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Quantum optimal control experiments and simulations have successfully manipulated the dynam-

ics of systems ranging from atoms to biomolecules. Surprisingly, these collective works indicate

that the effort (i.e., the number of algorithmic iterations) required to find an optimal control field

appears to be essentially invariant to the complexity of the system. The present work explores this

matter in a series of systematic optimizations of the state-to-state transition probability on model

quantum systems with the number of states N ranging from 5 through 100. The optimizations occur

over a landscape defined by the transition probability as a function of the control field. Previous

theoretical studies on the topology of quantum control landscapes established that they should be

free of sub-optimal traps under reasonable physical conditions. The simulations in this work include

nearly 5000 individual optimization test cases, all of which confirm this prediction by fully achiev-

ing optimal population transfer of at least 99.9% upon careful attention to numerical procedures

to ensure that the controls are free of constraints. Collectively, the simulation results additionally

show invariance of required search effort to system dimension N . This behavior is rationalized in

terms of the structural features of the underlying control landscape. The very attractive observed

scaling with system complexity may be understood by considering the distance traveled on the con-

trol landscape during a search and the magnitude of the control landscape slope. Exceptions to this

favorable scaling behavior can arise when the initial control field fluence is too large or when the

target final state recedes from the initial state as N increases.



I. INTRODUCTION

The control of quantum phenomena with external fields using optimal control theory (OCT) [1, 2] and optimal

control experiments (OCE) [3] is currently an active area of research [4, 5]. OCT simulations have successfully

controlled a variety of objectives, including state preparation [2, 6, 7], molecular isomerization [8–12], dissociation

[13–16], and orientation/alignment [17–19]. OCE using ultrafast tailored laser pulses have achieved control over many

processes including state preparation [20, 21], selective molecular dissociation [22–24], generation of high order optical

harmonics [25–27], and energy transfer and isomerization in large biomolecules [28–30]. Simulation models consider

from 2 to ∼ 102 or more states, and the atoms/molecules used in OCE often have much larger numbers of accessible

states. Remarkably, controlling complex quantum systems appears to be no more difficult than controlling simple

ones, both in simulations and experiments, where the level of difficulty is expressed in terms of the number of iterations

required to converge on the target objective.

The success of these and other studies suggests that quantum control is generally amenable to “easy” solution by

optimal search. Recently, the quantum control landscape concept was introduced to help rationalize the observed

wide success of quantum control studies [31], where the landscape is defined as the functional relationship between

the physical objective (e.g., population transfer probability Pi→f ) and the external control field ε(t). Considering

a controllable target system under reasonable physical assumptions [32], the topology of the dynamical quantum

control landscape can be shown to have no suboptimal local maxima or traps [31, 33–35]. Exceptions to this favorable

topology have been found under unusual circumstances, e.g., when constant control fields ε(t) are employed [36–

38]. An important objective is to either affirm the attractive theoretical landscape findings or identify the likelihood

of encountering landscape traps in the course of typical optimizations under reasonable physical conditions. The

extensive prior optimal control literature is supportive of the landscape theory with often high reported yields [1–

3, 6–19, 39–59]. Such studies, however, cannot rigorously assess the landscape topology due to constraints of various

types (e.g., control field fluence) limiting access to the highest yields on the landscape. Additionally, great numerical

care is needed when testing the landscape for traps as significant numerical limitations (e.g., insufficient temporal

discretization of the control field) can introduce artificial traps. Thus, in the present work we execute a large number

of carefully performed numerical simulations to assess the ability to climb the landscape without encountering traps.

This work will consider the control objective of maximizing the probability Pi→f of population transfer from

an initial pure state |i〉 to some target pure state |f〉 of a closed quantum system undergoing unitary evolution.

Although in the laboratory the circumstances will typically include additional factors beyond this idealized situation,
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the objective of maximizing the population in the product state is often the ultimate goal. The control objective is

to identify a suitable field ε(t) that maximizes Pi→f at some target time T , which may be finite or asymptotic with

T → ∞. Typically, an optimal field is found using a suitable search algorithm (see, for example, [2, 60]) to traverse

the relevant control landscape, which is specified by Pi→f as a functional of the control field, Pi→f ≡ Pi→f [ε(t)].

Both the global topology and local structure of the control landscape may influence the character and duration of the

search trajectory from an initial (often random) control field to an optimal solution.

The search effort required to find an optimal control field is an important issue for determining the feasibility

of performing both quantum control simulations and experiments, as computational and experimental resources are

inevitably limited. In particular, if the effort rises with system complexity, searching for an optimal control field

may become too expensive for complex quantum systems. In this work, the complexity of the system is measured by

the Hilbert space dimension N , i.e., the number of accessible energy levels of H0. A large body of results from the

OCT literature [2, 3, 9, 13, 15, 17, 39–59] performed on systems where N ranges from 2 to ∼ 102 suggest that the

search effort required for population transfer does not scale strongly with N . Although the required effort will depend

on the convergence criteria, the number of reported algorithmic iterations to achieve convergence is observed to be

typically no more than ∼ 103, and often ∼ 100 or fewer, regardless of N or the particular search algorithm employed.

The invariance of required search effort with respect to N has been numerically demonstrated for the Pi→f objective

using so-called kinematic control variables (i.e., the elements of the governing unitary transformation, or equivalent

variables) [61]. In the present work, the scaling of the effort with N to find a solution is systematically studied using

dynamic control variables (i.e., the control field ε(t)) for simple model quantum systems. Here, effort is defined as

the number of algorithmic iterations required to reach a particular threshold value of Pi→f ; we put aside the effort

per iteration to solve the Schrödinger equation, which is strongly dependent on N . This condition corresponds to the

laboratory situation, where the effort of performing an experiment is not necessarily dependent on the complexity

of the target molecule. The dynamical control findings throughout the paper will be compared to their kinematic

analogs [61]. This comparison is important as similar behavior suggests that the dynamical control behavior has its

origins at the simple kinematic level.

The attractive topology of the quantum control landscape, which will be affirmed in this work, may be expected to

contribute to the generally observed favorable lack of scaling of search effort with N [31, 33]. The attractive global

topology, however, does not preclude the possibility that complex local landscape structural features may influence

the required search effort, particularly when using a local search procedure such as a gradient algorithm. The high
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dimensionality of the control landscape (here, the dimensionality is nominally infinite as ε(t) is a continuous function)

renders the direct study of its local structure difficult, but useful information about the local landscape features can

be obtained by examining the trajectories taken during a search from an initial to final control. Ultimately, the goal

is to understand how the underlying control landscape determines the scaling of the required search effort with N .

The remainder of this work is organized as follows. Section II formulates the quantum control problem, defines

relevant landscape structure metrics, outlines the optimization procedure, and defines the model quantum systems.

As a baseline reference to the optimizations, Section III presents the statistical distributions of Pi→f values obtained

when random control fields are applied. Section IV shows the important result that no traps were encountered

upon optimization of Pi→f in ∼5000 test cases. Section V presents optimization results over varying control targets,

Hamiltonians and control fields, with the additional general result that the search effort is invariant to the system

complexity characterized by N , although the absolute search effort varies widely for different circumstances. In Section

VI, the effect of landscape features on search effort is explored for the optimal searches performed in Section V using

the metrics defined in Section II. Finally, Section VII presents concluding remarks.

