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As stated by S. Ghose et al. [Phys. Rev. Lett. 102, 250404 (2009)], there are certain relationships between tri-
partite entanglement and tripartite nonlocality for three-qubit Greenberger-Horne-Zeilinger (GHZ) class states.
In the present work, we have experimentally demonstrated the theoretical results in [Phys. Rev. Lett. 102,
250404 (2009)] by using both three-photon generalized GHZ (GGHZ) states and maximal slice (MS) states with
a count of∼ 10/s. From the data, we have verified the agreement of the experimental violation of Svetlichny
inequality with the one predicted by quantum mechanics given the reconstructed density matrix. For the MS
states, it is demonstrated that the amount of violation increases linearly following the increase of the degree of
tripartite entanglement. In contrast, for GGHZ states, there is a minimal value of the violation when the degree
of tripartite entanglement is 1/3. Both of the results are consist with the theoretical prediction.

PACS numbers: 03.65.Ud, 42.65.Lm, 03.67.Bg, 03.67.Mn

Introduction — Quantum entanglement plays a crucial
role in quantum information processing and the fundamen-
tal demonstration of quantum mechanics. Entangled states
can be used to demonstrate the contradiction between local
reality (LR) and quantum mechanics(QM) [1–4]. It is well
known that pure entangled states of two qubits violate the
Bell-type Clauser-Horner-Shimony-Holt (CHSH) inequality
[5, 6], and the amount of violate increases with the degree
of the bipartite entanglement [7, 8] in the state. The rela-
tionship between tripartite entanglement and genuine tripar-
tite nonlocality for threequbit pure states in the Greenberger-
Horne-Zeilinger class has been analyzed by S. Ghose et al.
[9]. It is shown that there is unique relationship between tri-
partite entanglement versus tripartite nonlocality for differ-
ent types of three-qubit entangled states, such as the gener-
alized Greenberger-Horne-Zeilinger (GGHZ) states and max-
imal slice (MS) states. The investigation of Bell inequali-
ties for three-qubit states has important meanings for boththe
practical applications and theoretical studies of quantumen-
tangled states. They are found to have promising applications
in the field of quantum communication such as dense cod-
ing [10], quantum teleportation [11]and quantum cryptogra-
phy [12]. In addition, they are useful tools to investigate the
entanglement properties of different types of entangled states
and prove the genuine multi-party entanglement in the quan-
tum states. Here we focus on the Svetlichny inequality, be-
cause its violation is a sufficient condition for the confirmation
of genuine three-qubit nonlocal correlations [9].

In this paper, experimental demonstration of Svetlichny in-
equality with three-qubit GHZ states has been reported [13].
In this letter, we have demonstrated the test of Svetlichny the
whole set of three-photon GGHZ states and MS states for the
first time. With the method of quantum state tomography, we
have reconstructed the detailed density matrices of the states
and achieved the fidelities of the sources. The average of the
fidelity is 0.84± 0.01 being comparable to the value in the
recent work [13], while our intensity is∼ 10/s. With these
sources, we report the experimental testing of Svetlichny in-
equality for three-qubit GGHZ states and MS states. Further-

more, we verified the unique relationship of tripartite entan-
glement versus tripartite nonlocality for each type of these
quantum states, as predicted in Ref. [9].

Theory — Svetlichny considered a hybrid model of
nonlocal-local realism where two of the qubits are nonlo-
cally correlated, but are locally correlated to the third. The
Svetlichny inequality is defined in terms of the expectation
value of a Bell-type operatorS, which is defined as

S = A(BK + B
′
K
′
) + A

′
(BK

′ − B
′
K) (1)

whereK = C+C
′
andK

′
= C −C

′
. There are three spatially

separated qubits, and the operatorA = ~a · ~σ1 or A
′
= ~a′ · ~σ1

are performed on qubit 1,B = ~b · ~σ2 or B
′
= ~b′ · ~σ2 on qubit

2, C = ~c · ~σ3 or C
′
= ~c′ · ~σ3 on qubit 3, where~a, ~a′ , ~b, ~b′ and

~c, ~c′ are unit vectors,~σi are spin projection operators and~a′ =
(sinθacosφa, sinθasinφa, cosθa). If a theory is consistent with a
hybrid model of nonlocal-local realism, the expectation value
for any three-qubit state is bounded by Svetlichny inequality,
|〈ψ|S|ψ〉| = S(ψ) ≤ 4.

