
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Bipartite entangled stabilizer mutually unbiased bases as
maximum cliques of Cayley graphs

Wim van Dam and Mark Howard
Phys. Rev. A 84, 012117 — Published 26 July 2011

DOI: 10.1103/PhysRevA.84.012117

http://dx.doi.org/10.1103/PhysRevA.84.012117


AD10719

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Bipartite entangled stabilizer mutually unbiased bases asmaximum cliques of Cayley graphs

Wim van Dam∗

Department of Computer Science, University of California,Santa Barbara, CA 93106, USA
Department of Physics, University of California, Santa Barbara, CA 93106, USA

Mark Howard†

Department of Physics, University of California, Santa Barbara, CA 93106, USA
(Dated: May 11, 2011)

We examine the existence and structure of particular sets ofmutually unbiased bases (MUBs) in bipartite
qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using
maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs
(BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety
of interesting operators including (mixtures of) Jamiołkowski states, entanglement witnesses and more. The
problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in
a family of Cayley graphs. Some relationships with known power-of-prime MUB constructions are discussed,
and observables for BES MUBs are given explicitly in terms ofPauli operators.

PACS numbers: 03.65.Aa, 03.67.-a

I. INTRODUCTION.

One of the most important and long-studied tools in quan-
tum information theory is that of mutually unbiased bases
(MUBs). Two orthonormal basesA = {|a〉} andB = {|b〉}
in a Hilbert space of dimensiond are said to be mutually un-
biased when|〈a|b〉| = 1/

√
d i.e. certainty of a measurement

outcome in one basis implies complete uncertainty of a mea-
surement outcome in another. This is the finite-dimensional
analogue to the complementarity of position and momentum
in continuous variable quantum mechanics. Typically, MUBs
are most useful in Hilbert spaces,Hd, of prime power dimen-
sion (d = pk), for which completesets of MUBs are known
to exist and a number of construction methods are available.
Ignoring the trace component (which is often known or unim-
portant), decomposing ad × d Hermitean operator (e.g. a
density matrix) requiresd2 − 1 parameters, which necessi-
tates measuringd+ 1 different observables (since each ob-
servable yieldsd− 1 independent probabilities). Complete
sets of MUBs are sets withd+1 orthonormal bases, possess-
ing the desirable properties of being both mutually unbiased
with respect to one another and also being minimal in terms of
the number of observables required (hence this is considered
the optimal tomography set-up [1, 2]).

Our work here concerns the construction of MUBs in
Hilbert space of dimensiond= p2 that are deliberately incom-
plete in that they contain onlyp2−1 observables – insufficient
for parameterizing all operators inHp2, but sufficient andmin-
imal for the description of Hermitean operators that are local
maximally mixed (LMM) [3]. LMM operators,W, defined
on a bipartite systemHp2 = Cp ⊗Cp are those for which
Tr1(W) = Tr2(W) ∝ I. This class of operators is surprisingly
broad. The Jamiołkowski isomorphism, for example, tells us
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that any unital mapE acting onHp can be represented by
an LMM operator, indicating that this result could potentially
be useful for the characterization of noise processes, whilst
reducing the number of measurements required (process to-
mography using a similar construction is discussed in detail
in [4]). Other scenarios in which the non-local information
is of paramount importance include investigation of bipartite
entangled and non-local states, and the witnesses [5] and Bell
inequalities [6] that identify them. As a final example, the mo-
tivation for this work came in considering a convenient, min-
imal basis with which to decompose so-called Clifford wit-
nesses for detecting stabilizer vs. nonstabilizer operations [7].

The literature concerning MUBs, constructions and related
structures is vast. This field of study seems to originate with
Schwinger’s construction for unitary operator bases [9] in
1960, and subsequently Ivonovic’s 1981 construction [10] for
complete MUBs in prime dimensions. Wootters and Fields
[2] provided a MUB construction for power-of-prime dimen-
sionsd= pk and showed its optimality for state reconstruction
(tomography). A more recent (2002) construction that also
works for power-of-prime dimensions is given by Bandyopad-
hyayet al. [11] and this is framed explicitly in terms of Pauli
operators and stabilizer states. Lawrenceet al. [12] found a
similar construction for multi-qubit systems in the same year.
Since then a large number of related results have been pub-
lished e.g. [13–16] (also see a recent review article [17] and
references therein) and a number of interesting connections
with combinatorics (e.g. mutually orthogonal Latin squares
[18]) and finite geometry [19–21]. A prominent example of
the usefulness of MUBs is their optimality for state or pro-
cess reconstruction (a recent experimental result [1] shows an
improvement over standard techniques by using MUB state
tomography). Quantum key distribution schemes [27, 28] typ-
ically rely on MUBs for their security. Another important
application of MUBs is their interpretation in terms of finite
phase space, leading to a discrete Wigner function; for a par-
ticular choice of MUB using stabilizer states, the resulting
Wigner function can shed light on the computational power
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of circuits in the so-called “Clifford computer” model [7, 22–
24].

