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Abstract

A large-scale relativistic configuration-interaction (CI) calculation of the n = 3 − 3 transition

energies for Ne- to Ar-like tungsten is carried out. The calculation is based on the relativistic

no-pair Hamiltonian and uses finite B-spline orbitals in a cavity as basis functions. Quantum

electrodynamic and mass polarization corrections are also included. Results are compared with

other theories and with experiment, and are generally found to be more reliable than previous

theoretical predictions.
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I. INTRODUCTION

Tungsten is of interest in fusion research as it is a promising material in future magnetic

confinement fusion reactors such as the ITER due to its desirable properties with low hydro-

gen retention, high melting point and high thermal conductivity. However, since tungsten

is a high-Z element, even with 10 - 20 KeV reactor temperature, line emission in the x-ray

and vacuum ultraviolet (VUV) regions are major concerns in realizing the magnetically con-

fined fusion reactors. To understand its influence as a plasma impurity, reliable transition

energy data are needed for many ionic stages of tungsten which show up in relevant emission

spectra.

There are not many experimental and theoretical studies in the literature for the n =

3 − 3 transition energies of highly-charged tungsten ions. Early calculations of the sodium

isoelectronic sequence are mostly based on the Dirac-Fock (DF) [1–3] or model potential [4]

methods with a relatively crude accuracy of a few eV. High-precision relativistic many-body

perturbation theory (RMBPT) calculations of the correlation energies for selected Na-like

ions were carried out by Johnson et al. [5], but quantum electrodynamic (QED) corrections,

which are important for high-Z ions, were not included. Kim et al. [6] later used these

RMBPT results to provide accurate relativistic correlation corrections to their DF energies

for Na-like ions with 14 ≤ Z ≤ 92, and calculated the QED corrections with the ad hoc

Welton method [7]. Reliable QED corrections from ab initio calculations were first given

by Blundell [8] who added them to the RMBPT energies [5] to give accurate transition

energies for a few Na-like ions, though tungsten was not included. Theoretical n = 3 − 3

resonance line energies for Mg-like ions include results from the multiconfiguration Dirac-

Fock (MCDF) calculations by Cheng and Johnson [9] and Zou and Froese-Fischer [10], the

relativistic random-phase approximation calculations by Shorer et al. [11], the relativistic

perturbation calculations with model potentials by Ivanova et al. [12], and the relativistic

configuration-interaction (RCI) calculations for low- to mid-Z ions by Chen and Cheng [13].

For the aluminum isoelectronic sequence, transition energies and radiative rates have been

calculated with the MCDF method by Huang [14] and the RMBPT method by Safronova

et al. [15]. In other Al-like calculations [16–18], either tungsten is not included or results

are presented in graphical forms only. Finally, there is a recent RMBPT study of the

wavelengths and transition rates in several highly-charged tungsten ions, including Mg- and
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Al-like tungsten, by Safronova and Safronova [19].

On the experimental front, there are a few measurements of the n = 3−3 wavelengths of

highly-charged tungsten ions. Ralchenko et al. measured EUV spectra from Ca-like W54+

to Na-like W63+ [20], and magnetic-dipole lines among the 3dn levels of Co-like W47+ to

K-like W55+ [21], at the National Institute of Standards and Technology (NIST) electron

beam ion trap (EBIT) facility. Gillaspy et al. [22] measured the 3s− 3p D-line doublets in

highly-charged Na-like ions as well as the wavelengths of several 3s−3p3/2 and 3p1/2−3d3/2

lines in Si-, Al-, and Mg-like ions, including tungsten ions, at the same facility, though the

experimental uncertainties reach half an eV for the j = 1/2 − 3/2 transitions. Recently,

Clementson and Beiersdorfer [23] carried out more accurate wavelength measurements for

a few 3s1/2 − 3p3/2 and 3p1/2 − 3d3/2 lines in K-like W55+ through Ne-like W64+ ions at

the Lawrence Livermore National Laboratory EBIT facility. The experiment relies on the

calculations of the Flexible Atomic Code (FAC) [24] for line identifications. The FAC is a

relativistic configuration-interaction code with Dirac-Hartree-Slater basis functions. It uses

the long-wavelength approximation for the Breit energy and obtains screened QED correc-

tions from the hydrogenic values [25, 26] by simple Z-scalings. Clementson and Beiersdorfer

also calculated the transition energies with the GRASP code [27] which is based on the

MCDF method, with similar QED corrections as those from the FAC.

