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Complete population transfer in four coupled modes system is analyzed from a geometrical point
of view. An analytical solution of the dynamics is written by the use of two distinct frequencies,
the generalization of the single Rabi frequency of the two-state dynamics. We also present its
visualization on two separate Bloch spheres, with two independent torque equations. With this
scheme, we analytically derive the requirements for complete population transfer in a four-state
quantum system. Interestingly, the solutions are found to be linked to fundamental number theory,
whereas complete population transfer occurs only if the ratios between coupling coefficients exactly
match a set of Pythagorean triples.
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Complete population transfer from one state to an-
other is a subject of extensive research for a variety of
classical and quantum systems. Coherent manipulation
of population of states in atomic and molecular quan-
tum systems [1–3], spin control in nuclear magnetic reso-
nances [4], quantum information processing [5, 6], and di-
rectional optical waveguide technology [7] are only a few
examples where complete population transfer between
states are desired.

In general, solutions of time dependent dynamical cou-
pled equations are difficult to obtain analytically, and
even for the simplest case of a two-state coupled systems,
realized by a spin- 12 particle or a two-state atomic system,
only a handful of analytical solutions are known. For ex-
ample, in the well-known solution for a two-state system
with a constant coupling field [1], complete population
transfer between two orthogonal states occurs only when
the frequency of an external driving field is on resonance
with the energy difference between the states, and only
at discrete times, known as Rabi flopping times, which is
inversely proportional to the strength of coupling.

The task of finding schemes for complete popula-
tion transfer between selected states becomes increas-
ingly difficult in multi-state coupled systems. Group-
theoretical methods offer a rigorous tool of how to de-
termine whether a system is wavefunction controllable,
i.e. whether any initial state in the system can be trans-
ferred into an arbitrary final state [8, 9]. However, these
methods are nonconstructive and do not provide a gen-
eral recipe for implementing complete population trans-
fer scheme for a concrete system. So far, there are only a
limited number of systematic methods which can provide
this goal. Among them are the schemes exploiting adi-
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abatic evolution which achieve this goal asymptotically,
with the requirement of strong pairwise sequence of cou-
pling pulses [2, 10–13]. Also, few solutions for the general
N-state systems, which require that the set of coupling
coefficients would satisfy special relations were found. A
known example of such solutions is the spin group sys-
tems, which is the incorporation of the su(2) dynamics
in an N level system [14, 15].

This research explores the dynamics of four cou-
pled mode equations, and the constraints for achieving
complete population transfer between two non-adjacent
states in such dynamics. In contrary to previous research
of such systems, we explore its dynamics from a geomet-
rical point of view. For the two-state system, the geomet-
rical visualization on the Bloch sphere, plays an impor-
tant role in developing a clear, intuitive understanding of
the two-state dynamics [16, 17]. The approach, which is
developed here, helps to extend the geometric representa-
tion of two level dynamics into four-state systems. These
systems are of particular importance for quantum infor-
mation processing technology, where two-qubit quantum
logic gates serve as elementary building blocks for de-
signing fully functional scalable devices [5, 18, 19]. The
analysis is based on a known equivalence from continuous
group theory - the equivalence between the the 4 dimen-
sional orthonormal group, which is the rotation of vector
in four dimensional, known also as SO(4), and two sep-
arate 2-dimensional unitary groups, each exhibit SU(2)
dynamical symmetry. We show that the evolution can
be viewed on two different ’Bloch’ sphere, each with its
unique Rabi frequency and effective detuning.

When the requirements of obtaining complete popu-
lation transfer in a four-state system are analyzed, we
find that those impose certain analytical relations on the
coupling coefficients, which are surprisingly connected
to families of Pythagorean triples. We show that these
relations are identical to the equation for all primitive
Pythagorean triples (PPTs), which is a set of three inte-

ger numbers a, b and c, which do not possess a common
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FIG. 1: (Color online) Coupling diagram of the four mode
dynamics in two different representation. (a) Lab frame rep-
resentation - the couplings are real valued, and can be with
different values. (b) Bell frame representation - detunings are
allowed and the coupling coefficients can be complex valued.
Equivalence between coupling values are needed.

factor and satisfy the equation a2 + b2 = c2. In this
article, several aspects of such solutions in the context
of atomic physics are presented and discussed. We shall
note the our analytical treatment can be implemented to
other physical realization as well.
The article is organized as follow: In section A, we

show the decomposition of a four state dynamics into
two independent qubits. In the analysis, we discuss two
frames, the Lab frame, and the Bell frame, which are im-
portant bases for the analytical and geometric analysis.
Section B presents the analytical solution of such dy-
namics, and its geometrical interpretation on two Bloch
spheres. Section C deals with the special case on near-
est neighbors coupling of the four-state dynamics. The
similarity with the two-mode dynamics is discuss. Sec-
tion D presents the Pythagorean inversion scheme and its
unique properties. We also give a protocol to generate
such symmetries and show the effects of the variation of

the parameters that control the dynamics.