Inadvertently, we have rediscovered some results that were
previously known in the context of quantum key distribution
[28], and in the context of unitary designs [4, 29] (i.e., the
Cliffords that we use to create some of our BES-MUBs are
known to create a minimal unitary design). Recent work by
Planat [30] is somewhat related to our current investigation,
insofar as it utilizes graph theoretical concepts and stabilizer
(Pauli operator) observables to examine the construction of
MUBs. Kalevet al. [16] investigated MUBs in bipartite sys-
tems using sets of commuting Pauli operators, but their work
is more focused on complete sets of MUBs for density opera-
tors inHp2.

This work provides an alternative graph-theoretic method
(as opposed to unitary designs or finite field constructions)of
analyzing MUBs and similar structures in quantum informa-
tion theory. It is hoped that a combination of the alternative
methods outlined here, in addition to those of [4, 28–30] and
others, will prove fruitful for further analyses. We show how
to create an orthonormal basis ofp2 stabilizer states inHp2,
given a matrixF ∈ SL(2,Zp). Furthermore, we show that the
quantity Tr(F−1

i Fj) indicates whether the bases corresponding
to Fi andFj are mutually unbiased. This leads naturally to a
Cayley graph structure wherein graph vertices are given by the
elements ofSL(2,Zp), and edges between vertices correspond
to mutual unbiasedness of the corresponding bases. The BES
MUBs that we seek are easily shown to be maximum cliques
of the Cayley graphs, and for primes up to 11 we can parti-
tion SL(2,Zp) into p distinct (non-overlapping) BES-MUBs.
For primes 13 and higher, it is an interesting open question
whether such BES-MUBs exist, as a deterministic search for
the maximum clique is infeasible. For the related question of
minimal unitary designs it has been noted by Chau that sub-
groups ofSL(2,Zp) of a particular size only exist for primes
up to 11, but it is not clear that complete BES-MUBs depend
in any way on the existence of such subgroups. The family of
Cayley graphs under consideration (defined for all primesp)
is actually the graph complement of a family of Ramanujan
graphs, and we are able to list some general graph-theoretic
properties that hold for all values ofp. In section II we review
the necessary background concerning the Clifford group and
introduce some graph-theoretical concepts that will be useful
in later sections. In section III we explicitly give the recipe for
constructing BES-MUBs and relate our work to a well-known
MUB construction that uses finite field methods. Section IV
further explores the quantities and concepts from graph theory
that can be applied to our family of Cayley graphs, and finally,
Appendix A provides a description of the MUB observables
in terms of stabilizer measurements as well commuting sets of
Pauli operators.

II. DEFINITIONS AND USEFUL RESULTS

A. Relevant finite groups and their properties

The finite-dimensional analogues of position and momen-
tum operators are denoted byX andZ, arbitrary products of
which are called displacement operatorsD, indexed by a vec-
tor u= (u1,u2) ∈ Z2

p:

X| j〉= | j +1〉 Z| j〉 = ω j | j〉
(

ω = e2πi/p
)

(1)

Du = τu1u2Xu1Zu2 τ = e(p+1)πi/p. (2)

The Weyl-Heisenberg group (or generalized Pauli group) for
a single qupit is given by

Gp =
{

τcDu|u∈ Z
2
p,c∈ Zp

}

. (3)

The set of unitary operators that map the Pauli group onto it-
self under conjugation is called the Clifford group (sometimes
called the Jacobi group):

Cp = {C∈U(p)|UGpU
† = Gp}.