While FAC and GRASP are invaluable for line identifications, neither of them are high-

precision calculations. In the past, we have carried out accurate RCI calculations with ab

initio QED corrections for a few 3s − 3p3/2 transition energies of Na-, Mg-, Al- and Si-like

uranium and results are in excellent agreement with measurements [28]. We shall use similar

methods to calculate the n = 3 − 3 transition energies of some of the measured x-ray lines

in highly-charged tungsten ions to show that high-precision relativistic correlation methods

such as the RCI are important for accurate transition energy calculations and that Breit

and QED corrections, which are significant for these high-Z ions, must also be evaluated

reliably. In the following two sections, we shall first give a brief description of the present RCI

calculations. Results will then be presented and discussed in Section IV, and comparisons

will be made with with other theories and with experiment. A summary will be given in

the last section.
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II. THEORETICAL METHOD

The details of our RCI method have been given before [29]. We shall only outline the

essential points here. The calculation is based on the N -electron no-pair Hamiltonian [30, 31]

Hno−pair =

N
∑

i=1

hi + Λ++

(

HC +HB

)

Λ++ (1)

where hi is the one-electron Dirac Hamiltonian, HC and HB are the Coulomb and frequency-

dependent Breit interactions, respectively, and Λ++ is the positive-energy projection oper-

ator for excluding the negative-energy states and preventing the appearance of electron-

positron pairs in higher-order perturbation calculations which leads to the continuum dis-

solution problem [32] that plagues the relativistic many-electron Dirac Hamiltonian. The

eigenfunction Ψ(JπM) of an atomic state with angular momentum (J,M) and parity π is ex-

pressed as a linear combination of the many-electron configuration-state functions φ(γiJM)

such that

Ψ(JπM) =
∑

i

ciφ(γiJM) (2)

where γi are sets of quantum numbers representing different electronic configurations with

the same parity π, and ci are configuration mixing coefficients. Variation of the energy

functional 〈Ψ|H|Ψ〉with respect to ci, subjected to the wavefunction normalization condition

〈Ψ|Ψ〉 = 1, leads to the CI equation

∑

j

(Hij − λδij)cj = 0. (3)

where Hij = 〈φi|H |φj〉 are the CI matrix elements. We use one-electron B-spline basis

functions for a Dirac electron moving in a model potential and confining to a finite cavity

[33] to construct many-electron configuration-state functions. B-spline orbitals form finite,

complete basis sets representing the bound and continuum states. They also cleanly sep-

arated into positive- and negative-energy states so that the no-pair requirement can easily

be implemented by using only positive-energy B-spline orbitals. In this work, B-spline ba-

sis sets are calculated in Dirac-Kohn-Sham (DKS) potentials with cavity radii of 2.2 a.u.,

though results are not sensitive to these choices. The numbers of B-spline orbitals generated

for each of the angular symmetries s, p1/2, p3/2, . . . are n = 35 for the Na- and some of the

Mg-like lines and n = 30 for the others. We only use the first 20 or so B-spline orbitals
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in the calculations which has been found to be quite sufficient in giving results stable to

the last digits quoted here which is about 0.01 eV, as remaining orbitals are very high in

energies and do not contribute much to the calculations. Resulting CI expansions reach

350,000 configurations, and Davidson’s method [34, 35] is used to solve the large-scale CI

matrix equation for the lowest-few eigenstates.

Our theoretical energies also include contributions from the nuclear recoil and quantum

electrodynamic (QED) corrections. Recoil corrections for the n = 3−3 transitions are small

and consist of the normal mass shifts and specific mass shifts. The former are implicitly

included by the use of the finite-mass Rydberg constant in converting energies from atomic

units to eV, while the later are approximately given by the mass polarization (MP) correc-

tions which are calculated as expectation values of the operator HMP = 1
M

∑

i<j pi ·pj, where

M is the nuclear mass, using RCI eigenfunctions. As for the QED corrections, we start by

evaluating the one-electron self-energy and vacuum polarization corrections. Leading vac-

uum polarization corrections are calculated as expectation values of the Uehling potential.