The GGHZ state
∣

∣

∣ψg

〉

and the MS states|ψs〉 are defined as
follows [9]

∣

∣

∣ψg

〉

= cosθ1 |000〉 + sinθ1 |111〉 , (2)

|ψs〉 =
1
√

2
{|000〉 + |11〉 (cosθ3 |0〉 + sinθ3 |1〉)}. (3)

The maximum expectation value of S for the GGHZ and
MS states is respectively

Smax(ψg) =

{

4
√

1− τ(ψg), τ(ψg) ≤ 1/3
4
√

2τ(ψg), τ(ψg) ≥ 1/3
(4)

Smax(ψs) = 4
√

1+ τ(ψs), (5)

where the three-tangleτ(ψ) quantifies tripartite entanglement
[14], with τ(ψg) = sin22θ1 andτ(ψs) = sin2θ3. S. Ghose et
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al. show theoretically that, for MS states, the amount of viola-
tion increases linearly following the increase of the degree of
tripartite entanglement; while for GGHZ states,Smax(ψg) ini-
tially decreases monotonically withτ, and then increases for
τ(ψg) > 1/3.

According to the Ref. [9], to achieveSmax(ψg) in Eq. (4),
we could measure by the following possible sets of unit vec-
tors: forτ(ψg) ≤ 1/3 , ~a, ~a′ , ~b, ~b′ and~c are all aligned along

~z, and ~c′ is aligned along−~z; for τ(ψg) ≥ 1/3 all the mea-
surement vectors lie in thex − y plane withφadc = φad′c′ =

φa′d′c = 0, φa′dc′ = π, andφd − φd′ = π/2, whereφi jk is de-
fined asφi jk = φi +φ j +φk. The theoretical values of the lower
and upper bounds are consist with the the numerical bounds
in Ref. [15].

With respect to the MS state, a set of measurement angles
which realizeSmax(ψs) in Eq. (5) isθa = θa′ = θd = θd′ = π/2.
tanθc = tanθc′ =

√
2tanθ3 , φadc = φad′c′ = φa′d′c = 0 ,

φad′c′ = π, φc = −φc′ = π/4 , φd − φd′ = π/2. The only
difference between these angles and the optimal measurement
angles for the GGHZ states in the regimeτ(ψg) > 1/3 is that

~c and~c′ do not lie in thex − y plane. In our experiment, we
choose a set of special angles as table I.

θa θa′ θc θc′ θd θd′

τ(ψg) ≤ 1/3 0 0 0 0 π 0
τ(ψg) ≥ 1/3 π/2 π/2 π/2 π/2 π/2 π/2

MS states π/2 π/2 arctan(
√

2tanθ3) arctan(
√

2tanθ3) π/2 π/2

φa φa′ φc φc′ φd φd′

τ(ψg) ≤ 1/3 / / / / / /

τ(ψg) ≥ 1/3 −π/2 0 0 π/2 π/2 0

MS states π/4 −π/4 π/4 −π/4 π/2 0

TABLE I: Special angles chosen in our experiment. Several special
angleθ3 = 90◦, 58◦, 40◦, and 22◦, can be derived from the experiment
data. Fromθ3, we can calculateθc = θc′ = arctan(

√
2tanθ3) = 90◦,

66.2◦, 49.9◦, and 29.7◦, respectively.

Experimental setup —The first step of the experiment is to
generate polarization-entangled three-qubit GHZ states.Fol-
lowing our previously work [16], as shown in FIG.1, a mode-
locked Ti:sapphire laser outputs an infrared(IR) pulse with
the central wavelength of 780nm, a pulse duration of 100fs
and a repetition of 80MHz, which passes through aLiB3O5

(LBO) crystal and is convert to an ultraviolet (UV) light pulse
with central wavelength at 390nm. Then the UV light pulse
passes through five dichroic mirrors (DM) which are used
to separate the mixed infrared and ultraviolet light compo-
nents. Behind the five DMs, the UV light is focused on a
β-barium borate (BBO) crystal to produce a pair of entangled
photons (|H2H3〉 + |V2V3〉)/

√
2 in path 2-3, while the trans-

mitted IR light is attenuated to a weak pseudo single photon
source which is prepared in the state (|H1〉 + |V1〉)/

√
2 in path

1, whereH andV represent horizontal and vertical polariza-
tion separately. Then, Photon 2 is combined with photon 1
on a polarizing beam splitter (PBS12). By finely adjusting

(a)

(b)

FIG. 1: (Color online) Scheme of the experimental setup. (a)The
setup to generate the required three-photon GGHZ state, here set-
ting HWP2 at 45o. The entangled photons are generated by pumping
the UV laser beam on a BBO crystal and a pseudo-single photon
source is prepared by attenuating the infrared light after the DM.
The average power in the experiment is 90mW and the average two-
fold coincidence is 6× 103s−1 in modes 2-3. Prisms∆D1 is used to
ensure that the input photons arrive at thePBS12 at the same time.
Half-wave plate (HWP) 1 is used to prepare the single photon state