II. METHODS

A. Formulation of the Control Objective

Consider a quantum system of N levels |1〉, . . . , |N〉 whose dynamics are driven by the time-dependent Hamiltonian

H(t) = H0 − µε(t), where H0 describes the free dynamics of the system, µ is the dipole operator, and ε(t) is the

control field. The time-evolution of the quantum system is given by |ψ(t)〉 = U(t, 0)|ψ(0)〉, where U(t, 0) is the unitary

evolution matrix covering the dynamics from time t = 0 to time t and |ψ(0)〉 is the state of the quantum system at

t = 0. The dynamics of U are governed by the time-dependent Schrödinger equation

i~
∂U(t, 0)

∂t
= H(t)U(t, 0), U(0, 0) ≡ I. (1)

The control objective is to maximize the transition probability Pi→f of population transfer from an initial state |i〉

to a target state |f〉 of the system at time T ,

Pi→f (T ) ≡ |〈f |U(T, 0)|i〉|2. (2)

The variation of Pi→f (T ) with functional changes in the Hamiltonian H(t) is obtained by considering small responses
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in the propagator U(t, 0):

i~
∂

∂t
δU(t, 0) = H(t)δU(t, 0) + δH(t)U(t, 0), δU(0, 0) = 0 (3)

δPi→f (T ) = 〈i|δU †(T, 0)|f〉〈f |U(T, 0)|i〉+ 〈i|U †(T, 0)|f〉〈f |δU(T, 0)|i〉. (4)

Equation (3) can be integrated [35] to give

δU(t, 0) = −
i

~

∫ t

0

U(t, t′)δH(t′)U(t′, 0)dt′, (5)

and substitution of Eq. (5) into Eq. (4) yields

δPi→f (T ) =
2

~
Im

∫ T

0

〈i|δU †(T, 0)|f〉〈f |U(T, 0)U †(t, 0)δH(t)U(t, 0)|i〉dt. (6)

Within the dipole formulation, δH(t) = −µδε(t), which gives the functional derivative δPi→f/δε(t) from Eq. (6) as

δPi→f

δε(t)
=

2

~
Im[〈i|U †(t, 0)µU(t, 0)U †(T, 0)|f〉〈f |U(T, 0)|i〉]. (7)

We assume that the system is controllable, such that any arbitrary unitary matrix U(T, 0) can be generated by

a suitably chosen field ε(t) at a sufficiently large final time T . This condition is equivalent to the requirement that

the Lie algebra generated from H0 and µ forms a complete set of operators [32] and T is large enough to avoid

hindering the dynamics. In general, we may assume controllability of an arbitrary quantum system, as uncontrollable

quantum systems have been shown to constitute a null set in the space of Hamiltonians [62]. Upon satisfaction of

the controllability requirement, analysis of the global control landscape topology of Eq. (2) with kinematic variables

[31] reveals that the landscape has no false extrema; the only critical points occur at perfect control, Pi→f = 1, and

no control, Pi→f = 0. Upon satisfaction of the Jacobian δU(T, 0)/δε(t) being full-rank, the dynamical landscape also

has no traps [5, 35] and the desired landscape value Pi→f = 1 corresponds to a submanifold of optimal fields, which

makes the control solutions robust to fluctuations in ε(t) [33, 34]. The latter property is particularly important for

laboratory quantum control, as it allows for maintaining good yields despite laboratory noise. In practice, the rank

of δU(T, 0)/δε(t) may be reduced to some degree with no impact on the controlled dynamics, as there can still be

many readily traversed pathways from |i〉 to |f〉. However, traps may arise for so-called singular control fields where

the above Jacobian is significantly rank-deficient. Such situations have been known to occur when ε(t) = constant

is employed [36–38], but this situation is generally not physically relevant in the laboratory. Thus, one goal of the

simulations in this work is to establish whether traps may be encountered in optimizations starting from physically

reasonable control fields.
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B. Measuring Landscape Structure

The global landscape topology summarized above provides important information about the feasibility of achieving

optimal control. The claimed lack of traps means that a control producing a perfect yield can be found starting

from any initial search point on the landscape (i.e., a point on the landscape corresponds to a particular field and

its associated transition probability) using a suitable hill-climbing algorithm. The validity of this topology in OCT

simulations will be assessed in this work.

The presence of a favorable landscape topology does not preclude the presence of increasingly complex landscape

features as N rises, which could cause an increase in the search effort to find a control that gives perfect yield. Thus,

an understanding of local landscape features (i.e., non-critical point structures) is necessary in order to explain and

predict the scaling of search effort with system complexity. In this work, the local features of the control landscape

are codified by specific metrics recorded along the search trajectory followed from the initial to optimal control field.

On a given search trajectory, we may parametrize the field ε(t) by an index s ≥ 0 to track the progress to the top of

the landscape. The field starts out at s=0 with ε(0, t) and progresses in steps s→ s+ ds (i.e., ε(s, t) → ε(s+ ds, t))

until the trajectory ends at an optimal control, εopt = ε(sM , t) at s = sM .

For the purpose of describing the local landscape features, we define (i) a distance metric between two fields ε(s, t)

and ε(s′, t) (t ∈ [0, T ]) based on ||ε(s, t) − ε(s′, t)||, where || · || implies an integration over time, and (ii) structure

metrics based on a Taylor expansion of Pi→f around a field ε(s, t) at points on the landscape. Analogous metrics of

local landscape features were defined in [61] using kinematic control variables (i.e., without reference to the dynamics

of any particular Hamiltonian) and were found to correlate with the observed scaling of the search effort with N .

From this experience, these metrics are used here to provide information about how the features of the landscape

determine the required search effort using dynamic variables.

The complexity, or gnarled character, of a search trajectory in control space must take into account both the

Euclidian distance between the initial and final control fields and the actual path length followed from the initial to

final control over the course of a search. A metric defining this complexity may be characterized by the ratio of the

trajectory path length ||∆P ε(t)|| to the Euclidian distance between the initial and final control fields ||∆Eε(t)||,

Rε =
||∆P ε(t)||

||∆Eε(t)||
=

∫ sM
0 ds

(

∫ T

0 dt
[

dε(s,t)
ds

]2
)1/2

(

∫ T

0 dt [ε(sM , t)− ε(0, t)]
2
)1/2

≥ 1 (8)

The closer Rε is to unity, then the more direct the path, i.e., the closer the path is to a straight line in the space of

controls being searched over. Following a direct path from the initial to optimal control field should result in efficient
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searching, especially by simple local algorithms, because the search trajectory could avoid taking detours along the

way to finding an optimal control field. This prediction will be assessed in the simulations.

The local structure metrics of the landscape provide information about what the search algorithm “sees” at a

particular point on the landscape and may be expressed through a Taylor expansion of the cost functional Pi→f ,

Pi→f [ε(s, t) + δε(s, t)] = Pi→f [ε(s, t)] +

∫ T

0

∇Pi→f (s, t)δε(s, t)dt+
1

2

∫ T

0

∫ T

0

H(t, t′)δε(s, t)δε(s, t′)dtdt′ + · · · , (9)

where ∇Pi→f (s, t) = δPi→f/δε(s, t) is the gradient vector. The structure metrics will be extracted from the kernels of

the integrals in Eq. 9. Each metric will be labelled by m to indicate its evaluation at the point sm on the landscape.

The first-order term in Eq. (9) specifies the slope metric Sm,

Sm =
∣

∣

∣

∣

∣

∣∇Pi→f (sm, t)
∣

∣

∣

∣

∣

∣ =

(

∫ T

0

dt

(

δPi→f

δε(sm, t)

)2
)1/2

. (10)

The slope metric is equivalent to the magnitude of the gradient on the landscape at the point sm. Intuitively, a

greater value of Sm should result in a locally faster ascent due to a more rapid improvement of the yield when taking

a step in the direction of the gradient. Thus, it is expected that the slope metric may be correlated to the observed

search effort.