A. Decomposition of a four state dynamics into

two independent qubits

Let us start by writing the evolution of a four dimen-
sional wavefunction using the Schrödinger equation:

∂ρ

∂t
= iHρ , (1)

where, ρ(t) = (a1(t), a2(t), a3(t), a4(t)), with an(t) as the

probability amplitude of each state and Ĥ is the following
Hamiltonian:

Ĥ =







0 V12 −iV13 V14
V12 0 V23 −iV24
iV13 V23 0 V34
V14 iV24 V34 0






. (2)

Here Vij represent general coupling coefficients be-
tween the states, which are real valued. In the fol-
lowing treatment, we consider a laser-field driven four-
level atom, as an example of a physical realization of
such systems. In this context, after considering the ro-
tating wave approximation, the coupling coefficients are
Vij = µijǫ (t) /~. Here ǫ(t) is the field amplitude and µij

are dipole matrix elements between levels i and j. This
basis will be noted in the rest of the analysis as the Lab

frame. A unique case of the system is the case of periodic
nearest-neighbor couplings with V13 = V24 = 0, which is
the diamond-type four level structure, and appears in
many physical systems. If also V14 = 0, a ladder-type
system is obtained.

An important feature of this problem is that it is solv-
able using geometric tools of su(2) rotations. This Hamil-
tonian can be separated into two distinct sub-symmetries
of su(2), and can be viewed as an element of su (2)⊕su (2)
Lie algebra (explicit algebraic decomposition is shown in
the appendix):

Ĥ =
(V12 + V34)

2
Î(1) ⊗ σ̂(2)

x +
(V23 + V14)

2
σ̂(1)
x ⊗ σ̂(2)

x +
(V12 − V34)

2
σ̂(1)
z ⊗ σ̂(2)

x +

+
(V23 − V14)

2
σ̂(1)
y ⊗ σ̂(2)

y +
(V13 + V24)

2
σ̂(1)
y ⊗ ˆI(2) +

(V13 − V24)

2
σ̂(1)
y ⊗ σ̂(2)

z (3)

where, we used the known Pauli matrices,

σ̂x =

(

0 1
1 0

)

, σ̂y =

(

0 −i
i 0

)

, σ̂z =

(

1 0
0 −1

)

(4)

with an upper index, (1) and (2) associated with qubits 1 and 2, indicates inner or outer SU(2) symmetry, respec-
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tively. The following decomposition is best seen in the
Bell frame, which is obtained by performing a similarity
transformation using the known Bell (unitary) matrix:

Ŵ =
1√
2







1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1






. (5)

The new wavefunctions will then become a superposition
of the original wavefunctions:

∣

∣ψB
n

〉

= W |ψn〉, where

we denoted
∣

∣ψB
n

〉

as the new Bell wavefunctions. In the
Bell basis, two distinct su(2) subalgebras can be clearly

identified in the Hamiltonian ĤB,

ĤB = Ŵ †ĤŴ =

ĤB =
(V12 + V34)

2
Î(1) ⊗ σ̂(2)

x +
(V23 + V14)

2
σ̂(1)
z ⊗ Î(2) +

(V12 − V34)

2
σ̂(1)
x ⊗ Î(2) +

− (V23 − V14)

2
Î(1) ⊗ σ̂(2)

z − (V13 + V24)

2
σ̂(1)
y ⊗ Î(2) +

(V13 − V24)

2
Î(1) ⊗ σ̂(2)

y (6)

We rewrite the Hamiltonian as a linear combination of
Pauli matrices σ̂(x,y,z) acting separately on qubits 1 and
2, Left (outer) and Right (inner), respectively:

ĤW = ĥ(1) ⊗ Î(2) + Î(1) ⊗ ĥ(2) , (7a)

