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We investigate the quantum fluctuations of a single atom in a weakly driven cavity, where the
center of mass motion of the atom is quantized in one dimension. We present analytic results for
the second order intensity correlation function g(2)(τ) and the intensity-field correlation function
hθ(τ), for both transmitted and fluorescent light for weak driving fields. We find that the coupling
of the center of mass motion to the intracavity field mode can be deleterious to nonclassical effects
in photon statistics; less so for the intensity-field correlations.

PACS numbers:

I. 1.) INTRODUCTION

Since the mid 1970’s, quantum opticians have been investigating explicitly nonclassical states of the electromagnetic
field, and ways to determine if a field state is nonclassical. These types of states are ones for which there is no
underlying non-singular probability distribution of amplitude and phase, or more technically, they exhibit a positive
definite Glauber-Sudarshan P distribution. Much work has focused on photon antibunching, sub-Poissonian photon
statistics, quadrature squeezing, and entangled atom-field states[1]. The generation of such light fields may have
applications in quantum information processing, atomic clocks, and fundamental tests of quantum mechanics, for
example. One system that has long been a paradigm of the quantum optics community is a single-atom coupled to a
single mode of the electromagnetic field, the Jaynes-Cummings model[2]. In practice the creation of a preferred field
mode is accomplished by the use of an optical resonator. This resonator generally has losses associated with it, and
the atom is coupled to vacuum modes out the side of the cavity leading to spontaneous emission. Energy is put into
the system by a driving field incident on one of the end mirrors. The investigation of such a system defines the subfield
of cavity quantum electrodynamics[3]. The presence of the cavity can also be used to enhance or reduce the atomic
spontaneous emission rate[3]. This system has also been studied extensively in the laboratory, but several practical
problems arise.[4, 6, 7] There are typically many atoms in the cavity at any instant in time, but methods have been
developed to load a cavity with a single atom. A major problem in experimental cavity QED stems from the fact that
the atom(s)are not stationary as is often assumed by theorists. The atoms have typically been in an atomic beam
originating from an oven, or perhaps released from a magneto-optical trap. This results in inhomogeneous broadening
of the atomic resonance from Doppler and/or transit-time broadening. Using slow atoms can reduce these effects, but
the coupling of the atom to the light field in the cavity is spatially dependent, and as the atoms are in motion, the
coupling is then time dependent; also different atoms see different coupling strengths.

With greater control in recent years of the center of mass motion of atoms, developed by the cooling and trapping
community, much work has been done to investigate atoms trapped inside the optical cavity using an optical lattice[8].
A huge variety of experiments and theory about the effects of light on the mechanical motion of an atom in a cavity
has blossomed in the last decade. These include cavity cooling [9–13], an optical kaliedoscope [14] trapping of atoms
with a single photon [15, 16], and a single atom laser [17]. Other notable work includes collective cooling and self-
organization [18, 19]. Also atoms and fields have been coupled to micromechanical systems, where the motion of
a small rod needs to be quantized [20–24]. Coupling of the atom-field system has also been proposed to generate
states similar to those in condensed matter physics, with excitons, dislocations, and other such effects.[25–30]; this
can be even more dramatic when the atoms in the cavity/lattice system form a Bose-Einstein condensate[31–34]. We
also note that several novel cavity structures have also been investigated [35–37]. The references are intended to be
illustrative rather than comprehensive.
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FIG. 1: Single atom in a weakly driven optical cavity with an external potential

In this paper we consider a single atom cavity QED system with the addition of an external potential, provided
perhaps by an optical lattice, and study the photon statistics and conditioned field measurements of both the trans-
mitted and fluorescent fields.[38] We seek to understand (with a simple model at first) how the coupling of the atom’s
center of mass motion to the light field affects the nonclassical effects predicted and observed for a stationary atom.