The fact that every Clifford operation in dimensionp can be
associated with a matrixF ∈ SL(2,Zp) in addition to a vector
u∈ Z

2
p results from the isomorphism

Cp
∼= SL(2,Zp)⋉Z

2
p, (4)

established by Appleby [32], whereC is the Clifford group. If
we specify the elements ofF andu as

F =

(

α β
γ δ

)

∈ SL(2,Zp) u=

(

u1
u2

)

∈ Z
2
p (5)

then Appleby provides an explicit description of the unitary
matrixC(F |u) ∈ Cp in terms of these elements i.e.,

C(F|u) = DuUF (6)

UF =

{

1√
p ∑p−1

j ,k=0 τβ−1(αk2−2 jk+δ j2)| j〉〈k| β 6= 0

∑p−1
k=0 ταγk2|αk〉〈k| β = 0.

(7)

Note how composition and inverses can be represented in
this notation [31]

C(F|u)C(K|v) =C(FK|u+Fv) (8)

C−1
(F |u) =C†

(F |u) =C(F−1|−F−1u) (9)

We will have need to relate the matrix trace Tr
(

C(F|u)
)

to
the matrix trace Tr(F) modulop:

|Tr
(

C(F|u)
)

|=
{

∈ {0,
√

p, p} if Tr(F) = 2
1 if Tr(F) 6= 2

(10)

To see why this is so we must define the Legendre Symbol

ℓp(x) =











1 if x is a quadratic residue(mod p)

−1 if x is a quadratic non-residue(mod p)
0 if x≡ 0 (mod p).
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and quote a result from Appleby [32]

( Case 1: β = 0⇒ α 6= 0 )

|Tr
(

C(F |u)
)

|=











|ℓp(α)|= 1 (Tr(F) 6= 2)
|ℓp(γ)|

√
pδu1,0 (Tr(F) = 2,γ 6= 0)

pδu1,0δu2,0 (Tr(F) = 2,γ = 0)
(11)

( Case 2: β 6= 0 )

|Tr
(

C(F |u)
)

|=
{

|ℓp(Tr(F)−2)|= 1 (Tr(F) 6= 2)
|ℓp(−β)|√pδu2,β−1(1−α)u1

(Tr(F) = 2)

(12)

Finally, we note some important facts regarding the struc-
ture of the groupSL(2,Zp). A minimal set of generators is
e.g.

SL(2,Zp) =

〈(

1 1
0 1

)

,

(

1 0
1 1

)〉

(13)

It has order|SL(2,Zp)|= p(p2−1) and can be partitioned
into p+4 conjugacy classes [33], each of which has constant
trace. If we partitionSL(2,Zp) by the matrix trace of its ele-
ments, Tr(F), we see the following

∣

∣

∣

{

F|ℓp
(

(Tr(F))2−4
)

= 1
}

∣

∣

∣
= p(p+1) (14)

∣

∣

∣

{

F |ℓp
(

(Tr(F))2−4
)

=−1
}

∣

∣

∣
= p(p−1) (15)

∣

∣

∣

{

F|ℓp
(

(Tr(F))2−4
)

= 0
}

∣

∣

∣
= p2 (16)

The final sets{F |Tr(F) = 2} and{F |Tr(F) =−2} are each
comprised of three conjugacy classes. Many of these facts
will be used in subsequent sections, particulary section IV
concerning graph-theoretical properties of Cayley graphsthat
are relevant to the construction of BES MUBs.

B. Graphs: Cayley Graphs and Maximum Cliques

We review some relevant notation and properties of graphs
that can be found in any standard reference (e.g, [34]). An
undirected Cayley graphΓ(G,T) with an associated finite
groupG and setT ⊂ G, is the graph whose vertices are the el-
ements ofG and whose set of edges is{g1 ∼ g2|g−1

1 g2 ∈ T}.
We must haveI 6∈ T and T−1 = T. The resulting graph
Γ(G,T) is regular i.e. each vertex has degree|T|, and the
number of (undirected) edges is given by1

2|G||T| . A com-
plete graph of ordern, denotedKn, is a graph withn vertices,
each of which is adjacent to every other vertex (see Fig 1 (a)
for an exampleK5). A subgraph,Γ ′, of Γ, is a graph whose
vertices form a subset of the vertices ofΓ and the adjacency
relation is inherited fromΓ. A clique ofΓ is a complete sub-
graph ofΓ, where the size of the clique is given by the number
of vertices in this subgraph. The largest possible clique (not
necessarily unique) contained inΓ is a maximum clique, the
size of which is usually denotedω(Γ). We discuss graph-
theoretic properties, and what they say about the problem at
hand, in more detail in Section. IV.