Additional information about local landscape features can be gained by examining the second-order term of the

Taylor expansion in Eq. (9), or the Hessian matrix, whose elements labelled by t and t′ are [33]

H(t, t′) =
δ2Pi→f

δε(t)δε(t′)
=2Re[〈i|U(0, T )|f〉〈f |U(T, t)µU(t, t′)µU(t′, 0)|i〉

− 〈i|U(0, t)µU(t, T )|f〉〈f |U(T, t′)µU(t′, 0)|i〉], t ≥ t′. (11)

The Hessian matrix is symmetric, i.e., H(t, t′) ≡ H(t′, t). Two simple metrics based on the Hessian matrix can

provide insight into the landscape structure, particularly at the bottom and top of the landscape. The first metric is

the Hessian trace,

TrH =

∫ T

0

H(t, t)dt, (12)

and the second metric is the curvature of the landscape at a point m,

Cm =





1
∣

∣

∣

∣

∣

∣∇Pi→f (sm, t)
∣

∣

∣

∣

∣

∣





2
∫ T

0

dt

∫ T

0

dt′∇Pi→f (sm, t)
†H(t, t′)∇Pi→f (sm, t

′), (13)

which may be calculated anywhere including near, but not at, the bottom or top of the landscape where∇Pi→f (sm, t) =

0. The curvature defined by Eq. (13) is the Hessian projected along the normalized local gradient direction. Intu-

itively, a larger (positive) value of the Hessian trace and curvature near the bottom of the landscape should induce
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fast climbing [63]. Similarly, a large (negative) value of the curvature Cm and Hessian trace TrH near the top should

also accelerate the approach to the optimum.

C. Optimization procedure

Many different search algorithms may be used to find an optimal field ε(sM , t) maximizing Pi→f . One important

goal of this work is to assess whether traps are encountered upon climbing the landscape; the existence of traps

could preclude identification of an optimal control field producing Pi→f ∼ 1.0. This landscape assessment objective

specifically calls for a local (i.e., myopic) search method, which will stop climbing at a sub-optimal value of Pi→f

if a trap is encountered. Global search algorithms (e.g., genetic algorithms) may step over traps, making them

inappropriate for assessing topology. Additionally, the particular choice of search algorithm may significantly influence

the absolute effort required to find an optimal field; this was found to be the case for optimizing Pi→f using kinematic

controls [61], where gradient, genetic, simplex, and coordinate search algorithms were compared. Despite the wide

variation in absolute search effort with the choice of algorithm, the scaling of the search effort with respect to system

complexity exhibited the same qualitative trends for all algorithms examined. Similarly, in OCT studies from the

literature, gradient-based algorithms typically converge in ∼ 100 iterations [2, 9, 17, 39, 41–46, 49, 51, 53–59], while

non-gradient simplex and evolutionary searches typically require several hundred iterations [3, 13, 40]. Importantly,

these numbers do not appear strongly dependent on N . Considering all of the factors above, a gradient algorithm is

employed exclusively in this work in order to (a) test the likelihood of encountering traps, and (b) seek consistency

in exploring optimization effort.

As the control field ε(s, t) depends on the variable s labeling the progression of the optimization, the landscape

value Pi→f (s) ≡ Pi→f [ε(s, t)] depends on s through its functional dependence on ε(s, t), 0 ≤ t ≤ T . Thus, the change

in the landscape value Pi→f corresponding to a differential change ds is given by dPi→f ≡
(

∂Pi→f

∂s

)

ds, where

dPi→f

ds
≡

∫ T

0

dt
δPi→f

δε(s, t)

∂ε(s, t)

∂s
(14)

As the objective is to maximize Pi→f , we have the demand that
dPi→f

ds > 0, so ε(s, t) satisfies the differential equation

∂ε(s, t)

∂s
=

δPi→f

δε(s, t)
, (15)

where the gradient on the right-hand side is given by Eq. (7). Carefully solving Eq. (15) coupled to the Schrödinger

equation (1) is essential for obtaining reliable landscape climbing results, especially for assessing the presence of traps.

The present search algorithm, incorporated into MATLAB [64], solves Eq. (15) using a fourth order Runge-Kutta
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integrator with a variable step size to determine the control field at the next iteration. Of additional special interest

here is the required search effort, or the number of algorithmic iterations M required to reach the desired Pi→f value,

when starting from an initial random control field.

D. Design of quantum systems for simulations

The goals of the simulations are to (a) assess whether traps are encountered in carefully performed optimizations

and (b) explore general trends in the scaling of search effort to find optimal controls in relation to system complexity.

For a proper assessment of goal (a), as well as in the simulations for (b), no fluence or other direct constraints are

placed on the controls, aside from a fine time discretization of the field. Since an infinite variety of structures for H0

and µ can arise, a thorough sampling of all physically relevant structures is infeasible. Nevertheless, a modest number

of variations in H0, µ, and choice of |i〉 and |f〉 can capture broad classes of physical phenomena. Increasing N while

holding the |i〉 → |f〉 target transition fixed corresponds to exciting the same transition in homologous molecules

of increasing size. The circumstance of fixing N and the target transition while varying the dipole matrix structure

corresponds to controlling homologous molecules of similar size with different transition couplings. Choosing the target

transition as |1〉 → |N〉 and increasing N corresponds to exciting larger molecules to an ever receding highest quantum

level. In practice, the target |i〉 → |f〉 transition, dipole matrix structure, and N will likely vary simultaneously in

the laboratory. The results here should both provide diverse test scenarios for the presence of landscape traps as well

as capture the qualitative search effort scaling trends. Comparisons to the corresponding laboratory situations will

be made at relevant points throughout the work.

For all of the simulations in this work, we consider an N -level quantum system whose Hamiltonian is expressed

in arbitrary dimensionless units. Two general choices of nondegenerate, diagonal H0 are employed, corresponding

qualitatively to a rigid rotor or an anharmonic oscillator. The energy levels of the rigid rotor are given by

H0 =

N−1
∑

j=0

γ j (j + 1) |j〉〈j|, (16)

where γ is a constant. In the results presented here, γ = 0.25, but varying γ was found to have no significant effect on

the scaling of search effort with N or on the local landscape structure. The energy levels of the anharmonic oscillator

are

H0 =

N−1
∑

j=0

[

ω

(

j +
1

2

)

−
ω2

D

(

j +
1

2

)2
]

|j〉〈j|, (17)
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where ω = 5 and D = 1200 for all results presented here. Variation of ω and D were found not to affect the search effort

scaling, provided that they were chosen to allow for significantly more bound states than the value of N employed in

the simulations. The above choices of ω and D provide 120 bound states. The H0 structures given in Eqs. (16) and

(17) will be referred to respectively as the rotor and oscillator H0 structures later.

Two physically relevant dipole real matrix structures will be considered. For many physical systems the coupling

between states generally decreases as the difference between the quantum numbers of the states increases, and the

present choices of µ take this property into account. We first choose µ to have the simple structure

µ =







































0 1 D D2 . . . DN−2

1 0 1 D . . . DN−3

D 1 0 1 . . . DN−4

D2 D 1 0 . . . DN−5

...
...

...
...

. . .
...

DN−2 DN−3 DN−4 DN−5 . . . 0







































(18)

where D ∈ [0, 1] is the drop-off rate and all elements of µ have a random phase of ±1 with the restriction that µ

remains symmetric. We further specify that µif = 0, thereby eliminating a direct transition from the initial state |i〉

to desired target state |f〉.

In order to generalize the structure of µ from that shown in Eq. (18), we alternatively chose µ to have the form.

µ =







































0 α1 α2 α3 . . . αN−1

α1 0 α1 α2 α3

...

α2 α1 0 α1 α2

...

α3 α2 α1 0 α1

...

...
...

...
...

. . .
...