The system we consider is shown schematically in Fig. 1. We utilize the quantum trajectory method[39–41, 43] in
which the system is characterized by a wave function and non-Hermitian Hamiltonian, and quantum jumps. At each
time step of the evolution a set of random numbers decides which jump if any occurs, with probabilities calculated
from the quantum state. If a jump does not occur, then the system is propagated via the non-Hermitian Hamiltonian.
In either event, the state vector must be normalized, and then the procedure is repeated. Averaging over many such
trajectories reproduces the dynamics of the system, the ensemble average yields the same result as a direct solution
of the master equation. We take our wave function to be

|ψc(t)〉 =

∞∑
n,l=0

(
Cn,l,g(t)e

−iEn,l,gt|n, l, g〉

+Cn,l,e(t)e
−iEn,l,et|n, l, e〉

)
(1)

H =
p2

2m
+ Vext − iκa†a− ı

γ

2
σ+σ−

+ıh̄Y (a† − a) + h̄g(~r) (a†σ− + aσ+) (2)

where we also have collapse operators

C =
√
κa (3)

A =

√
γ

2
σ−. (4)

associated with photons exiting the output mirror and spontaneous emission out the side of the cavity. The indices e(g)
indicate the atom in the excited (ground) state, n is the photon number, and l is a quantum number associated with
the presence of bound states of the external potential. We have the usual creation (a) and annihilation (a†) operators
for the field, and Pauli raising and lowering operators σ± for the atom. The bare energies are En,l,g = h̄(nω + Ωl)
and En,l,e = h̄((n + 1)ω + Ωl), where the Ωl are the discrete, bound, states of the external potential. The classical
driving field (in units of photon flux) is given by Y . We take the external potential in which the atom is trapped to
be harmonic along the cavity axis, Vext = α(z− z0)2/2, which could be appropriate for a 1-D optical lattice inside the
cavity. We ignore the generally weak transverse dependence of the atom-field coupling, g(~r)→ g(z) = gmf (k(z − z0)),

with the maximum coupling given by gm = µeg
√
ω/2h̄ε0V and f (k(z − z0))is the cavity field mode function. Here µeg

is the dipole transition matrix element, and V is the volume of the cavity mode. We assume for simplicity that the
bottom of one of the lattice wells coincides with an antinode of the cavity field. Following the treatment of Kimble
and Vernooy,[44] and keeping only terms to (z − z0)2, we find the non-dissipative parts of the Hamiltonian to be

H =
p2

2m
+
α

2
(z − z0)2 + ih̄E(a† − a)

+h̄gm

(
1 +

(z − z0)2

2η2

)
(a†σ− + aσ+) (5)
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FIG. 2: Energy level diagram

where the characteristic distance η is defined by

η−1 =

√
1

gm

d2g(z)

dz2
|z=z0 =

√
d2f(z)

dz2
|z=z0 (6)

For a standing wave mode, f(k(z − z0)) = cos(k(z − z0)) we have η = k−1 = λ/2π, where λ is the wavelength of the

cavity mode. Consider the action of this Hamiltonian on the dressed states | n,±〉 = (1/
√

2) (| n, g〉± | n− 1, e〉) with
n the number of intracavity photons, and e(g) denotes the excited (ground) state of the atom. As (a†σ− + aσ+) |
n,±, l〉 = ±

√
n | n,±, l〉 we have an effective potential

V (z) =
1

2

(
α± h̄gm

√
n

η2

)
(z − z0)2 =

1

2
mΩ2

n± (7)

with an effective harmonic frequency Ωn± defined above. In the dressed state basis, the selection rule for dipole
transitions is∆l = 0. It is worth noting that in a basis defined by an outer product of the atom-field dressed states
and the bare vibronic levels of the external potential enumerated by the quantum number L, which we call the casually
dressed states, the selection rule is ∆L = 0,±2. These arise from absorption of a photon traveling to the right (left) in
the cavity, with reemission into the same direction (∆L = 0), while absorption of a photon traveling in one direction
and emission into the opposite direction leads to a momentum kick for the atom or 2h̄L, leading to ∆L = ±2.