Wickmann-Kroll corrections [36], like the self-energies [37], are computed non-perturbatively

to all orders of Zα. To account for screening and relaxation corrections, one-loop QED en-

ergies are calculated in DKS potentials specific to the valence configurations of the initial

and final states. Corrections from two-loop Lamb shifts are also included. They are small

at around 0.01 eV and are order-of-magnitude estimates only. The sums of the one-electron

QED corrections, weighted by the effective occupation numbers from the RCI calculations,

give the many-electron QED energies.

III. CI EXPANSIONS

In this work, we study mostly the 3s−3p3/2 and 3p1/2−3d3/2 x-ray lines measured in [23],

along with a few 3s−3p1/2 lines measured in [20]. As the sizes of the CI expansions increase

very quickly with the number of n = 3 valence electrons, we limit our calculations to Ne- to

Si-like lines, along with one Ar-like line. The fifteen n = 3 − 3 transition lines considered

here are listed in Table I. For the eleven lines that are measured in [23], we use the same line

labels there consisting of an isoelectronic identifier followed by an integer (Na-1, Mg-2, etc.).

For the other four lines measured in [20], we use similar line labels, but with the trailing

integer replaced by a Greek alphabet as in Na-α, Mg-β, Al-γ and Al-δ. For each of these
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lines, we start by defining reference configurations for the upper and lower states consisting

of core and valence electrons. Single and double excitations of at least one valence electron

and up to one core electron from these reference configurations are then included in the CI

expansions to account for valence-valence (VV) and core-valence (CV) correlations. In the

case of Na-like ions, core-core (CC) correlations with the excitations of two core electrons

are also included. Descriptions of the CI expansions are given in the following. For brevity,

the 1s2 core is omitted if it is not explicitly involved in the excitations. Also, B-spline basis

sets consist of 30 orbitals for each angular symmetries unless otherwise specified.

1) For the Ne-1 line of W64+, the reference states are 2s22p21/22p
3
3/23l̄ + 2s22p1/22p

4
3/23l̄,

with the F-like 2s22p5 core and 3l̄ = 3s, 3p valence electrons. The CI expansions from

valence excitations and CV correlations between the n = 2 and n = 3 shells include the

configurations 2s22p5nl, 2s22p4nln′l′ and 2s2p5nln′l′. One- and two-electron excitations are

limited to n, n′ ≤ 20 and l, l′ ≤ 3.

2) For the Na-1 and Na-α lines of W63+, the reference states are 1s22s22p63l̄ with the

Ne-like core and 3l̄ = 3s, 3p valence electrons, and B-spline basis sets consist of 35 or-

bitals for each angular symmetries. The basic CI expansions from valence excitations and

CV correlations arising from single- and double-excitations of the 1s, 2s, 2p core and 3l̄

valence electrons include the configurations 1s22s22p6nl, 1s22s22p5nln′l′, 1s22s2p6nln′l′ and

1s2s22p6nln′l′, with n, n′ ≤ 23 and l, l′ ≤ 5. We also includes CC correlations from the n = 2

subshells with the configurations 1s22s22p43l̄nln′l′, 1s22s2p53l̄nln′l′ and 1s22p63l̄nln′l′, with

n, n′ ≤ 23, and l, l′ ≤ 3. The reduced basis sets are adequate for the small CC corrections

and help keep the sizes of these large-scale CI calculations manageable.

3) For the Mg-2 and Mg-β lines of W62+, the reference states are the Ne-like core plus

3s2 + 3p2 for the lower state and 3s3p + 3p3d for the upper state. With 3l̄ = 3s, 3p and

3s, 3p, 3d for the lower and upper states, respectively, the CI expansions include VV cor-

relations (2s22p6nln′l′) and CV correlations from the n = 2 core and n = 3 valence shells

(2s22p53l̄nln′l′, 2s2p63l̄nln′l′) with n, n′ ≤ 22 out of 35 B-spline orbitals and l, l′ ≤ 5. For

the Mg-1 line, the upper reference state is 3s3d + 3p2 and the CI expansions also include

VV and CV correlations from the n = 2 core and n = 3 valence shells, though with smaller

basis sets of n, n′ ≤ 19 out of 30 B-spline orbitals. No CC correlation is included for these

Mg-like lines.