αN−1 . . . α3 α2 α1 0







































(19)

The successive superdiagonal elements αi, i = 1 . . . N−1, are each chosen from particular uniform random distributions

such that α1 ∈ [0.8, 1], α2 ∈ [0.7, 0.9], α3 ∈ [0.6, 0.8], . . . αi≥10 ∈ [0, 0.1]. While preserving symmetry, all nonzero

elements have a random phase of ±1, and µif = 0. The choice of the dipole matrices in Eqs. (18) and (19), respectively,

will be referred to the D and α structures later. The freedom inherent in randomly drawing the coupling matrices

provides a broad family of systems to assess the landscape topology, structural features, and search effort scaling

behavior.
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In many OCT studies, the initial control field is chosen based on knowledge of the physical system. For example, the

component spectral frequencies are often picked to be resonant with certain transitions in H0, or a spectral bandwidth

is chosen that encompasses the desired transitions. In this work, the initial electric field ε(0, t) is discretized on a

time interval t ∈ [0, 28] into 2048 time-points. The choice of T=28 and 2048 discretized time-points was found to be

sufficient to resolve the fastest modulation in the field ε(s, t) and the fastest modulation in the wavefunction |ψ(t)〉

for all systems of N < 30. For simulations involving the |1〉 → |N〉 transition for N ≥ 30, 4096 time points were used

to ensure sufficient resolution.

The initial field at s = 0 is chosen as

ε(0, t) = F exp

[

−β

(

t−
T

2

)2
]

K
∑

k=1

sin (ωkt+ φk) , t ∈ [0, T ] (20)

where β is an envelope parameter (in all simulations, β=0.05), K is the number of frequency components, φk is

a random phase on [0, 2π], and F is the square root of the field fluence. Prior to multiplication by F , the field is

normalized to have unit fluence. The frequencies {ωk} are chosen randomly on a pre-defined bandwidth with maximal

frequency Ω. In most simulations, Ω corresponds to the frequency of the |1〉 → |f〉 transition in H0, but in Section

VB, other choices of Ω are employed. Following selection of the initial frequencies {ωk} and the field fluence F , the

electric field is allowed to vary freely over the optimization in terms of each of its time-points ε(s, tj), j = 1, 2, . . . , 2048

(or ε(s, tj), j = 1, 2, . . . , 4096 for some cases where N ≥ 30) as control variables starting at s = 0 and iteratively

moving ahead as s→ s+∆s.

III. STATISTICAL DISTRIBUTION OF Pi→f YIELDS

It is instructive to examine the statistical distribution of Pi→f values upon making random choices for the initial

control field ε(0, t) because many OCE searches for effective controls start with a random trial choice. Of particular

interest is whether the optimization searches, on average, start at more or less favorable landscape values as N

increases.

A detailed mathematical analysis of the Pi→f objective with kinematic controls shows that the statistics satisfy a

β-distribution [65]. As N increases, this distribution becomes skewed towards smaller Pi→f values. This qualitative

behavior has also been observed for initial choices of random control fields ε(0, t) [34] for the target transition |1〉 → |N〉.

Therefore, simply considering the statistical distribution for random trials suggests that increasing search difficulty

may be encountered as N grows. In order to systematically test the validity of this conjecture under different initial
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conditions, we chose (a) target transitions |1〉 → |5〉, |1〉 → |10〉, and |1〉 → |N〉, (b) control field fluence F=10, 1,

0.1 and (c) dipole matrices of structure D in Eq. (18) with D=0.5, 0.2, for N ranging from 5 to 40. The statistics

were obtained for 104 different randomly generated control fields for each set of parameters |1〉 → |f〉, D, and F . All

control fields had K=20 frequencies randomly distributed on the bandwidth with maximal frequency Ω=ωf , where

ωf denotes the frequency corresponding to the |1〉 → |f〉 transition. Results using the rotor Hamiltonian given in Eq.

(16) are shown here; choice of the oscillator Hamiltonian in Eq. (17) produced qualitatively similar results.

Figure 1 presents the distribution functions for the |1〉 → |N〉 transition with fields of F=10 for N=10, 15, and 20,

revealing a shift towards reduced values of Pi→f as N rises. The inset of Figure 1 shows the mean of the statistical

distribution versus N for the cases of different targets, field strengths, and dipole matrix drop off rates as labeled

in the legend, where D and F are denoted for each Pi→f target. For any fixed target transition (e.g., |1〉 → |5〉),

the mean of each distribution is independent of N , and the distributions for these cases are indistinguishable as N

is varied (not shown). For the |1〉 → |N〉 transition, the mean Pi→f value decreases rapidly with rising N (note the

log scale), in accordance with [66], indicating that it becomes increasingly difficult to find a decent initial yield as N

rises for the receding target |N〉. The average initial yield for systems with a fixed target transition, however, should

not change dramatically as system dimension rises. Instead, the fluence of the initial control field and dipole coupling

strength appear to determine the initial yield, with the trends following intuitive insights. As expected, stronger

fields result in a greater yield than weaker fields; however, at very strong fields (not shown), this trend can reverse

due to amplitude spreading over all the states. Similarly, lower yields are obtained for systems with weaker coupling

indicated by smaller D values.

IV. TESTING FOR THE PRESENCE OF TRAPS ON THE LANDSCAPE

Of primary importance for the utility of quantum OCT and OCE is the question of whether all searches starting

from a random initial field ε(0, t) can even find an optimal field achieving Pi→f ∼1 without getting trapped at a

suboptimal Pi→f value. Under reasonable assumptions, the topology of the control landscape has been theoretically

shown to contain no suboptimal extrema when the system is controllable, no constraints are placed on the controls,

and the Jacobian δU(T, 0)/δε(t) is full-rank [5, 31, 33, 35]. Affirming this attractive topological prediction is very

important, as special instances of traps can be found [36–38] under unusual conditions. For the Pi→f objective, the

OCT literature regularly reports excellent results [1–3, 6–19, 39–59], with maximum yields of Pi→f ≃ 0.9 or greater.

These results are not definitive for fully testing the landscape theory, as fluence or other field constraints are typically
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present, and special computational care may be required to eliminate artificial traps due to numerical aberrations.

The present calculations paid due attention to all such details to provide a large-scale test of the landscape topology

predictions for Pi→f . As pointed out in Section II C, a gradient-based algorithm was used because a local search will

stop if a trap is encountered. It is important to execute the gradient algorithm in a stable fashion for this purpose,

so a fourth-order Runge-Kutta procedure was employed.

This work provides broad systematic evidence that optimization searches can achieve a high yield of Pi→f ≥0.999

without encountering suboptimal extrema. A total of ∼5000 individual optimal searches were performed with a wide

variety of control parameters chosen (c.f., Section IID) for N ranging from 5 to 100. In order to ensure that no

false traps resulted from choices of simulation parameters, the control field was allowed to have as much fluence as

necessary and the final time T was chosen to be sufficiently large so as not to impose a constraint. The importance of

paying proper attention to all numerical details was evident for some of the difficult cases with the target transition of

|1〉 → |N〉 (see Section VC for further details) when N=30 and 40 with the D=0.5 dipole, the rotorH0, and employing

2048 time-points to discretize the control field. Out of the ∼5000 tests, 12 of the latter category were “trapped” at

yields of 0.997− 0.998. However, upon interpolation of the trapped control fields on 4096 time-points and continued

ascent with the gradient algorithm, the demanded criterion of Pi→f ≥0.999 was achieved in these cases. Similar

results were observed for optimization of the control objective of generating a target unitary transformation U(T, 0)

with a control field ε(t) to match some target unitary matrix W . This objective may be measured by considering the

fidelity function J = ||W −U(T, 0)||2. In the latter study, 20,000 tests were performed on quantum systems with 2-16

energy levels; upon choice of a sufficiently fine time-mesh and large T , each optimization converged to a fidelity value

of J ≤ 10−6 [67].

Collectively, these results indicate that the likelihood of finding traps on quantum control landscapes is vanishingly

small when starting with reasonable control fields, allowing access to sufficiently flexible controls, and paying atten-

tion to numerical details. This result suggests that the traps in [36–38] are at most an extremely rare occurrence

on the landscape, and possibly a null set. Another consideration is that many practical OCT and OCE studies may

be considered as quite successful upon even reaching moderate yields when operating with various constraints. Im-

portantly, the landscape principles affirmed by the tests here imply that under such conditions the enhancement of

control resources can open up even higher yields.