ĥ(1) ≡ Re{ΩL0
}σ̂x − Im{ΩL0

}σ̂y +∆Lσ̂z , (7b)

ĥ(2) ≡ Re{ΩR0
}σ̂x + Im{ΩL0

}σ̂y −∆Rσ̂z . (7c)

where

ΩL0
=
V12 − V34

2
+ i

V13 + V24
2

,∆L =
V23 + V14

2
, (8a)

ΩR0
=
V12 + V34

2
+ i

V13 − V24
2

,∆R =
V23 − V14

2
. (8b)

We write also, the generalized Rabi frequencies of these
two qubits, which will shown to be the generalization of
the single Rabi frequency from the two level case:

ΩL =

√

|ΩL0
|2 +∆2

L = (9a)

=
1

2

√

|V12 − V34|2 + |V13 + V24|2 + |V23 + V14|2 ,

ΩR =

√

|ΩR0
|2 +∆2

R = (9b)

=
1

2

√

|V12 + V34|2 + |V13 − V24|2 + |V23 − V14|2 .

The notation presented here are summarized in Fig. 1.
As illustrated from Fig. 1(a), arbitrary on-resonant real
valued coefficients are allowed in the lab frame scheme,
whereas in the Bell frame scheme, shown in Fig. 1(b),
the coupling coefficient between state |ΨB

1 〉 and |ΨB
2 〉 is

the same as |ΨB
3 〉 and |ΨB

4 〉 (equal to ΩL0), and |ΨB
1 〉

and |ΨB
4 〉 is the same as for |ΨB

2 〉 and |ΨB
3 〉 (equal to

ΩR0). Detunings are also allowed in the Bell frame. In
both frames, the Hamiltonians contain six degrees of free-
doms, which is expected from the summation of two su(2)
systems.

B. Analytical solution of the dynamics and

geometrical interpretation

In the language of Lie group theory, the dynamical
problem factorizes into two separate problems for two
SU(2) unitary operators acting on two qubits. Therefore,
geometric tools for visualization of resulting solutions are
readily available. By using an algebraic property of lo-
cal transformations, we can represent the action of an
SU(2)× SU(2)/Z2 operator on a four-dimensional state
vector as left and right multiplication by two 2× 2 su(2)
matrices, acting on a 2×2 complex matrix [20, 21]. Thus
we rewrite the equations for the evolution of amplitudes
an (t) of the states |ψn〉, n ∈ {1, 2, 3, 4}, using the follow-
ing rearrangement

Â (t) = a1 (t) Î + a2 (t) σ̂x + a3 (t) iσ̂y + a4 (t) σ̂z . (10)

Here Â (t), is a two-dimensional matrix which contains
the information about four amplitudes an (t). For com-
pleteness, we will write it explicitly:

Â(t) =

(

c1(t) c2(t)
c3(t) c4(t)

)

=

(

a1(t) + a4(t) a2(t) + a3(t)
a2(t)− a3(t) a1(t)− a4(t)

)

.(11)

The general time dependent evolution can be found in a
form of two rotations of Â (t), where one acts from the
left uL, and the second acts from the right uR. This can
be written as:

Â (t) = ûTL (t− t0) Â (t0) ûR (t− t0) . (12)



4

where the operators

ûL (t) = exp

{

i
t

2
[(V12 − V34) σ̂x − (V13 + V24) σ̂y + (V23 + V14) σ̂z ]

}

=

=

(

cos
(

ΩLt
2

)

+ i∆L

ΩL
sin
(

ΩLt
2

) Ω∗

L0

ΩL
sin
(

ΩLt
2

)

ΩL0

ΩL
sin
(

ΩLt
2

)

cos
(

ΩLt
2

)

− i∆L

ΩL
sin
(

ΩLt
2

)

)

ûR (t) = exp

{

i
t

2
[(V12 + V34) σ̂x + (V13 − V24) σ̂y − (V23 − V14) σ̂z ]

}

=

=

(

cos
(

ΩRt
2

)

+ i∆R

ΩR
sin
(

ΩRt
2

) Ω∗

R0

ΩR
sin
(

ΩRt
2

)

ΩR0

ΩR
sin
(

ΩRt
2

)

cos
(

ΩRt
2

)

− i∆R

ΩR
sin
(

ΩRt
2

)

