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Abstract

A quantized vortex dipole is the simplest vortex molecule, comprising two counter-circulating

vortex lines in a superfluid. Although vortex dipoles are endemic in two-dimensional superfluids,

the precise details of their dynamics have remained largely unexplored. We present here sev-

eral striking observations of vortex dipoles in dilute-gas Bose-Einstein condensates, and develop a

vortex-particle model that generates vortex line trajectories that are in good agreement with the ex-

perimental data. Interestingly, these diverse trajectories exhibit essentially identical quasi-periodic

behavior, in which the vortex lines undergo stable epicyclic orbits.
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Introduction.— Vortices are persistent circulating flow patterns that occur in an extraor-

dinary variety of scientific and mathematical contexts [1, 2]. In superfluids and supercon-

ductors, quantized vortices are topological excited collective states that play central roles

in transport and dissipative properties. Dilute-gas Bose-Einstein condensates [3, 4] have

supplied a particularly pristine setting for the study of static and dynamic vortex configu-

rations, ranging from solitary vortex lines to large vortex lattices [5, 6]. Our primary focus

in this Rapid Communication is on the behavior of the vortex dipole —a self-assembled,

counter-circulating pair of quantized vortices— which lies at the heart of phenomena as-

sociated with quantum turbulence [7] and two-dimensional (2D) degenerate Bose gases [8].

Only recently have vortex dipoles been realized experimentally in dilute-gas Bose-Einstein

condensates [9–11], and no unifying theoretical perspective on their dynamical behavior has

yet emerged.

Vortex dipoles in weakly-interacting superfluid systems were first considered as one of

several stationary configurations of vortex clusters occurring in harmonically confined, quasi-

2D geometries [12, 13]. Subsequent theoretical studies determined their energy and angular

momentum [14], and two independent modes were identified under small perturbations: a

zero-frequency, precessional mode [15], and an oscillatory mode about the stationary fixed

points [16]. Additional stationary vortex cluster configurations, such as vortex tripoles [17]

and other, more exotic arrangements [18] have also been predicted.

Experiments involving vortex clusters are of more recent vintage [10, 11, 19]. Quan-

tized vortex dipoles and the trajectories of their individual vortex lines were first observed

experimentally by translating a repulsive obstacle through a Bose-Einstein condensate [10];

these observations were accompanied by an integration of the three-dimensional (3D) Gross-

Pitaevskii (GP) equation [3], which achieved good qualitative agreement with the experi-

mental trajectories of the individual vortex lines. The development of a real-time vortex

imaging method led to the subsequent identification of asymmetric and stationary symmet-

ric vortex dipole configurations [11]. A recent theoretical analysis [20] of these results found

good agreement with the static properties of the symmetric dipole, but met with less success

in explaining the dynamics of the asymmetric dipoles when using the 3D GP model.

We present here a detailed experimental study of vortex dipole dynamics in trapped Bose

condensates, and we develop a theoretical framework that discerns the fundamental patterns

of vortex motion by concentrating directly on the vortices themselves. The theory consid-
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ers straight line vortices parallel to the condensate’s axis, consistent with our experimental

observations and general expectations for the lowest-energy excitations in an oblate conden-

sate [21]. We find that, to lowest order, the vortices in a dipole behave as classical particles,

exhibiting quasi-periodic dynamics in which they execute stable, cyclic orbits about rigidly

precessing guiding centers. Ultimately, we achieve an intuitive understanding of the under-

lying dynamics, in which the compelling agreement between theory and experimental results

reveals that all such vortex dipoles exhibit essentially identical quasi-periodic behavior.

Experiment.— Our apparatus and experimental procedure are described elsewhere [11,

22]. We begin with an oblate 87Rb condensate of ∼ 6× 105 atoms in the |F = 1, mF = −1〉
state, confined in a TOP magnetic trap [23] with effective frequencies {ωr, ωz} = 2π ·
{35.8(2), 101.2(5)}Hz. The Thomas-Fermi radius of the condensate is R⊥ ∼ 17 µm. Vortex

dipoles arise spontaneously [24] but infrequently (∼ 3% of the time) during the final stage of

evaporative cooling. To observe the vortex dynamics we use a real-time imaging method [11]

that repeatedly extracts, expands, and absorptively images small (1% or 5%) fractions of

the atomic sample. A final time-of-flight image of the remaining atoms is taken at the end

of the experiment.

Image sequences of the motion of the vortex lines are shown in Figs. 1 and 2. A surface fit

to each image determines the coordinates of each vortex and the condensate center. Vortex

coordinates that cannot be fit are approximated by direct inspection. We destructively

measure the initial number of atoms in a typical condensate at the end of the evaporation

cycle, and measure the final number of atoms in subsequent condensates that bear vortex

dipoles. We estimate the number of atoms at intermediate times based on the fraction

extracted for each image, including an extra reduction (typically 1%) between images to

reflect atomic losses due to three-body recombinations [25].