13



V. SEARCH EFFORT AND SYSTEM COMPLEXITY

The scaling of the required search effort with system complexity can determine the feasibility of performing quantum

control on polyatomic molecules or similarly complex systems. Intuitively, the expectation is that finding a suitable

control field would become more difficult as the size of the system increases, because additional control pathways

involving a larger number of quantum states become accessible. The collective OCT literature, however, suggests that

the required search effort to find an optimal control is generally on the order of ∼ 102 iterations, [2, 3, 9, 13, 15, 17, 39–

59], and systematic optimization of Pi→f using kinematic control variables indicates that the search effort scales at

most very slowly with N [61]. Successful OCE studies ranging from control of atoms [20, 25] to complex protein

molecules [28, 30] further suggest a practical level of invariance of search effort to system complexity. Based on these

collective findings, we performed optimization of Pi→f on a broad sampling of systems ranging from N=5 to N=100

in order to determine whether scaling invariance to N can be demonstrated systematically using dynamical control

variables. The effects of changing the dipole coupling strength, the control field parameters, and the |i〉 → |f〉 target

transition on the search effort and its scaling with N are examined here.

A. Varying Dipole Coupling Strength

Optimizations were performed for systems with N ranging from 5 to 40 as well as N=100 for the target transitions

|1〉 → |5〉 and |1〉 → |10〉. Dipole structures of D=1.0, 0.5, and 0.2 as well as the α structure were examined, with H0

given by Eq. (16) or Eq. (17). For all simulations, the initial control fields of F=1 had K=20 frequencies randomly

chosen on a bandwidth with maximal frequency Ω corresponding to the |1〉 → |f〉 transition in H0. Optimal searches

beginning from 20 such initial fields were performed for each choice of N and dipole structure, with the exception of

N=100, where 10 optimal searches were performed. In order to normalize the reported search effort with respect to

the initial Pi→f yields obtained, the counting of iterations was begun at Pi→f ≥0.001, regardless of the initial yield,

and random fields producing Pi→f ≥0.01 were discarded.

Figure 2 shows the mean search effort versus N for rotor H0 (Eq. (16), (a)) and oscillator H0 (Eq. (17), (b))

with D=1.0, 0.5, 0.2, and α dipoles and the transitions |1〉 → |5〉 (solid symbols) and |1〉 → |10〉 (open symbols).

Representative statistical error bars are presented for one value of N for each choice of D and Pi→f . Error bars for

other N (with the exception of the smallest N for the oscillatorH0 structure) were of similar magnitude. Examination

of Figure 2 shows two striking trends. First, the search effort for any choice of dipole structure is invariant to N ,
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at least for N & 10 for the |1〉 → |5〉 transition and N & 15 for the |1〉 → |10〉 transition. This result agrees with

earlier work using kinematic control variables [61]. Second, for the same dipole structure and target transition, the

oscillator H0 structure requires a greater effort than for the corresponding conditions with the rotor H0 when the

dipole coupling is weak (D ≤ 0.5). This result shows how the choice of H0 produces landscapes with different local

structures, as will be reported in Section VI.

A more detailed examination of Figure 2 reveals two further trends. Stronger coupling (i.e., D=1 and α dipoles)

results in more efficient searches. This intuitive result can be explained in terms of the accessible mechanistic pathways

connecting |i〉 and |f〉. With strong coupling, both “ladder climbing” (i.e., transitions between adjacent states) and

quasi-direct transitions are accessible, making it easier to find an optimal field that exploits one of many pathways

from |i〉 to |f〉. With weak coupling, accessibility of only adjacent transitions limits the number of pathways, thus

making it more difficult to find a field that utilizes one of them. This phenomenon is illustrated in Figure 3, which

shows the population of each state |1〉 through |10〉 of a 10-level system plotted versus time, with the goal to transfer

all population to |10〉 at T=28. In Figure 3(a) (D=0.2), each intermediate state |2〉 through |9〉 is accessed sequentially

in going from |1〉 → |10〉. All such plots for D=0.2 showed involvement of each intermediate state. In Figure 3(b)

(D=1.0), only states |2〉 and |8〉 are involved; the remaining intermediate states were never populated more than

10%. Other plots for D=1.0 showed between one and eight intermediate states involved, indicating more accessible

pathways between |1〉 and |10〉. Finally, for both H0 structures, the more distant |1〉 → |10〉 transition generally

requires more effort than the closer |1〉 → |5〉 transition, except when D=1.0, where the effort is similar. This result

can be understood in terms of the dipole coupling as well. When D=1.0, all transitions are equally allowed, so changing

the final target state does not affect the number of accessible mechanistic pathways, resulting in no increase of search

effort. Weaker coupling, however, closes off pathways between non-adjacent states, further reducing the number of

accessible pathways as the distance between the initial and final states is increased. Plots of state population versus

time similar to Figure 3 confirm this behavior (not shown).

B. Varying the Initial Control Field

In order to isolate the effects of varying the initial control field on the required search effort, the rotor H0 (Eq.

(16)), α dipole structure and the |1〉 → |5〉 transition were fixed. Sets of 20 simulations were performed for initial field

strength F=0.1, 10, and 100 with a bandwidth bounded by Ω=ω5 in order to determine the effect of initial fluence

(i.e., F 2) on search effort; the fluence was allowed to vary freely during the landscape ascent. Fields of initial strength
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F=1 with a fixed maximal frequency Ω=ω20 as well as an N -dependent maximal frequency Ω=ωN/2 were also chosen

in order to determine the effects of providing more bandwidth than necessary.

Figure 4 presents the mean search effort versus N with representative statistical variation bars. The effort is similar

for F=0.1 and F=1 (included as a reference), and F=10; these searches are the most efficient. Further increasing

the field strength leads to greater search effort: at F=100, the effort scales exponentially for N ≥ 10 (note the least

squares line and the log scale of the ordinate). This result appears to arise because a strong field can easily spread an

initial amplitude out among many states, making it difficult to then gather all of the amplitude into the target state

|f〉. This conclusion can be verified by examining the matrix with elements {|Uif(T, 0)|
2} produced by the initial

and optimal electric fields. When F=1, the initial matrix {|Uif (T, 0)|
2} is nearly diagonal, since the far off-diagonal

elements (including the desired (5,1) element) are close to zero, as shown in Figure 5(a). In contrast, when F=100

in Figure 5(b), the initial matrix {|Uif(T, 0)|
2} contains many significant off-diagonal elements, indicating that the

amplitude is spread out through many states. The {|Uif(T, 0)|
2} matrices produced by the optimal fields retain the

predominantly diagonal structure for F=1 and the significant off-diagonal elements for F=100 (Figure 5, bottom

row). When the bandwidth provided is more than necessary to make the |1〉 → |5〉 transition, the effort grows very

slowly with N . The slight increase in effort compared to using the maximal frequency Ω=ω5 suggests that additional

access to unneeded ancillary states makes it more difficult to gather all of the amplitude in the target final state;

examination of the {|Uif (T, 0)|
2} matrices for these cases verified this behavior (not shown).

C. The |1〉 → |N〉 Transition

The simulations above employed a fixed choice of |i〉 and |f〉 as N was increased. Specifying |1〉 → |N〉 as the target

transition causes the final state to recede from the initial state as N is increased. To accommodate the increasing

demands of transferring amplitude between successively more distant states, the strength of the initial fields was

chosen as F=10 and the frequencies were chosen on an N dependent bandwidth with maximal frequency Ω=ωN/2.

Because the initial population in |N〉 drastically decreases with rising N (c.f., Figure 1), iterations were counted

starting when the yield reached Pi→f=0.001 to normalize the effort against this discrepancy.