)

are the local rotations of qubits 1 and 2, correspondingly.
This important equation gives a simplified visualization
of the analytical solution of the dynamics.
The above dynamics can be visualized on two separate

Bloch spheres. Let us define the associated state vectors,
~rL = (UL, VL,WL) and ~rR = (UR, VR,WR), written as
follow:

WL = |c1|2 − |c2|2 + |c3|2 − |c4|2 , (13a)

UL = c∗1c2 + c1c
∗
2 + c∗3c4 + c3c

∗
4 , (13b)

VL = i (c∗1c2 − c1c
∗
2 + c∗3c4 − c3c

∗
4) , (13c)

and

WR = |c1|2 − |c3|2 + |c2|2 − |c4|2 , (14a)

UR = c∗1c3 + c1c
∗
3 + c∗2c4 + c2c

∗
4 , (14b)

VR = i (c∗1c3 − c1c
∗
3 + c∗2c4 − c2c

∗
4) . (14c)

Here the cn (t) are the probability amplitudes in the Bell
basis frame (written explicitly in Eq. 11). In such a basis,
the dynamics can be written as two independent torque
equations:

∂

∂t
~rL = ~ΩL × ~rL , (15a)

∂

∂t
~rR = ~ΩR × ~rR , (15b)

where ~ΩL = (Re{ΩL0}, Im{ΩL0},∆L) and ~ΩR =
(Re{ΩR0}, Im{ΩR0},∆R) are their associate torque vec-
tors. This geometrical visualization offer an intuitive
physical understanding of such four state dynamics, in
the same way as for the two level case.

C. Nearest neighbors couplings

In the case of periodic nearest state coupling, where
V13 = V24 = 0 in the Hamiltonian presented in Eq. 2,

we note that there is another symmetry, which allows
us to solve the problem in an elegant geometric fash-
ion. Suppose that we choose to rotate the basis in the
space spanned by vectors |ψ2〉 and |ψ4〉. Such a rotation
apparently has no effect on the evolution of the states
|ψ1〉 and |ψ3〉. We can represent this transformation
as a phase multiplication acting on two complex vec-
tors (V12 + iV14) → (V12 + iV14) e

iθ and (V23 + iV34) →
(V23 + iV34) e

iθ. The invariance of the amplitudes a1 (t)
and a3 (t) under such a transformation means that the
amplitudes a1 and a3 are determined not by the full set
of coupling coefficients {V12, V23, V34, V14} ∈ R4, but by
an element of the quotient space R2 × R2/SO(2), de-
scribed by a special algebraic transformation, known as
the Hopf S3 → S2 projective map [22, 23]. In physics, the
Hopf map is commonly associated with the Bloch Sphere
representation of a pure state. In our problem, the map
takes the 4-dimensional Vij space to a 3-dimensional ξn
space,

ξ0 =
1

2

(

V 2
12 + V 2

14 + V 2
23 + V 2

34

)

, (16a)

ξ1 = V12V23 + V14V34 , (16b)

ξ2 = V12V34 − V23V14 , (16c)

ξ3 =
1

2

(

V 2
12 + V 2

14 − V 2
23 − V 2

34

)

. (16d)

The new coordinates ξn satisfy the equation ξ20−ξ21−ξ22−
ξ23 = 0, which is the equation for a 3-dimensional cone
embedded in four-dimensional Eucledian space [24]. By
using the projective coordinates {ξ1, ξ2, ξ3}, the algebraic
expressions for the amplitudes an (t) can be significantly
compactified.
As an example of the analytical solution, we will find

the general evolution of the states, when the system is
initialized in the ground state |ψ1〉 so that a1 (0) = 1

and a2,3,4 (0) = 0 (in this case Â (0) = Î). The time
dependent amplitudes of the states |ψn〉 can be followed
from Eq. 12,
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TABLE I: Comparison of the Rabi solution for two mode system (the middle column) with a four-mode nearest neighbor
solution (the right column). We observe a striking similarity in the structure of both solutions.