〈IZ, ZI〉

〈IY, Y I〉

〈IX, XI〉

〈XY, Y Z〉

〈XZ, Y X〉

〈XX, Y Y 〉

(a)

(

0 1

1 1

)

(

1 1

1 0

)

(

1 0

0 1

)

(

1 1

0 1

)

(

0 1

1 0

)

(

1 0

1 1

)

(b)

FIG. 1. MUB structure: (a) MUBs in dimension 22. Each box repre-
sents a two-qubit stabilizer stateρ = 1

4 ∑s∈S swhereS is the abelian
subgroup generated by the Pauli operators contained in〈·〉. Vary-
ing the signs of the generators creates a complete orthonormal basis
from each representative pair. Lines between boxes indicate that the
overlap between two states is Tr(ρaρb) =

1
4 . The solid lines depict

the complete graph on 5 vertices,K5, and this corresponds to a com-
plete MUB on this Hilbert space. The dashed lines depict a trian-
gle, K3, which forms a BES MUB. (b) Two different BES MUBs
(solid and dashed complete graphsK3) that partition SL(2,Z2),
where each 2× 2 matrix F corresponds to the Jamiołkowski state
(I ⊗C(F|0))∑ j=1

j=0 | j j 〉/
√

2. Adjacent verticesF1,F2 ∈ SL(2,Zp) sat-

isfy Tr(F−1F2) 6= 2, which in terms of the corresponding density
matrices implies Tr(ρ

(F1)
ρ
(F2)

) = 1
4 .

III. CONSTRUCTION OF THE RESTRICTED MUB

The goal is to create a set of states,S, of size|S|= p2(p2−
1) that is partitioned intop2− 1 subsets, where each subset,
containingp2 states, forms an orthonormal basis. Labeling
the basis with a supercript and the individual states withina
basis using a subscript we have

S = {|ψ1
1〉 . . . |ψk

j〉 . . . |ψp2−1
p2 〉}.
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This is a mutually unbiased basis if

|〈ψk
j |ψn

m〉|=
1
p
(1− δk,n)+ δk,nδ j ,m.

The |ψk
j〉 of the setS, that comprises our bipartite entangled

stabilizer MUB (BES MUB), will be maximally entangled
stabilizer states – formed by applying a Clifford operation,
C, to one half of a maximally entangled state

|JC〉= (I ⊗C)
p−1

∑
j=0

| j j 〉√
p
.

The overlap|〈JCm|JCn〉| between any two such states is
given by

|〈JCm|JCn〉|=
1
p
|Tr(C†

mCn)|.

Using the notation we have previously described, it is easy
to show using Eq.s 8−10 that

if Tr(F−1K) 6= 2

then
∣

∣

∣
Tr

[

(

C(F|u)
)†(

C(K|v)
)

]∣

∣

∣
= 1 ∀u,v∈ Z

2
p (17)

i.e., a pair of matricesF,K ∈ SL(2,Zp) satisfying
Tr(F−1K) 6= 2 defines a pair of mutually unbiased ba-
sis. Since the subspace under consideration has dimension
(p2−1)2, and since each basis containsp2 −1 independent
states, we require a total ofp2−1 matricesFi ∈ SL(2,Zp),
satisfying, pairwise, Tr(F−1

i Fj) 6= 2, in order to create the
BES MUB.

Define

G= SL(2,Zp) |G|= p(p2−1) (18)

T = {F ∈ SL(2,Zp)|Tr(F) 6= 2} |T|= |G|− p2

then the Cayley graphΓ(G,T) has the property that two ver-
ticesFi andFj are adjacent if and only if Tr(F−1

i Fj) 6= 2. A
clique of sizep2 − 1, if it exists, immediately gives the de-
sired complete BES MUB by the preceding discussion. Fur-
thermore, a clique of sizep2−1 must be a maximum clique
since the dimension of the Hilbert space for local maximally
mixed operators is(p2−1)2.