4) For the six Al-like lines of W61+, the core is again the Ne-like ground state, while the

6



three valence electrons are from the 3s, 3p shells, except for the upper states of Al-1 which

are from the 3s, 3d shells. The basic CI expansions include VV and CV correlations from

the n = 2 core and the n = 3 valence shells with n ≤ 20 and l ≤ 5, except for Al-3 and Al-4

where n ≤ 18 and l ≤ 3.

5) For the Si-1 and Si-2 lines of W60+, the reference states consist of the Ne-like core with

four valence electrons from the 3l̄ = 3s, 3p subshells for the lower states and 3l̄ = 3s, 3p, 3d

and 3s, 3p subshells for the upper states of Si-1 and Si-2, respectively. We consider VV

correlations only with the excitations of up to two valence electrons to 3l̄ 3l̄′nln′l′ states,

with n, n′ ≤ 20 and l, l′ ≤ 5.

6) For the Ar-1 line of W56+, the core is the Ne-like ground state and valence shells are

3s, 3p for the lower state and 3s, 3p, 3d for the upper state. CI expansions again include VV

correlations only with n ≤ 18 and l ≤ 5.

IV. RESULTS AND DISCUSSION

In Table II, contributions to the transition energies of the fifteen n = 3 − 3 tungsten

lines are shown. They include Coulomb and frequency-dependent Breit energies from the

present RCI calculations, along with the mass polarization and QED corrections which are

also calculated here. The eleven lines with labels ending in an integer (Na-1, Mg-2, etc.)

have energies ranging from 500 – 640 eV. They are from 3s1/2 − 3p3/2 and 3p1/2 − 3d3/2

transitions which, in the high-Z jj-coupling limit, are very close in energy. The remaining

four lines with labels ending in a Greek alphabet (Na-α, Mg-β, Al-γ, Al-δ) are from the

3s1/2 − 3p1/2 transitions with lower energies of 150 – 200 eV.

Transition energies are dominated by the Coulomb energies, with large corrections from

the Breit and QED corrections for these high-Z ions. While the Breit energies depend on

the details of the electronic configurations and vary in magnitude from 0.27 to 8.67 eV, most

of the QED corrections are about -4.5 eV in size as they are dominate by the QED energy

of the 3s electron in 3s− 3p transitions. Exceptions are the Mg-1, Al-1, Si-1 and Ar-1 lines

which are 3p1/2 − 3d3/2 transitions and QED corrections are substantially smaller at -0.88,

-1.17, -1.06 and -0.37 eV, respectively. In all cases, mass polarization corrections are very

small at about -0.01 eV and are quite negligible.

We note that to keep the sizes of the CI expansions computationally manageable, most
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of the RCI results only included VV and CV correlations from single and double excitations

from the reference states, and some with VV correlations only. For the Na-like tungsten

ions, however, CC correlations from the 1s, 2s and 2p subshells are also included. They

amount to -0.03 and 0.02 eV corrections to the Coulomb energies for the Na-1 and Na-α

lines, respectively. Furthermore, with the choices of the reference states here, we found that

it is important to include triple excitations in our RCI calculations of the Al-1 and Al-3

lines. Specifically, for the 3s23d J=3/2 upper state in Al-1, we include the configurations

2s22p63pnln′l′, 2s22p53s3pnln′l′ and 2s2p63s3pnln′l′. For the 3s3p1/2[1]3p3/2 J=3/2 upper

state in Al-3, we include the configurations 2s22p53s2nln′l′, 2s22p53s3dnln′l′, 2s2p63s2nln′l′

and 2s2p63s3dnln′l′. For these two lines, corrections from triple excitations reduce the

transition energies by 1.89 and 0.84 eV, respectively. In general, the accuracies of our RCI

energies are limited by the extensiveness of the CI expansions and theoretical uncertainties

are assigned to the Coulomb energies in Table II accordingly. The accuracies of the QED

energies, on the other hand, are not as sensitive to correlation effects and their uncertainties

are estimates based on the approximated treatment of screening and relaxation corrections.