We then use the dressed states | n, l,±〉 where the index l denotes the degree of excitation in the vibronic states
corresponding to combined lattice/field coupling potential. Please note that these are not the vibronic states of the
optical lattice alone. An energy level diagram is shown in Fig. 2. We notice that the level spacings of the three sets
of dressed vibronic states are not equal, due to the ±g

√
n term in the vibronic frequency. This reflects the fact that

the weak driving field on resonance essentially changes the effective trapping potential felt by the atom.
In our model, a spontaneous emission event would of course give the atom a momentum kick ∆p = h̄k. ”Heating”

due to spontaneous emission is taken to be mainly in the transverse direction, as in the case of an hourglass cavity[42].
Thus a spontaneous emission event does not change the relative population of the different vibronic states l. The
trapping potential seen by the atom changes when a cavity photon is transmitted, and this is taken care of in the well
dressed state picture via the different potential wells seen by the manifold of zero-, single-, and dual-excitation states.
This is reflected in the previously described selection rule ∆l = 0 in the well dressed basis, as opposed to ∆L = 0,±2
in the bare basis.
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II. 2.) INTENSITY-INTENSITY CORRELATIONS

We next consider the second-order intensity correlation function g(2)(τ) = 〈a†(0)a†(τ)a(τ)a(0)〉/〈a†a〉2SS .
In the weak field limit, only states with 2 or fewer quanta of energy are left within the basis (we must keep states

with at least two photons, as we wish examine photon coincidences).
The limit we are considering is one in which Y → 0; and we truncate our equations of motion to lowest order in Y .

If no driving field were applied, the atom would certainly be in the ground state, so we make the approximation that
for weak fields C0,l,g ∼ 1. With no trapping potential, one would have Cg,0 = 1.0; here we must specify the set of
initial populations which correspond to the center of mass motion of the atom, subject to the normalization condition∑
l |C0,l,g|2 = 1.0. The potential is taken to be of the same sign for plus and minus dressed states, which is possible

by placing the lattice field at a “magic ”frequency [45–49].The driving field is responsible for populating the atom’s
excited states, and thus C1,l,± ∼ Y C0,l,g ∼ Y . This reasoning can be continued and we determine that our scaling
should be

C0,l,g ∼ 1

C1,l,± ∼ Y

C2,l,± ∼ Y 2. (8)

The ground state amplitudes would couple to the one-excitation states via the Y term in the Hamiltonian. However
those one excitation amplitudes are of order Y , so to keep these would mean keeping terms of order Y 2 compared
to one, and we drop these terms. Similarly this is why one consistently drops higher order terms in the one- and
two-quanta excitation amplitudes.[38, 50–55]

We keep only lowest order terms in each coefficient. The state might appear to not be normalized, the normalization
factor would seem to need to be of the form η = 1/(1 + εY 2). However, to consistently keep terms to only lowest
order, we use the expansion η = 1− εY 2 ≈ 1. To do otherwise would be to keep terms of order Y 2 where other terms
of the same size have been dropped.

In the weak field limit, the one excitation amplitudes satisfy

Ċ1,l,+ = −
(γ

4
+
κ

2
+ i∆l,1+

)
C1,l,+ −

Y√
2
C0,l,g

−
(γ

4
− κ

2

)
C1,l,− (9)

Ċ1,l,− = −
(γ

4
+
κ

2
+ i∆l,1−

)
C1,l,− −

Y√
2
C0,l,g

−
(γ

4
− κ

2

)
C1,l,+ (10)

with ∆1,l± = (Ω1,± − Ω0) l ± g, recall the effective harmonic frequency

mΩ2
n± = α± h̄gm

√
n

η2
. (11)

and again, we keep only lowest order terms in the driving field Y . These are the frequencies that correspond to the
energy levels of the system, the α term arises from the external potential, the ±g

√
n terms from the spatial structure

of the cavity mode function and the coupling of motion in the mode to the interaction with the driving field.
In this weak field limit, the populations of the excited states is small, and as such the quantum jumps are few and

far between. Thus the system evolves into a steady-state wavefunction which persists. Eventually a quantum jump
does occur, and the system once again regresses to the steady-state. This is actually not a true steady-state, but a
long lasting state. The probability of the (rare) second jump occurring before the system returns to the steady-state,
and giving rise to a photon coincidence count with some delay time, is then given by the regression from the state
after a given jump back to the steady-state. In the weak field limit, over the course of time, one obtains multiple
copies of this regression to the steady-state, and the ensemble average is trivial.[38, 50–55]. We refer the reader to
Fig. (2) in Reference ([5]). For example, the probability of obtaining a photon count from the cavity output at t = 0,
and a second one at t = τ is given by 2κ〈n(τ)〉, where n(τ) is the mean cavity field occupation number conditioned
on a detection, or quantum jump, at t = 0. In the weak field limit this is given by n(τ) ≈ |C1,g|2, in the absence of a
trapping potential.