Theorem 1 A pair of matrices F1,F2 ∈ SL(2,Zp) satisfying
Tr(F−1

1 F2) 6= 2 defines a pair of mutually unbiased bases in
Hp2 = Cp⊗Cp (via the relationship between SL(2,Zp) and
the Clifford group). A set of matricesF = {Fi}, of order
|F|= p2−1, such that pairwise Tr(F−1

i Fj) 6= 2 (mod p), de-
fines (i) a complete bipartite entangled stabilizer MUB (ii)a
maximum clique of the Cayley graph defined in Eq. (18).

One can check using a computer algebra system [37,
38] that the following subgroupsHp ≤ SL(2,Zp) have order
|Hp|= p2−1, and every pair of elementsFi ,Fj ∈ Hp satisfies

Tr(F−1
i Fj) 6= 2 (i.e. these subgroups provide complete BES

MUBs).

p= 3 : H3 =

〈(

0 1
2 0

)

,

(

1 1
1 2

)〉

(19)

p= 5 : H5 =

〈(

0 2
2 0

)

,

(

1 1
2 3

)〉

(20)

p= 7 : H7 =

〈(

0 2
3 0

)

,

(

1 1
4 5

)〉

(21)

p= 11 : H11=

〈(

0 1
10 0

)

,

(

0 4
8 10

)〉

(22)

In fact for every prime dimensionp ≤ 11 we can parti-
tion SL(2,Zp) by usingp distinct max-cliques of sizep2−1.
For odd primes it suffices to consider the left cosets ofHp in
SL(2,Zp) where

Ft =

(

1 0
t 1

)

t ∈ Zp (23)

are the left coset representatives. Forp = 13 and higher,
we were unable to find cliques saturating the upper bound of
p2−1. It is known that, for any primesp ≥ 13, there does
not exist a subgroupHp of size|Hp|= p2−1 [39], but we are
unaware of any proof that cliques of sizep2−1 (i.e. complete
BES MUBs for p-dimensional systems) necessarily depend
on this subgroup structure. A deterministic search for a clique
of size 168 in theΓ(G,T) graph forp= 13 is infeasible, given
the computational complexity of the max-clique problem. A
heuristic search was able to find a clique of size 158, however.

By adapting a well-known power-of-prime construction for
complete MUBs (Bandyopadhyay et al. [11]) we can show
that the size of the largest clique satisfies

ω(Γ)≥ p(p−1) ∀p (24)

To be specific, Section 4.3.1 of [11] describes the construc-
tion of a complete set of MUBs for dimensionsp2. In their
notation, this amounts to finding a set ofp2 2× 2 symmet-
ric matrices{A} such that det(A j −Ak) 6= 0. Suitable sets of
matrices are parameterized by two elementss, t ∈ Zp via

{A}=
{

(

a b
b sa+ tb

)

, ∀ a,b ∈ Zp

}

(25)

A little thought reveals that everyA with non-zero off di-
agonal elementb can be related one-to-one with a matrix
F ∈ SL(2,Zp), whereF has a non-zero elementβ (F defined
as per Eq. (5)),

F(a,b,s, t) =

(

−ab−1 −b−1

b−a2b−1s−at −ab−1s− t

)

.

One can check that the det(A j −Ak) 6= 0 condition translates
to Tr(F−1

j Fk) 6= 2, as one would expect. In this way we can
create a set ofp(p− 1) matricesF ∈ SL(2,Zp) that form a
clique in our Cayley graphΓ(G,T). In general, sets of ma-
trices formed this way cannot be extended with an additional
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p− 1 matricesFk (havingβk = 0) to form a complete BES
MUB i.e., they form (part of) amaximal, but not maximum,
clique in Γ(G,T). However, we can often slightly improve
upon the lower bound e.g., we can construct cliques of size
p(p−1)+2 for primes up 17. A consequence of Eq. (24) is
that the fraction of pairs(Fi ,Fj) that do not define mutually
unbiased bases, out of the total number of such pairs(Fi ,Fj),
vanishes asp → ∞. In Appendix A, we explicitly give the
observables involved in these BES MUBs in terms of tensor
products of Pauli operators.

IV. SOME GRAPH-THEORETIC PROPERTIES OF THESE
CAYLEY GRAPHS

In this section we further investigate the graph-theoretical
properties of the family of Cayley graphs that were previously
shown to be closely related to BES MUBs. Without loss of
generality, the elementsF ∈ SL(2,Zp) can be ordered lexico-
graphically by the vectors constituting the rows of the matrix
F i.e.