The results of simulations using D=1.0, 0.5 and α dipole structures with both rotor and oscillator H0 structures

are shown in Figure 6. The scaling behavior with N changes significantly depending on the dipole structure. When

D=1.0, the effort is invariant to N . Although the distance between the initial and final states is rising with N , when

all transitions are equally allowed, the number of possible pathways between |1〉 and |N〉 is large enough to permit
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efficient optimization even at large N . In contrast, for the α and D=0.5 dipoles, the effort scales exponentially with

N , as shown with the least squares fit lines on the semi-log plot in Figure 6. The 12 falsely trapped cases mentioned

in Section IV were for these simulations employing 2048 time-points with D=0.5 and N=30 and 40. The additional

resolution gained upon interpolation of the control field on 4096 time-points eliminated these false traps with further

climbing iterations. These iterations were added for computation of the mean search effort in Figure 6. Receding

target objectives with increasing system complexity (i.e., illustrated here with |1〉 → |N〉) are generally not the case

for laboratory OCE, thereby evidently avoiding the exponential scaling of effort.

The observed systematic invariance of search effort with respect to N over a wide range of Hamiltonian and initial

control field structures verifies that the search effort for population transfer does not depend on the system complexity,

as was the case for kinematic controls [61]. This result is valid upon making a rational choice of the control objective

and initial field (i.e., for fixed target transition and reasonable initial field strength). The results suggest that under

such circumstances, controlling complex quantum systems with many degrees of freedom should be no more difficult

than controlling simple systems. Evidently the same conclusion applies to performing OCE for various objectives,

where the search effort appears to be essentially the same regardless of the system complexity when operating with

physically appropriate controls [20, 25, 28, 30]. The next section will address the relationship between the observed

trends in search effort and the underlying control landscape structure.

VI. SEARCH EFFORT AND LANDSCAPE STRUCTURE

Examination of the relationship between the structure of the control landscape and the required search effort makes

it possible to obtain further insight into the scaling results obtained in Section V. In this section, we determine

the local landscape structure in terms of the metrics defined in Section II B. Here, the notion of structure refers to

landscape features other than topological critical points; the landscape theory predicts critical points only at Pi→f=0

and 1, which was verified by the observed lack of traps in Section IV.

A. Search Trajectories on the Control Landscape

We first consider the relationship between the search effort and the complexity of the trajectories over the landscape

taken during the optimal searches using the ratio metric Rε defined in Eq. (8). The mean values of Rε were calculated

for all the searches performed in Section V. Select examples with the rotor H0 structure (Eq. (16)) are plotted in
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Figure 7. When the search effort is invariant to N (i.e., the |1〉 → |5〉 transition with F=1 for α and D=0.2 dipoles

in Figure 7), the ratio Rε is also invariant to N , in agreement with kinematic results [61]. In contrast, when effort

increases with N (e.g., the |1〉 → |N〉 transition or large strength F ), the path length correspondingly rises with N .

For all conditions where search effort is invariant to N , the ratio Rε is correlated to the search effort, as shown in Table

1 for simulations using the rotor H0 (left of double line) and oscillator H0 (right of double line); ratios are significantly

higher for the oscillator H0, although these do not scale with N . The values of the distances ||∆Eε|| and ||∆P ε|| used

to define Rε follow the same correlations with effort. The differences in values of Rε between optimizations using the

rotor and oscillator H0 structures for weakly coupled dipoles can be explained by examination of the landscape slope,

as discussed below.

B. Landscape Slopes and Search Effort

The magnitude of the gradient Sm provides valuable information about how fast a search algorithm may improve

the yield. Intuitively, a steep slope would be conducive to efficient optimization because the yield may improve rapidly

upon taking an algorithmic step, while a very shallow slope should slow the optimization.

For the optimizations in Section V, the slope metric S0 at the initial random control field (or at the first iteration

where Pi→f ≥0.001) and the point of maximal slope Smax were recorded; at Pi→f ∼0.001, the slope metric S0 is

typically small. Both the initial S0 and maximal Smax slope metrics along an optimization may be expected to

correlate with the required search effort. Figure 8 shows the mean value of the initial slope metric S0 (filled symbols)

and maximal slope metric Smax (open symbols) for selected optimizations from Section V. The initial and final slope

metrics are independent of N under conditions where the search effort is also invariant, while both metrics for the

|1〉 → |N〉 transition decrease as N rises, in accordance with the increase in search effort. All conditions where the

effort was dependent on N exhibited the behavior of decreasing slope metrics as N rises. For the cases invariant to

N , more difficult optimizations (e.g., optimization with a weak dipole) have smaller initial and maximal slope metrics

than easier optimizations, as shown in Table 1. Thus, the search effort follows the intuitive conjecture that a steeper

slope results in more efficient optimization, as was found using kinematic control variables [61]. In general, the linkage

of search effort to the gradient depends on the choice of search algorithm. Most OCT studies use gradient algorithms,

so in such cases the search effort may be expected to depend on the initial and/or maximal slope metric. However,

other “smart” algorithms (e.g., with stochastic logic) can also exploit the favorable slopes and direct pathways to the

optimum with Rε being small.
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An exception to the simple search effort correlation with the initial and maximal slope metrics arises for searches

using weakly coupled dipoles when comparing the two H0 structures with otherwise identical search conditions. The

effort for the oscillator H0 is drastically higher than for the rotor H0, but the initial and maximal slope metrics

are of similar magnitude, as shown in Figure 8 and Table 1. This discrepancy can be explained by examining the

trajectory of the slope metric and the ratio Rε over the course of an optimization. As an example, these trajectories

for searches with N=20, D=0.2 and |1〉 → |5〉 transition are compared for the two different H0 structures. Figure 9

shows the trajectory of the slope metric (a) and the trajectory of Rε (b) for two searches with each H0 structure. The

trajectories of the slope metric S for the rotor H0 share the simple structure of starting near zero at the initial field

with Pi→f ∼ 0.001, rising to a maximum around Pi→f ∼ 0.5, and decreasing towards the optimum. Similarly, the

trajectories of Rε for these searches show a simple monotonic rise with Pi→f . In contrast, the trajectories of searches

using the oscillator H0 structure show a more complex behavior over the landscape. Instead of reaching a high at

Pi→f ∼ 0.5, the maximal slope metric for the oscillator searches occurs below Pi→f ∼ 0.3, and the slope decreases

rapidly thereafter. Examination of Rε at Pi→f values (b) corresponding to the rapidly decreasing slope metric in (a)

shows a fast jump in Rε with Pi→f , indicating a relatively “gnarled” landscape region. Finally, the slope metric for

the oscillator searches drops quickly for Pi→f ≥ 0.8, and the ratio Rε rises accordingly. Other trajectories for searches

using the oscillator H0 with a weakly-coupled dipole show similar features, suggesting that an oscillator H0 structure

with a weakly coupled dipole inherently creates a more gnarled landscape than a rotor H0 with the same dipole.

C. Second Order Landscape Structure

Examination of the second-order landscape structure metrics can provide further insight into contributions to

the relative search effort required under different optimization conditions. Calculations of the Hessian matrix and

associated structure metrics at the bottom and top of the landscape were performed on the rotor H0 structure for (i)

the |1〉 → |5〉 transition with the α and D=0.5 dipole structures for F=1, (ii) the α dipole structure for F=100, and

(iii) D=0.5 for the |1〉 → |N〉 transition with F=10. With the oscillator H0 structure, the calculations were performed

for the D=0.5 dipole and F=1 with |1〉 → |5〉 transition. In order to obtain Hessian matrices reliably representing

the bottom and top of the landscape, all optimizations began at Pi→f ≤ 1× 10−5 and the convergence criterion was

Pi→f ≥ 0.99999.