Parameter Two-mode dynamics Nearest-neighbor four mode dynamics

Dynamical symmetry SU(2) SU(2) × SU(2)
Spanned space {|ψg〉 , |ψe〉} {|ψ1〉 , |ψ3〉} and {|ψ2〉 , |ψ4〉}

Generalized frequencies Ω =
√

V 2
12

+∆2 ΩL =
√

Ω2

L0
+∆2

L

ΩR =
√

Ω2

R0
+∆2

R

”Torque” vector ΩRabi = (Re{V12}, Im{V12},∆) ΩPyth = 1√
ξ0

(ξ1, ξ2, ξ3)

Ground state evolution ag (t) = cos (Ωt) − ∆
√

V 2
12

+∆2
sin (Ωt) a1 (t) = cos (ΩLt) cos (ΩRt) −

ξ3
√

ξ2
1
+ξ2

3

sin (ΩLt) sin (ΩRt)

Excited state evolution ae (t) = −
V12

√

V 2
12

+∆2
sin (Ωt) a3 (t) = −

ξ1
√

ξ2
1
+ξ2

3

sin (ΩLt) sin (ΩRt)

Inversion time τ = π
|ΩR| τ = π

|ΩP |

a1 (t) = cos (ΩLt) cos (ΩRt)−
ξ3

√

ξ21 + ξ23
sin (ΩLt) sin (ΩRt) , (17a)

a2 (t) = i
ΩR0

ΩR
cos (ΩLt) sin (ΩRt)− i

ΩL0

ΩL
sin (ΩLt) cos (ΩRt) , (17b)

a3 (t) = − ξ1
√

ξ21 + ξ23
sin (ΩLt) sin (ΩRt) , (17c)

a4 (t) = i
∆R

ΩR
cos (ΩLt) sin (ΩRt)− i

∆L

ΩL
sin (ΩLt) cos (ΩRt) . (17d)

It immediately follows from this relation that in this case,
the amplitudes of a1,3 (t) remain real valued, while the
amplitudes of a2,4 (t) are purely imaginary. If we look
only on the solutions of a1 (t) and a3 (t), we can see that
the structure of the solution of the four coupled modes
dynamics is the same as for the two coupled mode one,
where instead of a single Rabi frequency, there two dis-
tinct ones. This is summarized in Table 1.

D. The Pythagorean inversion scheme

Now we have all the necessary equations to solve the
problem of complete population transfer from state |ψ1〉
to state |ψ3〉 at time t = τ , i.e.

a3(τ) = 1 , a1(τ) = a2(τ) = a4(τ) = 0 . (18)

To do so, first the requirement of on-resonant interac-
tion should be satisfied, i.e. the ξ3 variable, the anal-
ogous of the detuning ∆ in the two-mode case. Next,
complete population transfer will occur only when dy-
namic angles ΩLt and ΩRt, simultaneously complete a
π-phase rotation, i.e. when ΩL = π

2τ (2m1 + 1) ≡ π
2τ p

and ΩR = π
2τ (2m2 + 1) ≡ π

2τ q. where we defined m1

and m2 to be arbitrary integer numbers; the p and q pa-
rameters are then two odd numbers. After some algebra,
we derive the following solution for complete population

transfer, where:

(ξ0, ξ1, ξ2) =
π2

2τ2

(

p2 + q2

2
, pq,

p2 − q2

2

)

≡
Ω2

Pyth

2
(c, a, b) (19)

This solution exactly matches the generating function of
primitive Pythagorean triples (PPT) [25], which states
that for any pair (p, q) of positive odd integers with

p > q, the triple (a, b, c) ≡
(

p2−q2

2 , pq, p
2+q2

2

)

is a PPT.

As an example, the triples (3; 4; 5) and (5; 12; 13)
are primitive triples, whereas (6; 8; 10) is not a PPT
(pythagorean triples, but not primitive). Note also, that

in spite of the fact that a set of numbers (1,1,
√
2) sat-

isfy the Pythagorean relation, these numbers are not a
Pythagorean triple. Other types of generating functions
of PPTs can be found elsewhere [26–28]. Equation 19
states that for the nearest-neighbor four-mode coupling
problem, complete population transfer between two non-
adjacent states |ψ1〉 and |ψ3〉 (or |ψ2〉 and |ψ4〉) occurs if
and only if the ratio of (ξ0 : ξ1 : ξ2) is equal to ratio of a
Pythagorean triple!
The coupling coefficients {V12, V23, V34, V14} needed in

order to achieve complete population inversion, can be
then obtained from Eq. 19 by inverting the transforma-
tion of Eqs. 16. Though there are several ways to do it,
we choose to present the following protocol which per-
form such task:

1. Choose a pythagorean triple. Denote it (A,B,C).
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FIG. 2: (Color online) Complete population transfer |ψ1〉 ←→
|ψ3〉 (or |ψ2〉 ←→ |ψ4〉). (I) State normalized populations
as functions of interaction time, for a ladder-type coupling
scheme. The system initially is prepared in the ground state
(solid red). The population is periodically transferred to the
third state (dashed green). Parameters correspond to (a)
(m1,m2) = (1, 0) (b) (m1,m2) = (2, 0) (c) (m1,m2) = (3, 0).
(II) The Pythagorean triple relation between the coupling co-
efficients in four state ladder system. The computed transi-
tion time for complete population transfer matches the calcu-
lated transition time from Eq. 21.

2. Choose the ratio between the couplings k =
V14/V12. It is the extra degree of freedom of the
system (which from geometrical point of view can
be seen as the orientation phase between the two
distinct Bloch spheres).

3. The following relation will determine the coupling
coefficients:

V12 =
C√

1 + k2
, V23 =

B − kA√
1 + k2

,

V34 =
A+ kB√
1 + k2

, V14 = kV12 . (20)

For the special case of ladder-type coupling, where k =
0 and thus V14 = 0, this solution becomes ξ0 = V 2

12,
ξ1 = V23V12, ξ2 = V34V12 which takes a simple form of a
proportion (V12;V23;V34) ∼ (C,A,B).

We tested our theoretical prediction by performing nu-
merical simulations on the dynamics of a four-level ladder
transitions in Rb85: 5S1/2 ↔ 5P3/2 ↔ 4D3/2 ↔ 4F5/2,
with resonant CW interaction of 780.2nm, 1.529µm,
1.344µm, respectively. The coupling coefficients were
chosen to satisfy the simplest Pythagorean triple ratio
(V12 : V23 : V34) ∼ (C : A : B). As seen in Fig. 2, numer-
ical results are in complete agreement with the analyti-
cal solution and confirm that there is periodic population
transfer between states |ψ1〉 and |ψ3〉. The time period

FIG. 3: (Color online) Evolution of the normalized popula-
tions with different values of k-values. As seen the population
amplitudes of states |1〉 (solid red) and |3〉 (dashed green) re-
main the same for all values of k.

for complete population transfer is given by

τ ≡ π

ΩPyth
=

π
√

V 2
L + V 2

R

=
π√
2ξ0

. (21)

Here we denoted the transition time required to achieve
population transfer as ΩPyth, analogous with the Rabi
frequency for a two-level dynamics, where both scale as
the absolute value of the torque vector.

The next step was to check the evolution of the ampli-
tude probabilities when the value of k was varied, which
is the free parameter. For the Pythagorean relation of
m1 = 1,m2 = 0 (or A = 3, B = 4, C = 5), we present
in Fig. 3, the evolution of the system in different values
of k. As expected, the amplitude probabilities of |ψ1〉
and |ψ3〉 remain the same for any k, while the amplitude
probabilities of |ψ2〉 and |ψ4〉 changed dramatically. This
indicates again the existence of an extra phase between
the two independent qubits, which does not influence the
inherent dynamics of the full systems, but only the pro-
jection of the evolution of one qubit from the point of
view of second qubit.

Another interesting question that could be raised, is
whether one can find the couplings that guarantee com-
plete ”switching” of information between the states the
qubits?, or in more mathematically words, what will be
the constraints to start with a general complex valued
of four probability amplitudes ai(0) = (α, β, γ, δ), which
could obtain, after time τ , that any set of probability am-
plitudes will be exchanged |Ψ1〉 ↔ |Ψ3〉 and |Ψ2〉 ↔ |Ψ4〉,
i.e. that ai(τ) = (γ, δ, α, β). In the quantum literature,
it is known as ”dual-rail” mechanism.

For the case of periodic nearest state coupling (V13 =
V24 = 0), such constraints can be found. It requires that
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FIG. 4: (Color online) The dual-rail mechanism. As seen,
the initial probability amplitudes an (0) = (−i, 2, 3 − i, 1 +
3i) transfer ”information” between |Ψ1〉 ↔ |Ψ3〉 and |Ψ2〉 ↔
|Ψ4〉, after a period of τ = π

ΩP
.

k = C−B
A , resulting in the following coupling coefficients:

V12 = V34 = B

√

C

2(C −A)
, (22a)

V14 = V23 =

√

C(C −A)

2
. (22b)

We again checked our prediction by choosing the
Pythagorean relation of m1 = 1,m2 = 0, or (A,B,C) =
(3, 4, 5). By fixing the parameter k = 1/3, and choosing
an arbitrary complex valued wavefunction, we see in Fig.