{Fi}=
{

F1 =

(

0 1
−1 0

)

,F2 =

(

0 1
−1 1

)

, . . .

. . .Fp(p2−1) =

(

−1 −1
−1 −2

)

}

=
{

(

αi βi
γi δi

)

}

.

It is easy to see that (i) there arep2−1 possibilities for(α, β);
(ii) each such(α, β) in turn allows forp possible(γ, δ). Any
two elementsFi, Fj , for which(αi , βi) = (α j , β j), cannot be
connected by an edge since

Tr
(

(

α β
γi δi

)−1( α β
γ j δ j

)

)

= detFi +detFj = 2. (26)

The so-called vertex coloring problem for graphs involves as-
signing a label (color) to every vertex of the graph, such that
adjacent vertices cannot be assigned the same color. The min-
imum number of colors required to do this is the chromatic
number, denotedχ(Γ). It is a basic fact [34] that the chromatic
number of a graph is bounded below by the clique number i.e.
ω(Γ) ≤ χ(Γ). The discussion leading to Eq. 26 immediately
implies that ap2−1 coloring of the Cayley graphΓ(G,T) is
possible: assign the same color to two verticesFi, Fj if and
only if (αi , βi) = (α j , β j). Since the chromatic numberχ is
bounded below by the clique numberω(Γ), we know that this
coloring is minimal for primes 2 to 11. Hence

ω(Γ) = χ(Γ) = p2−1 p∈ {2,3,5,7,11}
ω(Γ)≤ χ(Γ)≤ p2−1 ∀p

Note that the upper boundω(Γ)≤ p2−1 is a graph-theoretical
inequality that confirms the geometrical argument preceding
Theorem 1 i.e., the number of BES mutually unbiased bases
that can fit in a Hilbert spaceHp2 =Cp⊗Cp is at mostp2−1.

A concept closely related to cliques and colorings is that of
independence. An independent set of a graph is a set of ver-
tices, no two of which are adjacent. A maximum independent

set is the largest such set (not necessarily unique) that canbe
found in the graph, and the independence number,α(Γ), of
a graph is the size of this maximum independent set. The
discussion preceding Eq. (26) can equally well be interpreted
as providing a lower bound on the independence number of
Γ(G,T); there arep2−1 independent sets of sizep, wherein
two elementsFi , Fj that satisfy(αi , βi) = (α j , β j) are pair-
wise non-adjacent, hence

α(Γ)≥ p ∀p (27)

The physical interpretation of this is that we can always finda
set of p bases such that, pairwise, no two are mutually unbi-
ased with respect to each other.

The adjacency matrix of a graphΓ with n vertices is an
n× n matrix A[Γ] with elementsAi, j = 1 if vertices i and
j are adjacent, andAi, j = 0 otherwise. Knowledge of the
spectrum of an adjacency matrix often allows us to find, or
bound, many quantities of interest. We denote the spectrum
of the p(p2 − 1)× p(p2 − 1) adjacency matricesA[Γ(G,T)]
as{λm0

0 ,λm1
1 ,λm2

2 ,λm3
3 } wheremi denotes the multiplicity of

λi . The complement of a graphΓ, denotedΓ, is the graph
with same vertex set asΓ, but where two vertices are adjacent
in Γ if and only if they are not adjacent inΓ. The spectrum of
a graph and its complement can be related in a simple way for
the case of regular graphs (the case we deal with in this work),
as the following theorem demonstrates.

Theorem 2 (Brouwer and Haemers [36])SupposeΓ is a k-
regular graph on n vertices with 4 distinct (adjacency) eigen-
values{k = λ0 > λ1 > λ2 > λ3}. If, in addition, bothΓ and
its complement,Γ, are connected, thenΓ also has 4 distinct
eigenvalues,{n− k−1>−λ3−1>−λ2−1>−λ1−1}.

The Cayley graphs we studied, defined in Eq. (18), are ac-
tually the graph complement of a well known family of graphs
(that form a family of Ramanujan graphs, amongst other in-
teresting properties), whose spectrum is known exactly.