As a first step we note that we can solve the equations of motion for the slowly varying population amplitudes
Ḋn,k,±,, defined as

D0,l,g = C0,l,g,
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D1,l,± = C1,l,±e
−it(Ω1,±l−Ω0l±g),

D2,1,± = C2,l,±e
−it(Ω2,±l−Ω0l±

√
2g). (12)

We find that our Ċn,l,± equations become

Ḋ0,l,g = Ċ0,l,g ' 0

, (13)

Ḋ1,l,+ = −
[γ

4
+
κ

2
+ i(Ω1,+l − Ω0l + g)

]
D1,l,+

− Y√
2
D0,l,g

−
[γ

4
− κ

2

]
D1,l,−,

(14)

Ḋ1,l,− = −
[γ

4
+
κ

2
+ i(Ω1,−l − Ω0l − g)

]
D1,l,−

+
Y√

2
D0,l,g

−
[γ

4
− κ

2

]
D1,l,+,

(15)

Ḋ2,l,+ = −
[
γ

4
+

3κ

2
+ (i(Ω2,+l − Ω0l +

√
2g)

]
D2,l,+

− Y

[
1√
2

+
1

2

]
D1,l,+

+ Y

[
1√
2
− 1

2

]
D1,l,−

−
[γ

4
− κ

2

]
D2,l,−,

(16)

Ḋ2,l,− = −
[
γ

4
+

3κ

2
+ (i(Ω2,−l − Ω0l −

√
2g)

]
D2,l,−

+ Y

[
1√
2
− 1

2

]
D1,l,+

− Y

[
1√
2

+
1

2

]
D1,l,−

−
[γ

4
− κ

2

]
D2,l,+.

(17)

In the weak field limit, these equations have a steady state solution

|Ψss〉 =
∑
n,l

(
Dss
n,l,+|n, l,+〉+Dn.l,−|n, l,−〉

)
(18)

The system reaches this steady state, which has a very small average photon number, 〈a†a〉 ∼ Y 2 � 1. In any
given time step ∆t the probability of a collapse is given by Pcav = 2κ〈a†a〉∆t � 1. Similarly the probability of a
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spontaneous emission event in a time step ∆t, Patom = γ〈σ+σ−〉∆t is small. Eventually there is a cavity emission, or
a spontaneous emission by the atom, leaving the system in the states

|Ψc〉 =

{
a|Ψss〉 = |ΨCT (0)〉 : Transmission

σ−|Ψss〉 = |ΨCF (0)〉 : Flourescence
(19)

where we use the notation CT for a state conditioned on a detection in the transmitted field, and CF for a state
conditioned on a fluorescent detection.

In the steady state, all population amplitudes Dn,k,± are constant, and we may set all Ḋn,k,± = 0. Equations 14
and 15 then become

(
γ
4 + κ

2 + i(Ω1,+l − Ω0l + g) γ
4 −

κ
2

γ
4 −

κ
2

γ
4 + κ

2 + i(Ω1,−l − Ω0l − g)

)(
Dss

1,l,+

Dss
1,l,−

)
=

(
−Y√

2
Y√
2

)
Dss

0,l,g. (20)

Solving for Dss
1,l,+ and Dss

1,l,−, we find

DSS
1,l,+ =

Al(G+Hl)

FlHl −G2
,

DSS
1,l,− =

−Al(G+ Fl)

FlHl −G2
, (21)

where

Al =
Y√

2
D0,l,g,

G = −
[γ

4
− κ

2

]
,

Hl = −
[γ

4
+
κ

2
+ i(Ω1,−l − Ω0l − g)

]
,

Fl = −
[γ

4
+
κ

2
+ i(Ω1,+l − Ω0l + g)

]
. (22)