1√
2
(|H〉1+ |V〉1) andHWP2 is used to prepare the desired two-photon

state. To achieve good temporal and spatial overlap atPBS12, every
output is spectrally filtered (∆FWHM = 3nm) and monitored by fibre
coupled single-photon detectors. Throughout the experiment, the co-
incidence time-window is set to be 5 ns, which ensures that acciden-
tal coincidence is negligible. (b) Setup for preparing the MS state.
HWP1 is set atπ/8, and the superposed three-qubit states is GHZ
states 1√

2
(|H1H2H3〉 + |V1V2V3〉). Then we setHWP3 at 22.5◦ and

can makes the change|H3〉 → |+3〉, |V3〉 → |−3〉. This will convert
the GHZ state into1√

2
(|H1H2+3〉+ |V1V2−3〉). After that we use a po-

larization dependent beam splitter cubes (PBC). Therefor the state is
1√
2
(|H1H2〉 (a |H3〉+b |V3〉)+|V1V2〉 (a |H3〉−b |V3〉), then another half-

waveplate (HWP4) setting at an chosen angle according to the trans-
missiona andb is used behindPBC, its function is as: it changes
a |H3〉+b |V3〉 → |H3〉, whilea |H3〉−b |V3〉 → cosθ3 |H3〉+sinθ3 |V3〉.

the delay between path 1 and 2 to make sure photon 1 and
photon 2 arrived at thePBS12 simultaneously, the three-qubit
GHZ states|ψGHZ〉 = 1√

2
(|HHH〉 + |VVV〉) can be obtained.

In order to get a better fidelity of the output states, we low-
ered the average power of the laser to 90mw, and the two-
photon coincidence count rate to 6× 103s−1. The visibility of
two-photon entangled state is 97% inH/V basis, and 95% in
+/− basis, where|+〉 = 1√

2
(|H〉 + |V〉), |−〉 = 1√

2
(|H〉 − |V〉).

Using maximum-likelihood technique to construct the density
matrix of the state and from the estimated density matrix, we
calculate the fidelity characterizing the quality of the state as
F = 〈ψGHZ |ρ| ψGHZ〉 = 0.84± 0.01.

Next, we generate the GGHZ states and MS states based on
the setup we get GHZ states. In order to obtain the GGHZ
state

∣

∣

∣ψg

〉

, we used a Half-wave plate (HWP1) (see FIG.1),
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which is placed behindPBS1 and set at an angleθ1. The
photon 1 afterHWP1 is prepared in the state (cosθ1 |H〉 +
sinθ1 |V〉)/

√
2. By superposing photon 1 with photon 2 on

PBS2, we can get a three-qubit state

|ψ〉GGHZ = cosθ1 |V1V2V3〉 + sinθ1 |H1H2H3〉 . (6)

For instance, by choosing theθ1 = π/4, the output states
will be 1√

2
(|HHH〉 + |VVV〉), which is exactly GHZ states.

From the experimental results, we calculateθ1 by following
the equality

θ1 = arcsin
√

NHHH/(NHHH + NVVV) (7)

whereNHHH andNVVV denote three-fold coincidence counts
in the basisH1H2H3 andV1V2V3. In the experiment, we have
measured the fidelity and Svetlichny inequality at nine points,
which have the proportion ofNHHH /NVVV as 1:1, 1:2, 1:4, 1:6,
1:8, 1:10, 1:14, 1:20, 1:60. This will correspond toθ1 = 45o,
35.3o, 26.6o, 22.2o, 19.5o, 17.5o, 15o, 12.6o, and 7.4o, respec-
tively.

Compared to the generation of the GGHZ states, it is more
complicated to generate the MS state|ψs〉. We carry out the
following steps to produce this state. Firstly,HWP1 is set at
π/8, which will result a three-qubit GHZ state1√

2
(|H1H2H3〉+

|V1V2V3〉). Secondly, we insert another half-wave plateHWP3

in path 3, which is set at 22.5◦ and can makes the change
|H3〉 → |+3〉, |V3〉 → |−3〉. This will convert the GHZ
state into 1√

2
(|H1H2+3〉 + |V1V2−3〉). Then, we use a polar-

ization dependent beam splitter cube (PBC), which has the
properties as: it transmits the horizontal polarization photons
with the probabilitya2, while for the vertical polarization,
the transmission isb2. The PBC is a custom-made compo-
nent. The values ofa and b can be adjusted through the
changing of the axis ofPBC. After the PBC, the state be-
comes 1√

2
(|H1H2〉 (a |H3〉 + b |V3〉) + |V1V2〉 (a |H3〉 − b |V3〉).