In Table III, the n = 3 − 3 transition energies for tungsten ions are compared between

theories and experiments. For simplicity, we do not show the measured results of Gillaspy

et al. [22] here because for the 3s − 3p1/2 Na-α line, it is essentially the same as the other

NIST measurement by Ralchenko et al. [20], and for the 3s− 3p3/2 Na-1, Mg-2 and 3p1/2 −

3d3/2 Al-1, Si-1 lines, their uncertainties, at around 0.5 eV, are much higher than those of

Clementson and Beiersdorfer [23], which are around 0.1 eV. Theoretical energies relative to

the experimental energies shown in Table III are plotted in Fig. 1. It can be seen that the

present RCI results are more accurate than those of FAC and GRASP. For the Na-1 and Na-α

lines, our RCI energies are in excellent agreement with the RMBPT results of Sapirstein

and Cheng [38], both are in good agreement with experiment and have the same QED

corrections from ab initio calculations outlined earlier. For the 3p1/2 − 3d3/2 Mg-1 line and

the 3s− 3p1/2 Mg-β, Al-γ and Al-δ lines, our RCI energies are also in good agreement with

the RMBPT results of Safronova and Safronova [19], though with larger discrepancies up to

0.2 eV which are likely due to differences in QED corrections: While our QED energies are

directly calculated, those in [19] are either scaled from the Na-like QED results of Blundell

[8], or from Mohr’s hydrogenic results [25, 26] with ad hoc screening corrections. For the

3s − 3p3/2 Mg-2 line, however, the RMBPT result of [19] is higher than our RCI energy,

8



which is in good agreement with experiment, by 0.63 eV and this is probably not due solely

to the discrepancy in QED corrections. Indeed, for the 4s2 1S0−4s4p 1P1 transition in Zn-like

ions, which is the same as Mg-2 but with n = 4 instead of n = 3 valence electrons, it has

been show in [29] that the RMBPT energies of Blundell et al. [39] also deviate from the

RCI energies of the present authors [29], which agree very well with experiment along the

entire Zn isoelectronic sequence, by up to 0.5 eV at high Z, and that these discrepancies are

largely removed in the revised RMBPT calculations of Blundell [40] who updated the QED

corrections and, more importantly, the Breit energies with frequent-dependent, retarded

calculations. It is thus possible that the Breit corrections also play an important role in

the large discrepancy of the Mg-2 line energies between RMBPT and RCI here. In general,

differences between RCI and experiment go up with the numbers of n = 3 valence electrons,

as it is increasingly more difficult to include all dominant configurations in the CI expansions.

For the Al-1, Al-3 and Al-4 lines, the discrepancies are likely due to inadequate treatment

of triple excitations. For the Si-1, Si-2 and Ar-1 lines, they probably come from the lack of

CV correlations as we are limited by the sizes of the RCI calculations to VV correlations

only.

V. SUMMARY

We have calculated a few n = 3 − 3 transition energies for highly-charged Ne- to Ar-

like tungsten using a large-scale RCI method. QED corrections including screening and

relaxation effects are also included. Our results are generally in very good agreement with

experiments and show the importance of reliable treatments of Breit and QED corrections

for these high-Z ions. At present, theoretical accuracies are limited by the sizes of CI

expansions which also affected the open-shell systems that can be treated. Nevertheless,

these computational constrains can be overcome with more efficient and compact basis sets

as well as faster and more capable computers. Tungsten is of great interests in fusion reactor

designs and it is desiable to have more precision measurements of the n = 3 − 3 as well as

n = 2− 2 transitions in highly-charged tungsten ions.
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TABLE I: Spectral lines studied in this work. The Ne-1 line has a 1s22s22p5 Jπ=3/2− F-like core.

Other lines have a 1s22s22p6 Jπ=0+ Ne-like core. Upper and lower state identifications are given

by core + the respective valence configurations.