The sudden reduction in the number of atoms following expansion is expected to excite

a small-amplitude (a few percent) breathing mode, with only slight alteration of vortex

trajectories [20]. Experimentally, we discern neither the anticipated excitation nor any

disturbance of the motion of a solitary vortex line [11], further suggesting that any effect on

a dipole is small. A full exploration of the imaging process and its effect on dipole dynamics

awaits a theory of extraction and is therefore beyond the scope of the present work.

Theory.— We adopt an effective particle model in order to understand and theoretically

follow the fundamental characteristics of the observed vortex dynamics and interactions.
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FIG. 1. (color) Symmetric vortex configuration. (a) Experimental images of the atomic density

(optical depth), 1% extraction. (b) Polar plot of the experimental data (triangles) and the theo-

retical prediction from Eq. (2) (solid line). The colored circles correspond to the calculated vortex

coordinates at the same times as the experimental data. Downward (upward) triangles indicate

configurations in which a surface fit to the images in (a) succeeded (failed) to distinguish the

vortices. Only the inner region of the condensate is shown.

This type of modeling has been shown to be successful in describing single vortex dynam-

ics [5, 26] and, more recently, in capturing some multi-vortex features [16, 18, 27]. Particle

modeling has also proven useful in identifying equilibrium states, oscillatory modes, and

far-from-equilibrium collisional dynamics of matter-wave dark solitons [28–30].

The model for a vortex pair involves only two ingredients, and is readily generalized to

n vortices [18]. The first ingredient is the gyroscopic precession of a solitary vortex line

induced by the inhomogeneous atomic density profile of the condensate. In the absence of

dissipation, this amounts to uniform circular motion at a fixed distance r from the condensate

center. For a nonrotating, axisymmetric, disk-shaped trap, the angular frequency Ω(r) of

the precession is given by [5, 11]:

Ω(r) =
2~ω2

r

8µ(1− r2/R2
⊥)

(

3 +
ω2
r

5ω2
z

)

ln

(

2µ

~ωr

)

, (1)

where ωr (ωz) is the radial (axial) trap frequency, µ is the chemical potential, and R⊥ is the

Thomas-Fermi radius. The second ingredient is the pairwise interaction between the vortex

lines. For two vortex lines (labeled by subscripts j and k) in a homogeneous condensate,

each point on one vortex line moves in the direction of the fluid flow at that point due to
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the other vortex line [31]. It is useful to express this interaction in terms of the frequency at

which two co-rotating vortices orbit one another, Φ(r12) = ~/(mr212), where m is the atomic

mass and r12 is their separation. The linear speed of a dipole is v = r12Φ(r12).

Each vortex in a “gas” of n quantized vortices moves in response to the sum of two

velocities,

iżk = −SkΩ(rk)zk +
b

2

n
∑

j 6=k

SjΦ(rjk)(zk − zj), (2)

where zk = xk + iyk = rke
iθk is the complex coordinate of the kth vortex, Sk = ±1 is its

topological charge, and rjk = |zk − zj |. The constant parameter b modifies the interaction

strength slightly from the homogeneous case; for our experimental conditions, b = 1.35 [18].

This lowest-order model does not take into account effects such as the bending of the vortex

lines within the oblate condensate or the dissipative interactions that occur between vortex

lines and thermal atoms at finite temperature [32].

Analysis.— The many vortex dynamics described by Eq. (2) provide a number of exper-

imentally accessible predictions for the observed symmetric and asymmetric vortex dipole

configurations. First, an explicit prediction can be made about the stationary equilibrium

positions of the constituent vortices. The velocities of the two vortices are zero for all times

at a separation distance:

dsep = 2R⊥

√

bΦR

4Ω0 + bΦR

, (3)

with Ω0 ≡ Ω(0) and ΦR ≡ Φ(R⊥). Equation (3) yields an average equilibrium distance of

0.436R⊥, in remarkable agreement with the experimental value 0.432(17)R⊥ [11].

The frequency of the epicyclic motion observed in Fig. 1 is calculated by linearizing the

two-vortex equations around dsep. We obtain two pairs of frequencies, ω1,2 = 0, and

ω3,4 = ±
√
2Ω0

(

1 +
bΦR

4Ω0

)3/2

. (4)

The first pair illustrates the rotational invariance (around the center of the condensate) of

the dipole [15], whereas the second pair corresponds to the anomalous modes of the vortex

system [5], similar to those of dark solitons [28–30]. These anomalous modes are responsible

here for the counter-rotating, oscillatory vortex motion about the equilibrium points [18],

which can be understood intuitively as the result of competition between the precession

and interaction velocities [16]. The measured oscillation frequency is 1.66(5) Ω0, where the

overbar denotes the average value during the experiment. This compares reasonably with the
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FIG. 2. (color) Asymmetric vortex configurations. (a–c) Experimental images of the atomic density

overlaid with calculated vortex positions from the model, Eq. (2) (colored rings). The images in (c)

originally appeared in Ref. [11]. (d–f) Trajectories for the data in panels (a–c), using the notation

of Fig. 1. (g–i) Trajectories for the data in panels (d–f) in the indicated rotating frames. In (a–b)

the extracted fraction is 1%, whereas in (c) it is 5% and the image intensity is scaled by a factor

of two.

prediction of 1.52Ω0 from Eq. (4), given the relatively large amplitude of the observed vortex

motion. The initially cyclic vortex motion observed in Ref. [10] is also of this persuasion,

albeit with larger amplitude.