It has been shown theoretically that the Hessian spectrum at the bottom of the landscape has at most two nonzero

positive eigenvalues and the spectrum at the top contains at most 2N -2 nonzero negative eigenvalues [33]. This analysis
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is verified by our numerical results. Figure 10 shows the Hessian spectra at the top of the landscape for individual

optimizations of |1〉 → |5〉 transition with rotor H0 structure, F=1, and D=1.0 (Figure 10(a), for N ranging from 5

to 30) and D=0.5 (Figure 10(b), for N ranging from 5 to 15). The vertical dotted lines denote the eigenvalue index of

2N -2 for each N reported. In the case of D=1.0, there is always a clear distinction between the (2N -2)th eigenvalue

(∼ −10) and the (2N -3)th eigenvalue (& −0.01). The magnitude of the largest and smallest nonzero eigenvalues

does not change with N . For D=0.5, the drop in eigenvalue magnitude at the index 2N -2 is apparent at N=5 and

10 (note log scale on the ordinate in Figure 10(b)). By N=15, the distinction between the final nonzero and first

zero eigenvalue is expected to occur between the 28th and 29th eigenvalues, however the eigenvalues are already of

very small magnitude by the 23rd eigenvalue. Recording the eigenvalues for larger values of N with D=0.5 revealed

similar patterns of eigenvalue behavior. This result shows that for large N with weak dipole couplings, fewer than

2N -2 negative eigenvalues can be expected at the top of the landscape, and there is no clear boundary between the

zero and nonzero eigenvalues. Fewer than 2N -2 nonzero eigenvalues were also observed for N ≥ 15 using the oscillator

H0 structure with D=0.5 (not shown). With strong dipolar couplings (i.e., D=1.0), there are always exactly 2N -2

nonzero eigenvalues; for the α dipole structure, exactly 2N -2 eigenvalues persist through N=30, and by N=40 there

are fewer than 2N -2 eigenvalues (not shown). At the bottom of the landscape, there is a clear distinction between the

two positive eigenvalues and the remaining zero eigenvalues, which occurred under all search conditions (not shown).

These observations about the Hessian eigenvalues at the bottom and top of the landscape validate the theoretically

predicted spectra [33]. Additionally, the number of non-zero Hessian eigenvalues at the top of the landscape influences

the robustness of the control outcome to field noise; the presence of fewer such eigenvalues enhances the robustness

[63].

Examination of the Hessian trace and curvature metrics (c.f. Eqs. (12) and (13)) at the bottom and top of the

landscape yielded intuitive correlations between these metrics and the required search effort, as was the case with

the slope metric. As graphs of these metrics versus N are similar to Figure 8, the data are not plotted again. Near

the bottom of the landscape, both the Hessian trace and curvature metrics are invariant to N when the search effort

is also invariant, and smaller values of these metrics are recorded for more difficult search conditions (e.g., oscillator

H0, small dipole coupling). Where exponential scaling of search effort with N was found, both metrics decrease

exponentially with N near the bottom of the landscape. At the top of the landscape (Pi→f ≥ 0.99999), the Hessian

trace is proportional to N , regardless of search parameters, due to its dependence on the dipole norm ||µ||2 [33]. The

curvature exhibits intuitive correlation with the search effort, remaining constant with N for cases that lack search
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effort scaling, and decreasing in magnitude with N where scaling is observed. Thus, all of the landscape structure

metrics examined in this section correlate in an intuitive way with the required optimization search effort. These

results show that the landscape structure metrics provide a good method to predict the relative required search effort

under a variety of conditions.

VII. CONCLUSION

This work addressed two major issues surrounding optimal control of population transfer in quantum systems.

The first objective explored the fundamental topic of whether suboptimal trapping extrema are encountered while

searching for an optimal control field. The second objective examined how the required effort to find an optimal

control field scales with the complexity of the quantum system as measured by its size N .

The possible existence of traps on the control landscape is of both basic and practical importance. Quantum control

landscapes can rigorously be shown to contain no traps under simple physical assumptions [31, 33–35]. The vast OCT

literature supports the ability to reach excellent yields [1–3, 6–19, 39–59], although these works are not definitive with

regard to the landscape due to control field constraints typically being present. The recent identification of trapping

conditions [36–38] under unusual circumstances necessitates a more explicit investigation of whether traps can be

expected when performing normal optimizations.

The simulations in this work found no evidence of trapping behavior on the control landscape for Pi→f . Of the

∼5000 searches performed, a total of 12 were initially found to be putative traps warranting further investigation.

Enhancing the time resolution established that the latter traps were in fact false, with all optimization searches then

reaching Pi→f > 0.999. The identification of false trapping behavior due to numerical constraints illustrates the need

for special care in performing simulations and the general need for due attention to all physical constraints on the

field dynamics when a high yield is desired. The lack of observed traps on the Pi→f landscape is consistent with

results reported for the landscape corresponding to the generation of arbitrary unitary transformations U(T, 0), where

∼20,000 optimizations were performed, all of which reached an optimal fidelity value [67].

The second issue studied here of search effort scaling with N is primarily of practical importance, indicating whether

the control of large, complex quantum systems in the laboratory is feasible. The OCT literature collectively suggests

that the required search effort to find an optimal control may be independent of the complexity (i.e., here captured

by N) of the target quantum system [2, 3, 9, 13, 15, 17, 39–59]. The results from this work systematically verify this

behavior and identify the control conditions sufficient for the search effort scaling to be independent of N . Specifically,
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choosing a fixed target transition |i〉 → |f〉 results in the scaling of effort being invariant to N across a wide range of

dipole matrix structures and reasonable initial control field parameters, although the absolute search effort can vary

widely. This attractive behavior breaks down, however, upon choosing targets that themselves increase in complexity

with the system (e.g., |1〉 → |N〉) or starting with a large initial control field strength for a fixed target transition,

where the wavefunction amplitude spreads widely before finally being drawn into the target state.

The observed search effort was found to correlate with the landscape features, as measured by the distance and

structure metrics. The scaling of the ratio of path length to Euclidian distance Rε with N follows that of the search

effort; Rε only increases with N for the difficult cases such as the |1〉 → |N〉 target or with a large initial field fluence.

For cases with scaling invariant to N , the relative search effort can be predicted by the value of Rε, with greater

values of this metric correlating with a greater search effort. Analysis of the local structure of the landscape shows

that the search effort correlates with the slope metric (gradient norm) in an intuitive manner. A steeper landscape

slope both at the initial control field and at the point of maximal slope results in a lower search effort than a shallow

slope. The landscape slopes at these points are invariant to N , except for the cases where the search effort scales

with N , for which both initial and maximal slopes decrease as N rises. A similar correlation of search effort with

the curvature metric near the bottom and top of the landscape with N was observed. Finally, the collective dynamic

findings on search effort show a strong relation to analogous behavior found using kinematic variables [61]. Although

clearly additional dynamical features occur (e.g., through the amplitude and structure of the dipole couplings), much

of the basic invariant scaling findings with N appear to have their origins in the underlying simpler kinematic control

formulation.

This work addressed many classes of control Hamiltonians in order to demonstrate the broad applicability of the

two main results in this work. However, some classes of quantum systems, such as those containing degenerate

energy levels or additional symmetry in the dipole matrix, were not addressed here. Provided that such systems

are controllable [32] (e.g., where dipole couplings break the symmetry produced by degenerate states), the favorable

topological and scaling results are expected to hold. For other special classes of systems that are uncontrollable or

nearly so (e.g., a harmonic oscillator), special care in the choice of controls may be needed to avoid traps on the

landscape arising from the lack of system controllability. Most classes of quantum systems, however, are expected to

satisfy the controllability requirement and thus exhibit qualitatively similar behavior in terms of landscape topology

and search effort seen here.