Theorem 3 (Lubotzky [35]) Let G= SL(2,Zp), and let T
(i.e., the connection set for the Cayley graph) be the union
of the conjugacy classes c1 and cν of the elements

(

1 0
1 1

)

,

(

1 0
ν 1

)

,

whereν is a generator of the cyclic groupZ∗
p =Zp/{0}. Then

T = {F ∈ SL(2,Zp)|Tr(F) = 2,F 6= I}, |T| = p2−1 and the
spectrum of the corresponding Cayley graph A[Γ(G,T)] de-
noted{λm0

0 ,λm1
1 ,λm2

2 ,λm3
3 } , is

λ0 = p2−1, m0 = 1

λ1 = p−1, m1 = (p−2)(p+1)2/2

λ2 = 0, m2 = p2

λ3 = − (p+1), m3 = p(p−1)2/2
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Combining the two preceding theorems (connectedness is
obviously satisfied by our Cayley graphs) allows us to com-
pletely characterize the spectrum of the canonical Cayley
graph Eq. (18) that we used to search for BES MUBs.

Theorem 4 (Spectrum of graphs defined in Eq. (18)) Let
G = SL(2,Zp) and T = {F ∈ SL(2,Zp)|Tr(F) 6= 2}. Then
|T| = |G| − p2 and the spectrum of A[Γ(G,T)] denoted
{λm0

0 ,λm1
1 ,λm2

2 ,λm3
3 } is

λ0 = p(p2−1)− p2 m0 = 1

λ1 = p m1 = p(p−1)2/2

λ2 = −1 m2 = p2

λ3 = − p m3 = (p−2)(p+1)2/2

At this point we note that the problem of finding BES
MUBs, framed as finding maximum cliques of sizep2−1 in
the Cayley graphΓ defined by Eq. (18), is completely equiv-
alent to finding maximum independent sets of sizep2− 1 in
the complement,Γ, of that graph i.e.,

∃ complete BES MUB⇐⇒ ω(Γ) = p2−1= α(Γ).

Unfortunately, it seems that existing spectral lower bounds
on the clique number are of little help for the task of prov-
ing existence of BES MUBs. Nonetheless, using some well-
known spectral bounds we list some implications for the
graphsΓ(G,T) under consideration. A lower bound on the
chromatic number is given by

χ(Γ)≥ 1− λ0

λ3
= p(p−1),

which, in conjunction with Eq. (26), shows that
p(p−1)≤ χ(Γ)≤ p2−1. In fact, this lower bound
was already implied by Eq. (24).

For a regular graph,Γ, on n vertices, Hoffman (unpub-
lished) and Lovász [40] proved the formula

α(Γ) ≤ −nλmin

λmax−λmin
=

−nλ3

λ0−λ3
= p+1,

which, in conjunction with Eq. (27) gives us
p≤ α(Γ)≤ p+1. As a final remark on spectral impli-
cations, we note that the spectrum exhibited in Thm. 4
classifiesΓ(G,T) as a so-called walk-regular graph [41].

V. CONCLUSION

We have shown how the set of bipartite entangled stabilizer
(BES) states can be partitioned into sets of mutually unbiased
bases (MUBs), whose span is sufficient and minimal to de-
scribe an interesting class of operators that includes (mixtures
of) Jamiołkowski states, Clifford witnesses [7] and more. Mu-
tual unbiasedness of two stabilizer orthonormal bases is easily
shown to be equivalent to a simple relation on pairs of ma-
trices fromSL(2,Zp). Pairs of matrices satisfying this rela-
tion are adjacent vertices on a naturally defined Cayley graph,

and the problem of finding complete (optimal) BES MUBs
is transformed into that of finding maximum cliques in the
Cayley graph. In a different mathematical context, the graph
complement of our Cayley graphs are well-studied, and so we
can quote, for example, the exact spectrum of the adjacency
matrix for all prime valuesp. The most interesting open ques-
tion is whether such BES-MUBs exist for all primes, or in-
deed for any primes greater than 11. For the closely related
task of finding minimal unitary designs, a discussion by Chau
[28] (invoking Dickson’s theorem on the existence of certain
subgroups ofSL(2,Zp)) suggests that minimal unitary designs
only exist for primes up to 11. It remains to be seen whether
the latitude afforded by seeking BES-MUBs, as opposed to
subgroups ofSL(2,Zp), allows for construction of optimal
BES-MUBs whenp≥ 13.
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Appendix A: Measurement Operators for BES MUBs

Given a matrixF ∈ SL(2,Zp), this defines an orthonormal
basisF in the bipartite Hilbert spaceHp2 via

F = {|JF
u 〉,∀u∈ Z

2
p}, |

〈

JF
u |JF

v

〉

|= δu,v (A1)

where |JF
u 〉=

(

I ⊗C(F|u)
)

p−1

∑
j=0

| j j 〉√
p

We will show how the basisF can be rewritten in terms of sta-
bilizer measurements, and subsequently howF can be identi-
fied as the simultaneous eigenbasis of a set ofp2−1 commut-
ing Pauli operators.