Using the same procedure, we may use our results for Dss
1,l,+ and Dss

1,l,− and solve equations (16) and (17) for Dss
2,l,+

and Dss
2,l,−, finding

DSS
2,l,+ =

−Gβ2,l − Zlβ1,l

G2 − YlZl
,

DSS
2,l,− =

−Gβ1,l − Ylβ2,l

G2 − YlZl
. (23)

where

Yl =
γ

4
+

3κ

2
+ i(Ω2,+l − Ω0l +

√
2g),

Zl =
γ

4
+

3κ

2
+ i(Ω2,−l − Ω0l −

√
2g),

β1,l = −Y
[

1√
2

+
1

2

]
DSS

1,l,+ + Y

[
1√
2
− 1

2

]
DSS

1,l,−,

β2,l = +Y

[
1√
2
− 1

2

]
DSS

1,l,+ − Y
[

1√
2

+
1

2

]
DSS

1,l,−. (24)

Now that the steady state values for the population amplitudes have been calculated, our task is to solve for the
time evolution of D1,l,+(t) and D1,l,−(t). The probability of a cavity emission at time τ given that one occurred at
τ = 0.0 is 2κ〈ΨCT |a†a|ΨCT 〉∆t, hence we have

g
(2)
TT (τ) =

〈ΨCT |a†a|ΨCT 〉
〈ΨSS |a†a|ΨSS〉

=

∑
n,l n|CCTg,n,1(τ)|2∑
n,l n|CSSg,n,l|2

=

∑
l |CCTg,1,l|2(τ)∑
l |CSSg,1,l|2

(25)
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where we have truncated the results to lowest order in the weak field limit. Similarly we have for the second order
intensity correlation function for the fluorescent field is given by

g
(2)
FF (τ) =

〈ΨCF |σ+σ−|ΨCF 〉
〈ΨSS |σ+σ−|ΨSS〉

=

∑
n,l n|CCFe,n,1(τ)|2∑
n,l n|CSSe,n,l|2

=

∑
l |CCFe,0,l|2(τ)∑
l |CSSe,0,l|2

(26)

To facilitate solving the time evolution of the one-excitation amplitudes we write them in matrix form as

~̇A(t) = M ~A(t) + ~∆, (27)

where

~A(t) =

(
D1,l,+(t)
D1,l,−(t)

)
,

M =

(
−
[
γ
4 + κ

2 + i(Ω1,+l − Ω0l + g)
]

−
[
γ
4 −

κ
2

]
−
[
γ
4 −

κ
2

]
−
[
γ
4 + κ

2 + i(Ω1,−l − Ω0l − g)
] ) ,

~∆ =
Y√

2

(
−1
1

)
D0,l,g. (28)

The form of the time evolution of D1,l,+(t) and D1,l,−(t):

~A(t) =
(
SeΛtS−1

)
~A(0) +

(
SeΛtS−1 − I

)
M−1~∆. (29)

Here S is the matrix of eigenvectors of M , and Λ is a diagonal matrix with diagonal elements the eigenvalues of M .
Without showing the details of such calculations, we arrive at

D1,l,+(t) =

[
β2
′

2χ2
D1,l,+(0) +

G

2χ2
D1,l,−(0) +

Y D0,l,g

2χ2φ
√

2

[
−Hlβ

′
2 +G2 −Gβ′2 +GFl

]]
eλ1t

+

[
−β1

′

2χ2
D1,l,+(0)− G

2χ2
D1,l,−(0) +

Y D0,l,g

2χ2φ
√

2

[
Hlβ

′
1 −G2 +Gβ′1 −GFl

]]
eλ2t

+

[
Hl +G

φ

Y√
2

]
D0,l,g, (30)

D1,l,−(t) =

[
−β1

′

2χ2
D1,l,−(0)− β′1β

′
2

2Gχ2
D1,l,+(0) +

Y D0,l,g

2χ2φ
√

2

[
Hl

G
β′1β

′
2 −Gβ′1 + β′1β

′
2 − β′1Fl

]]
eλ1t

+

[
β2
′

2χ2
D1,l,−(0) +

β′1β
′
2

2Gχ2
D1,l,+(0) +

Y D0,l,g

2χ2φ
√

2

[
−Hl

G
β′1β

′
2 +Gβ′2 − β′1β′2 + β′2Fl

]]
eλ2t

−
[
Fl +G

φ

Y√
2

]
D0,l,g, (31)

where

χ1 =
Fl +Hl

2
,

χ2 =

√
(Fl −Hl)2 + 4G2

2
,

λ1 = χ1 + χ2,

λ2 = χ1 − χ2,

β′1 = Fl − λ1,

β′2 = Fl − λ2,

φ = FlHl −G2. (32)



8

We are now equipped with all the necessary information to solve for the dynamics of our system in the weak field
limit.