4, that after an inversion time (where τ = π/ΩPyth), the
evolution of probability amplitude of each state is ”ex-
changed” with the value of its counterpart. From geo-
metrical point of view, the dynamics of the two separate
su(2)’s evolve with the same parameters of the torque
vectors.

In conclusion, the dynamics of four state systems were
analyzed from geometric perspective. We have shown
that such systems can be decomposed into two separate
qubits, each with its own characteristics. Two frames of
the dynamics were explored, each highlight different as-
pect of the system, and a general analytical solution was
written. The main focus of the article is the identifica-
tion of a new scheme for complete population transfer
in such systems. We observed very close connection be-
tween the structure of solution for the nearest-neighbor
coupling four-state system and the family of primitive
Pythagorean triples. Due to its simplicity and clear geo-
metric structure the identified solution may be important
for quantum information and quantum computing appli-
cations, and as a state preparation technique for both
population or entanglement transfer [6]. Though, the
dynamics of four state systems were analyzed here in the
realization of atomic physics, we shall note again that all
the analytical rresults can be implemented in other phys-
ical realizations as well. Also, those results can be used
for some problems of spatial propagation of light pulses,
such as the coupling between directional waveguides, and
multimode fibers. We expect that similar solutions, re-
vealing a deeper link with number theory, can be found
for 6- and 8-state systems. The present method can also
be generalized to include more complex exactly solvable
two-state models.
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under Grants PHY-0545390, PHY-1005709 and in part
by the National Science Foundation under Grant No.
PHY05-51164 for the Kalvi Institute for Theoretical
Physics, UCSB. H.S. is grateful to the Azrieli Founda-
tion for financial support.

I. APPENDIX - EXPLICIT ALGEBRAIC DECOMPOSITION

For completeness, we choose here to write the explicit decomposition of the Hamiltonian in both frames. In the
Lab frame it is:

Ĥ =
(V12 + V34)

2

(

σ̂x 0
0 σ̂x

)

+
(V23 + V14)

2

(

0 σ̂x
σ̂x 0

)

+
(V12 − V34)

2

(

σ̂x 0
0 −σ̂x

)

+

+
(V23 − V14)

2

(

0 −iσ̂y
iσ̂y 0

)

+
i (V13 + V24)

2

(

0 −Î
Î 0

)

+
i (V13 − V24)

2

(

0 −σ̂z
σ̂z 0

)

=
(V12 + V34)

2
Î(1) ⊗ σ̂(2)

x +
(V23 + V14)

2
σ̂(1)
x ⊗ σ̂(2)

x +
(V12 − V34)

2
σ̂(1)
z ⊗ σ̂(2)

x +

+
(V23 − V14)

2
σ̂(1)
y ⊗ σ̂(2)

y +
(V13 + V24)

2
σ̂(1)
y ⊗ ˆI(2) +

(V13 − V24)

2
σ̂(1)
y ⊗ σ̂(2)

z (23)
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The explicit decomposition in the Bell frame:

ĤB = Ŵ †ĤŴ =

ĤB =
(V12 + V34)

2

(

σ̂x 0
0 σ̂x

)

+
(V23 + V14)

2

(

Î 0

0 −Î

)

+
(V12 − V34)

2

(

0 Î

Î 0

)

+

− (V23 − V14)

2

(

σ̂z 0
0 σ̂z

)

− i (V13 + V24)

2

(

0 −Î
Î 0

)

+
(V13 − V24)

2

(

σ̂y 0
0 σ̂y

)

=
(V12 + V34)

2
Î(1) ⊗ σ̂(2)

x +
(V23 + V14)

2
σ̂(1)
z ⊗ Î(2) +

(V12 − V34)

2
σ̂(1)
x ⊗ Î(2) +

− (V23 − V14)

2
Î(1) ⊗ σ̂(2)

z − (V13 + V24)

2
σ̂(1)
y ⊗ Î(2) +

(V13 − V24)

2
Î(1) ⊗ σ̂(2)

y (24)
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