Using so-called symplectic notation, the general form for
multi-particle stabilizer operators with vectorsx= (x1,x2, . . . )
andz= (z1,z2, . . . ) with xi , zi ∈ Zp is

P(x|z) = (Xx1 ⊗Xx2 . . . )(Zz1 ⊗Zz2 . . . ) . (A2)

Measuring a two-qupit Pauli operator corresponds to project-
ing with a rank-p projector,Π,

Π := Π(x1,x2|z1,z2)[k] =
1
p

(

I +ω−kP(x1,x2|z1,z2)+ . . .

+ω−(p−1)k(P(x1,x2|z1,z2))
p−1)

(A3)

The product of two appropriately chosen such projectors,
Π,Π′, defines a rank-1 operator - a stabilizer state:

|ψ〉〈ψ|= 1
p2 ∑

s∈Gs

s= Π Π′,
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where Gs = 〈g,g′〉 is a subgroup, generated by two com-
muting Pauli operatorsg and g′, of the group G2 =
{

ωcP(x|z)|x,z∈ Z2
p,c∈ Zp

}

. In symplectic notationg =

ω−kP(x1,x2|z1,z2) and g′ = ω−k′P(x′1,x′2|z′1,z′2) and commutativity
of g andg′ reduces to

∑
i=1,2

xizi − x′iz
′
i ≡ 0 modp.

Givenu= (u1,u2) ∈ Z2
p andβ 6= 0, the following two sets

of projectors are equal, up to re-ordering

∀u :
{

|JF
u 〉〈JF

u |
}

=
{

Π(1,0|αβ−1,−β−1)[u1]
Π(0,1|−β−1,β−1δ)[u2]

}

.

Whenβ = 0, the following two sets of projectors are equal, up
to re-ordering

∀u :
{

|JF
u 〉〈JF

u |
}

=
{

Π(1,α|0,γ)[u1]Π(0,0|1,−δ)[u2]

}

.

Many existing constructions for complete MUBs inHd
(with power-of-prime dimensiond) are based around the par-
titioning of d2 − 1 non-identity Pauli operators intod + 1
classes, each of which containsd− 1 mutually commuting
operators. Each basis within the MUB is then given by the si-
multaneous eigenbasis of thed−1 mutually commuting oper-
ators (i.e., each class is associated with exactly one orthonor-
mal basis, for a given partitioning). We can frame the con-
struction of BES MUBs in this language too, with the modifi-
cation that we are partitioning the set of all weight-two Pauli
operators i.e. the subset

{

P(x1,x2|z1,z2)/{P(x1,0|z1,0),P(0,x2|0,z2)}
}

of size(p2 − 1)2. With individual classes containingp2− 1
operators, there can only be at mostp2 − 1 such classes. It
should be clear that a set ofn matricesF ∈ SL(2,Zp) (satisfy-
ing Tr(F−1

i Fj) 6= 2) is equivalent ton non-overlapping classes
of weight-two Pauli operators, each class containingp2 − 1
non-identity elements. Recalling Eq. (A1) for the definition
of the basis associated withF , then the associated class of
unitary operators is the subgroupGs = 〈g,g′〉 of G2. The si-
multaneous eigenbasis of allp2 Pauli operators inGs forms an
orthonormal basis. Whenβ 6= 0 the class of Pauli operators
corresponding toF is given by

Gs(F) = 〈g,g′〉 := 〈P(1,0|αβ−1,−β−1),P(0,1|−β−1,β−1δ)〉.

Whenβ = 0 the class of Pauli operators corresponding toF is
given by

Gs(F) = 〈g,g′〉 := 〈P(1,α|0,γ),P(0,0|1,−δ)〉.
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