For the rest of the paper, we restrict ourselves to the deep trapping limit, where α ≥ gm
√
n/λ2. We may then use

the binomial approximation, and define

Ωn,± ≈
√
α

m

[
1± h̄mgm

√
n

2η2α

]
, (33)

therefore we find ∆n,± = Ωn,±− Ω0 for n = 1, 2 to be

∆1,+ =
h̄gm
√
n

2η2
√
mα

,

∆1,− = −∆1,+,

∆2,+ =
√

2∆1,+,

∆2,− = −
√

2∆1,+. (34)

and we can characterize everything by the one detuning ∆1,+. This is analogous to the Lamb-Dicke regime in an ion
trap.

Recall that the quantum number l is associated with a well-dressed state, and not simply the vibrational quantum
number of the lattice potential. To solve these equations it is necessary to specify the amplitudes, Cg,0,1(0) that are
each of order unity. They can be related to the initial center of mass state of the atom via Cg,0,l = 〈g, 0, l|ψ〉 =∫
φ∗g,0,lΨ(x)dx , or simply specified.

For weak driving fields, the probability of a cavity emission in a time ∆t is given by Pcav = 2κ〈a†a〉∆t is quite
small, as is the probability of a spontaneous emission, Pspon.em. = γ〈σ+σ−〉∆t. In this case the wave function attains

a steady state |ψ〉SS =
∞∑

n,l=0

[
CSS1,l,+e

−iE1,l,+t|1, l,+〉+ CSS1,l,−e
−iE1,l,−t|1, l,−〉

]
.

After a photon is detected in transmission, at t = 0 the wave function collapses to

|ψ(0)〉Coll = a|ψ〉SS/|a|ψ〉SS | (35)

=

∞∑
n,l=0

(
CCollg,n,l(t)e

−iEg,n,lt|g, n, l〉

+CColle,n,l(t)e
−iEe,n,lt|e, n, l〉

)
(36)

. The initial value of the one-photon amplitudes of the collapsed state are related to the steady state two-photon
amplitudes

CCollg,1,l(0) =

√
2CSSg,2,l∑

n,l

[
2| CSSg,2,l |

2
+ | CSSe,1,l |

2
] (37)

CColle,0,l (0) =
CSSe,1,l∑

n,l

[
2| CSSg,2,l |

2
+ | CSSe,1,l |

2
] (38)

and these are found above.
The relation between the well dressed probability amplitudes and the bare amplitudes is

Dn,l,± =
1√
2

(Ce,n−1,l ± Cg,n,l) (39)

Before turning to our results, let us recall the relations that g(2)(τ) must satisfy if the field can be described by a
classical stochastic process; if it has a positive definite Glauber-Sudarshan P distribution,

g(2)(0) ≥ 1 (40)

g(2)(0+) ≥ g(2)(0) (41)

|g(2)(τ)− 1| ≤ |g(2)(τ)− 1| (42)

Violations of all three of these inequalities has been observed in CQED systems [6, 7]
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FIG. 3: g(2)(0)− 1 vs. Nmax, the highest occupied phonon number

III. 3.) RESULTS FOR INTENSITY CORRELATIONS

As the system has a steady-state wave function in the steady state, we may write

g(2)(τ) =
〈ΨC(τ)|a†a|ΨC(τ)〉

〈a†a〉SS
. (43)

where we define

|ψC〉 =
a|ψSS〉
|a|ψSS〉|

=
a|ψSS〉√

〈|ψSS |a†a|ψSS〉|
(44)

In Fig. 3 we plot g(2)(0) − 1 for an initial state | Ψg〉 where there is equal population in the | 0, l, g〉 states for
l = 0, lmax. As more states are involved, we find that the antibunching goes away. This is due to the fact that the
two single-photon vibronic ladders have a different frequency spacing than the ground state vibronic levels, and is
consistent with the effect of detunings on the photon statistics[4]. Involving more l states makes the width of the
state larger, increasing ∆x for the center of mass wave function of the atom. The antibunching also goes away if we
just prepare the system in a particular higher l state | 0, l0, g〉. The optimum state would seem to be the ground state
of the bare vibronic potential.