The favorable scaling of Pi→f with N suggests that optimization of state preparation with a suitable set of controls
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should be relatively easy to attain using OCE, even with complex systems. Although the quantum systems employed

here do not model any particular real system, the results using the rigid rotor and anharmonic oscillator H0 structures

indicate that some quantum systems may generate a landscape with a more gnarled local structure than others, leading

to wide variations in the absolute search effort required to find an optimal control. Nevertheless, a family of quantum

systems that are difficult to optimize may still show invariant scaling with N . These results are consistent with

successful OCE studies on complex molecules such as proteins [28, 30], even though the laboratory conditions are

more involved than the ideal circumstances presented here.

Overall, this work demonstrated that both the topology and the local structure of the control landscape for popula-

tion transfer are conducive to efficient optimal control. Extensive simulations did not encounter traps on the landscape

upon reasonable choices of Hamiltonians, initial control fields, and careful numerical optimization. The invariance of

scaling of the search effort with system complexity was shown to be due to favorable local landscape structure that

does not grow more complex with system size N . Besides state preparation, recent studies generalize these landscape

topology, features, and optimization scaling results to the preparation of unitary transformations [67] and broader

classes of observables [68].
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Captions

Table I. Mean search effort, ratio Rε, initial slope metric S0, and maximal slope metric Smax for all simulations

that showed invariant scaling effort to N . Recorded values are taken from simulations at N=20, but for other N the

values were similar. The values to the left of the double line are from simulations using the rotor H0 (Eq. (16)), and

the values to the right of the double line are from simulations using the oscillator H0 (Eq. (17)). A comparison of

the landscape metrics with the effort shows that the two are correlated. The “easiest” optimizations (D=1.0) have

the lowest ratio Rε and the highest initial S0 and maximal Smax slope metrics, while the “hardest” optimizations

(D=0.2) have the highest ratios Rε and lowest initial and maximal slope metrics. The effort using the oscillator H0

is always greater than for the rotor H0, and the metrics show corresponding increases.

Figure 1. Statistical distributions of Pi→f values for N=10, 15, and 20, with D=0.5 and F=10 for the |1〉 → |N〉

target. The inset depicts the mean value of distributions of initial Pi→f values for different dipoles, targets, and field

parameters. The target transition, dipole drop off rate D and field fluence F are denoted as Pi→f , D, F in the legend.

The mean initial value decreases for the |1〉 → |N〉 target, but is constant for fixed target transitions. Statistical error

bars are shown for the |1〉 → |N〉 transition, and representative error bars for the other cases are shown as well. Some

points are shifted on the x-axis for graphical clarity.

Figure 2. Required mean search effort versus N for the target transitions |1〉 → |5〉 (solid shapes) and |1〉 → |10〉

(open shapes) for Hamiltonians with dipole structures of D=1.0 (squares), D=0.5 (circles), D=0.2 (down triangles)

and α (side triangles), with H0 given by Eq. (16) (a) and by Eq. (17) (b) Search effort is invariant to N in all cases

(excepting some cases where the effort for the smallest N recorded is significantly lower than for remaining N), but

the absolute effort is greater for weak coupled dipoles, the |1〉 → |10〉 transition, and oscillator H0 structure. Some

points are shifted on the abscissa for graphical clarity.

Figure 3. Population of states versus time for a 10-level system with target |1〉 → |10〉. (a) D=0.2, and all

intermediate states |2〉 through |9〉 are accessed sequentially on the way from |1〉 to |10〉, consistent with a ladder-

climbing mechanism. (b) D=1.0, and only states |2〉 and |8〉 play a significant role (all other intermediate states are

never populated more than 10% and are not shown).

Figure 4. Required mean search effort versus N for the target transition |1〉 → |5〉 and α dipole structure with

varying initial field strength and bandwidth. The strength (solid shapes) or bandwidth (open shapes) is labeled in

the legend. For low strength and reasonable bandwidth, effort is invariant to N . For high fluence (F=100), effort

scales exponentially with N , as shown by the least squares fit on the semi-log plot. For large bandwidth range Ω,
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effort increases through N=20 and then levels off. Some points are shifted on the abscissa for graphical clarity.

Figure 5. Plots of the absolute value of the matrix elements of the propagator {|Uif (T, 0)|
2} at initial random

control fields (top) and optimal fields (bottom) for N=10 and the target |1〉 → |5〉 transition under the conditions

F=1 (a) and F=100 (b). The (5,1) element is circled in each plot and has a value of 1.0 at the optimal fields and

a value of close to zero at the initial fields. Both the initial and final {|Uif(T, 0)|
2} matrices are nearly diagonal for

F=1, while at F=100, many off-diagonal elements are non-zero, indicating that the population is spread out among

many states. Such a {|Uif (T, 0)|
2} matrix structure at F=100 results in a greater search effort because it becomes

more difficult to gather all of the amplitude in a single final target state.

Figure 6. Mean search effort versus N for the |1〉 → |N〉 transition. When all transitions are allowed (D=1.0,

squares), the effort is invariant to N . When the coupling strength decreases with distance between the states (α,

triangles, and D=0.5, circles), the effort scales exponentially with N , as shown by the least squares fit lines on the

semi-log plot. Results are qualitatively the same for the rotor Hamiltonian (filled symbols) and oscillator Hamiltonian

(open symbols).

Figure 7. Ratio Rε of the control search path length to the Euclidian distance versus N for selected optimizations

from Section V. The ratio is invariant to N for the |1〉 → |5〉 transition and small strength F ; the effort was also

invariant to N for these cases. Rε increases with N for optimizations with N -dependent effort (i.e., |1〉 → |N〉 and

|1〉 → |5〉 with F=100). Regardless of these variations, the values of Rε are generally close to 1, indicating that the

searches follow direct trajectories in the space of controls.

Figure 8. Initial (filled symbols) slope metric S0 and maximal (open symbols) slope metric Smax versus N for

selected cases from Section V. With the exception of the |1〉 → |N〉 transition, the initial and final slope metrics are

invariant to N , in agreement with the observed scaling behavior. Some points are shifted on the abscissa for graphical

clarity.

Figure 9. Trajectory of the slope metric (a) and ratio Rε (b) for two searches using the oscillator H0 (solid lines)

and rotor H0 (dashed lines). D=0.2, F=1 and the target transition is |1〉 → |5〉. The trajectories for searches using

the rotor H0 are less complex than those for searches using the oscillator H0.

Figure 10. Hessian eigenvalues at the top of the landscape plotted versus their index. All optimizations used rotor

H0 structure and F=1 for the |1〉 → |5〉 transition. (a) optimizations with D=1.0. (b) optimizations with D=0.5;

note the logarithmic scale. The vertical dotted lines show the value of 2N -2 for each N , and the 2N -2 rule is obeyed.

In each case a few of the zero eigenvalues are shown for graphical clarity.
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|i〉 → |f〉 µ F Ω Effort (16) Rε S0 Smax Effort (17) Rε S0 Smax

|1〉 → |5〉 D=1.0 1 ω5 17 1.07 0.49 3.17 21 1.10 0.27 2.99
α 18 1.07 0.35 2.23 39 1.23 0.10 1.12

D=0.5 27 1.15 0.15 1.48 102 1.49 0.12 1.24
D=0.2 39 1.21 0.09 1.50 331 1.54 0.05 1.29

|1〉 → |10〉 D=1.0 1 ω10 17 1.05 0.41 2.94 19 1.07 0.34 2.84
α 21 1.07 0.13 1.44 52 1.13 0.05 0.59

D=0.5 38 1.21 0.02 0.83 113 1.37 0.01 0.71
D=0.2 118 1.38 0.02 0.82 891 1.69 0.01 0.60

|1〉 → |5〉 α 0.1 ω5 18 1.06 0.10 2.22
10 24 1.13 0.38 2.15
1 ω20 26 1.1 0.11 1.92

ωN

2
27 1.11 0.12 1.97

TABLE I.
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