Ion Line Lower state Jπ
lower Upper state Jπ

upper

W64+ Ne-1 3s 1− 3p3/2 0+

W63+ Na-1 3s 1/2+ 3p3/2 3/2−

Na-α 3s 1/2+ 3p1/2 1/2−

W62+ Mg-1 3s3p1/2 1− 3s3d3/2 2+

Mg-2 3s2 0+ 3s3p3/2 1−

Mg-β 3s2 0+ 3s3p1/2 1−

W61+ Al-1 3s23p1/2 1/2− 3s23d3/2 3/2+

Al-2 3s23p1/2 1/2− 3s3p1/2[1]3p3/2 1/2+

Al-3 3s23p1/2 1/2− 3s3p1/2[1]3p3/2 3/2+

Al-4 3s23p1/2 1/2− 3s3p1/2[0]3p3/2 3/2+

Al-γ 3s23p1/2 1/2− 3s3p2
1/2 1/2+

Al-δ 3s3p2
1/2 1/2+ 3s23p3/2 3/2−

W60+ Si-1 3s23p2
1/2 0+ 3s23p1/23d3/2 1−

Si-2 3s23p2
1/2 0+ 3s3p2

1/23p3/2 1−

W56+ Ar-1 3s23p6 0+ 3s23p1/23p
4
3/23d3/2 1−
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TABLE II: Contributions (eV) from Coulomb, Breit, MP, and QED to the n = 3 − 3 transition

energies for tungsten ions. Numbers in parentheses are error estimates.

Line Coulomb Breit MP QED Total

Ne-1 590.68(5) 1.71 -0.01 -4.50(5) 587.88(7)

Na-1 538.01(3) -0.50 -0.01 -4.41(4) 533.09(5)

Na-α 160.24(3) 4.13 -0.01 -4.85(4) 159.51(5)

Mg-1 586.17(8) -5.13 -0.01 -0.88(4) 580.15(9)

Mg-2 550.13(5) -0.52 -0.01 -4.34(5) 545.27(7)

Mg-β 156.00(5) 3.81 -0.01 -4.75(5) 155.05(7)

Al-1 602.39(30) -4.65 0.00 -1.17(4) 596.57(30)

Al-2 554.60(10) -0.27 -0.01 -4.32(5) 550.00(11)

Al-3 544.96(30) -1.68 -0.01 -3.62(4) 539.65(30)

Al-4 505.19(30) -0.31 -0.01 -4.27(5) 500.60(30)

Al-γ 167.95(10) 4.24 -0.01 -4.73(5) 167.45(11)

Al-δ 199.66(10) -8.67 -0.01 5.11(5) 196.09(11)

Si-1 618.22(40) -4.65 -0.01 -1.06(4) 612.47(40)

Si-2 549.12(40) -1.35 0.00 -3.61(4) 544.16(40)

Ar-1 636.67(50) -5.41 0.00 -0.37(4) 630.89(50)
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TABLE III: Comparison between theory and experiment for the n = 3 − 3 transition energies of

tungsten ions. Numbers in parentheses are theoretical and experimental uncertainties.

Line RCIa FACb GRASPb RMBPTc Exptb

Ne-1 587.88(7) 591.27 591.10 588.02(17)

Na-1 533.09(5) 533.56 533.38 533.08d 533.20(11)

Na-α 159.51(5) 159.74e 159.50d 159.59(4)e

Mg-1 580.15(9) 580.45 573.42 580.03 580.12(16)

Mg-2 545.27(7) 546.16 544.87 545.90 545.35(10)

Mg-β 155.05(7) 155.17e 155.25 155.15(4)e

Al-1 596.57(30) 598.35 600.79 597.34(12)

Al-2 550.00(11) 550.89 552.76 549.99(10)

Al-3 539.65(30) 540.24 542.48 539.98(14)

Al-4 500.60(30) 500.54 499.65 500.3(2)

Al-γ 167.45(11) 167.65e 167.37 167.46(5)e

Al-δ 196.09(11) 196.03e 195.97 196.24(9)e

Si-1 612.47(40) 612.90 613.78 611.66(15)

Si-2 544.16(40) 544.60 544.65 543.96(12)

Ar-1 630.89(50) 631.41 632.35 630.03(22)

aThis work.
bClememtson and Beiersdorfer [23] unless otherwise specified.
cSafronova and Safronova [19] unless otherwise specified.
dSapirstein and Cheng, [38].
eRalchenko et al. [20].
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FIG. 1: (Color online) Theoretical energies relative to the experimental energies. Solid circles are

the present RCI results. Open squares and crosses are RMBPT results of [38] and [19], respectively.

Solid triangles and open inverted triangles are FAC and GRASP results, respectively. Horizontal

error bars are experimental uncertainties.
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