼< 5%. Even at
the center of the cloud, some existing lattice experiments
are already below this noise level and have demonstrated
clean determination of both κ and n [28]. Furthermore,
the noise level decreases with distance to the center due
to trap averaging (although the chemical potential gradi-
ents eventually lead to breakdown of the Thomas-Fermi
approximation, we find good agreement over a substan-
tial portion of the cloud even, for example, for small of
N = 70 1D clouds). Systematic effects may be important
as well, for example shot-to-shot total particle number
fluctuations. These would have controlled, for example
by post-selection of particle number, and this will mod-
erately increase running time for the experiments.

Over most of the parameter space simulated, we find
that systematic errors from the finite equilibration time
are significantly smaller than the stochastic errors. We
explore possible systematic errors using two methods: (1)
running with longer equilibration times and (2) a jacknife
binning analysis. The simulations were carried out for
a system size of 10 × 10 lattice sites. Our results were
insensitive to the finite size effects, except in the classical
critical regime, mimicking the effects of a real trapping
potential.
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