A direct comparison between experimental trajectories and those predicted by the model
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is made possible by integrating the equations of motion (as shown in Fig. 1b). It is convenient

to make this comparison by rescaling the post-expansion data by the ratio R⊥/R
∗
⊥, where

R∗
⊥ is the measured condensate radius after expansion, and R⊥ is the theoretical in-trap

Thomas-Fermi radius calculated for a condensate of N(t) atoms. The theoretical points are

calculated from Eq. (2), using values for the chemical potential that are also determined

from N(t), and are updated after each measurement in the subsequent time-evolution. We

choose the initial positions of the modeled vortices to coincide with those of the experiment

at t = 0. We also include, as a sole free parameter, a small (. 1µm) offset (i.e., uncertainty)

of the condensate center (δx, δy) with respect to all of the measured data points. The offset

is attributed to a technical effect arising from atomic micromotion in the time-averaged

potential of the magnetic trap; similar shifts have been observed in condensates with single

vortex lines [11]. With these parameters and initial conditions, we find good agreement

between the experiment and the results of the numerical integration (Fig. 1b) for symmetric

displacements of the vortices from the equilibrium points.

Next, we consider vortex trajectories arising from asymmetric displacements of the vortex

lines. Three typical image sequences are shown in Fig. 2a–f. In Fig. 2d, cyclic motion

akin to that of Fig. 1 is superposed upon a slow precession. With increasing asymmetric

displacements, Fig. 2e–f, one vortex moves in loops near the center of the condensate, while

the other orbits closer to the periphery. The agreement between the simulation and the

experiment ranges between fair (d) and quite good (e–f), with more pronounced discrepancies

when the vortices are close together and difficult to resolve.

Interestingly, all three data sets of Fig. 2 exhibit essentially identical epicyclic behavior, as

is easily seen by transforming in each case to a suitable co-rotating reference frame (Fig. 2g–

i). We therefore arrive at a unified and intuitive general understanding of the vortex dipole

behavior: the vortex lines oscillate in phase about stable equilibrium points (or “guiding

centers”) that precess rigidly about the center of the condensate. Both the precession

frequency and the cyclic frequency (in the rotating frame) increase with displacement from

the condensate center, and the amplitude of the outer vortex orbit becomes smaller than

that of the inner vortex; this last fact is due to the faster precession of the outer vortex

chiefly influencing the co-rotating frame frequency. The stationary vortex dipole, as well

as the oscillating dipole in Fig. 1, are special cases of this general motion in which guiding

centers are stationary in the laboratory frame.
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Such guiding center motions can be mathematically identified in the context of the

underlying model (Eq. (2)). Assuming rigidly rotating solutions z1(t) = r1 exp(iωt) and

z2(t) = −r2 exp(iωt), in terms of the fixed distances of the vortices from the condensate cen-

ter r1 and r2 (in units of R⊥), we find the following expression for the precession frequency

ω:

ω =
1

2

[

Ω(0)(α− β) + γb0

(

r1
r2

− r2
r1

)]

. (5)

where b0 = ~b/(mR2
⊥), α = 1/(1− r21), β = 1/(1− r22) and γ = (r1 + r2)

−2/2. A polynomial

equation can also be derived for r1 (and r2). A (nonlinear) analysis of such equilibria

illustrates their stability, thus confirming the generic quasi-periodic nature of the vortex

motion.

Conclusions & Outlook.— We have shown that a simple vortex-particle model repro-

duces the main features of vortex dipole behavior, as is experimentally observed in oblate

Bose-Einstein condensates. The theoretical prediction of the separation distance between

the stationary fixed points and the frequency of small oscillations around these equilibria

are in good agreement with the experimental data. We ultimately understand the generic

vortex behavior and its quasi-periodic character as cyclic oscillations about a broader class

of effective equilibria consisting of rigidly rotating guiding centers. Stationary or periodic

motions arise as special cases within this set.

Extensions of this simple vortex-particle approach may be applied to larger ensembles of

vortices, including co-rotating vortices that have not crystallized into a lattice. By improving

the ability of the apparatus to image the extracted atomic samples, we can contemplate the

intriguing possibility of detecting additional vortex interactions through departures from

the model, such as the effects of bent vortex lines, reconnections, and other phenomena

associated with quantum turbulence.
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