Finally, another half-wave plate (HWP4) is placed behind
PBC and is set at a chosen angle according to the transmis-
sion a andb. It has the function as:a |H3〉 + b |V3〉 → |H3〉,
and a |H3〉 − b |V3〉 → cosθ3 |H3〉 + sinθ3 |V3〉, whereθ3 =

arcsin[b/(a+ b)]1/2. All these steps will result a MS state as

|ψs〉 =
1
√

2
{|H1H2H3〉+ |V1V2〉 (cosθ3 |H3〉+ sinθ3 |V3〉)}. (8)

Experimental result —In order to characterize the prepared
three-qubit GGHZ states and MS states for differentθ1 and
θ3, we have extracted their density matrices by the method of
over-complete state tomography [17]. This is implemented by
collecting the experimental data for 20s for each of 216 com-
binations of measurement basis{|H〉 , |V〉 , |+〉 , |−〉 , |R〉 , |L〉},
where|R〉 = 1√

2
(|H〉 + i |V〉) and|L〉 = 1√

2
(|H〉 − i |V〉). With

these data, maximum-likelihood technique is used to construct
the density matrix of the state. The results are shown in
FIG. 2, from which we can see that the fidelities of GGHZ
states and MS states for differentθ1 andθ3 are all lager than
0.8.
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FIG. 2: Fidelity of GGHZ states and MS states. Thef idelity =
〈ψ |ρ| ψ〉. Each experimental value is obtained by measuring in an
average time of 120 seconds. The error bar of the fidelity is calcu-
lated by performing a 100 run Monte Carlo simulation of the whole
state tomography analysis, with Poissonian noise added to each ex-
perimental data in each run.

Based on the generated state in Eq.(8) and (10) and the
special choosed angles in Eq.(6) and (7), we have measured
the Svetlichny inequality. The concrete results are given in
FIG. 3. For each measurement point, we have collected the
data for 120s. In FIG. 3, we have plotted the experimental
Svetlichny operator values and the one calculated from the es-
timated state density matrices. The theoretical values arealso
drawn using dashed line in FIG. 3. From the experimental
results, we can draw three conclusions: first, the experimen-
tal violation of Svetlichny inequality is well consist withthe
one predicted by quantum mechanics given the reconstructed
density matrix; second, for the MS states, the amount of viola-
tion increases linearly following the increase of the degree of
tripartite entanglement, while for GGHZ states there is a min-
imal value of the violation when the degree of tripartite entan-
glement is 1/3. Third, the experimental values of the violation
are smaller than the theoretical values. There are two impor-
tant reasons for the experimental non-ideal data. On the one
hand, the multi-pair generation of entangled states contributes
the main noise of the results due to the probabilistic character
of parametric down conversion sources. On the other hand,
the imperfection of the linear optics elements such as beam
splitter also makes the results non-ideal.

Conclusion —In summary, in our experiment, the series
of GGHZ states and MS states with high fidelityF > 0.8
have been prepared and we have demonstrated the test of
Svetlichny inequality with these states. Tripartite entangle-
ment versus tripartite nonlocality in three-qubit GHZ-class
states has been experimentally reported.

There are many open experimental and theoretical ques-
tions which are worthy to investigate in the future. Theo-
retically, it is interesting to generalize the relationship of en-
tanglement and nonlocality into the case of entangled states
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FIG. 3: (Color online) Experimental results. The dashed line
show the plot of Eq. (3) and (4) forSmax(ψg) versusτ for the
GGHZ states[9]. The labelled line show the experimental result of
Svetlichny inequalities. Where calculation value is calculated from
the state density matrix and measured value is measure valueof
Svetlichny operator.

with more than three qubits. Also, it is worthy to study the
Svetlichny inequality for other type of state, such asW state
[18]. Third, since there is a certain relationship of the multi-
partite entanglement and nonlocality, we could use certain
Bell inequalities to detect the genuine multi-party entangle-
ment. For a specific state, how to obtain the optimum wit-
ness is an important research direction. Finally, there are
various types of Bell inequalities for three-qubit generalized
GHZ state, such as MABK inequality [19–21], Gisin inequal-
ity [22], Zukowski-Brukner inequality [23, 24] and Svetlichny
inequality [25]. In the future, it should be interesting to inves-
tigate which one is more robust against the noise, and thus
more suitable to characterize states.
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