Instead of just assigning values to the probability amplitudes (subject to normalization) we can specify the center
of mass wave function and calculate the probability amplitudes via Dg,0,1(0) = 〈ΨCM |l〉. If we choose the center of
mass wave function to be a Gaussian of width σ, we can calculate these amplitudes easily using

Dg,0,l = 〈ΨCM |l〉

= An,l

∫ ∞
∞

e−y
2/2σ2

e−y
2/2σ2

0Hl(y)dy (45)

where y = x/σ0 and σ0 =
√
h̄/mΩ0,l is the width of the ground state of the vibronic potential, and the normalization

constant is An,l = (mΩ0,l/πh̄)1/4/
√

2nn!. In Fig. 4 we show a plot of g(2)(0) as a function of σ/σ0 for parameters for
which there is nearly perfect antibunching in the absence of an external potential. We see that there is a relatively
wide region where the antibunching persists, but for σ/σ0 less than 0.2 or larger than 4, the antibunching vanishes
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FIG. 4: g(2)(0)− 1 vs. σ/σ0, the relative width of a Gaussian center of mass wave function

completely. This can be understood by considering that a Gaussian wave function is superposition of various vibronic
states, and that population of higher excited vibronic states is deleterious to antibnching. Only when σ/σ0 ≈ 1 do we
have a center of mass wave function that has population predominantly in the ground state In Fig. 5, we show a plot
of g(2)(τ) for g/γ = 2, κ/γ = 5, ∆1,+/γ = 0.1. Fig. 5a is for the atom initially in the ground state of the potential.

We see that g(2)(0) is about 1.1. Classically, g(2)(τ) could not then go below 0.9, but here it goes to zero. We refer
to this as an undershoot. In Fig. 5b, we exhibit g(2)(τ) for an equal admixture of the ground state and fifth excited
state. Here g(2)(0) is 4, and hence the fact that g(2)(τ) is later zero is not nonclassical. The physical reason for this
can be traced back to the fact that an atom in an excited state of the external potential is essentially detuned from
resonance. With ∆1,+/γ = 0.1, the detuning ∆5,+/γ = 0.5. Previous work has shown that usually a detuning of half

a linewidth is quite deleterious to nonclassical effects in g(2)(τ). In Fig. 5c, we have results for what we refer to as a
pseudo-Boltzmann. Here we populate 20 vibronic levels of the external potential at a ”temperature” of 3mK. There is
no decoherence associated with this distribution, i.e. all the off-diagonal matrix elements are not zero. This essentially
results in a distribution over populations with small population in the first excited state,even less in the second, and
so on. Here we see that with most of the population in the ground state, we essentially have the ground state result.
In Fig. 5d, we show g(2)(τ) for an equal population in all 20 vibronic states. Here we see large photon bunching, and
no nonclassical effects at all. This can be understood in terms of detunings of the various atomic states; this type of
distribution over vibronic states would correspond to an atom more localized than the ground state of the external
potential. Hence we see that localizing the atom too much results in a large spread in momentum states that destroys
the nonclassical effects. In Fig. 6, we see that the fluorescent intensity correlations are relatively insensitive to the
choice of atomic center of mass wave function, in that g(2)(0) is 0 due to the nature of single-atom fluorescence. In Fig.
7 we examine g(2)(τ) for parameters where the transmitted intensity correlation function g(2)(0) = 0.0. We see that
for a superposition of ground and fifth excited states, we still have nonclassical effects, as g(2)(0) ≤ 1. The initial slope
of g(2)(τ) is negative though, which is not nonclassical. For the pseudo-Boltzmann distribution, we see both types of
nonclassical behaviors. In the case of equal population over 20 vibronic states, there is no nonclassical behavior at
all. In Fig. 8, we look at a case where there is strong coupling, but no nonclassical behavior in the ground state case.
We do have strong vacuum-Rabi oscillations. For an admixture of states, we see a beat frequency in the oscillations.
The pseudo-Boltzmann case again is very similar to the ground state case. The oscillations are almost completely
washed out when we have equal population in 20 vibronic states. In Fig. 9 we again look at a situation where the
ground state case shows strong vacuum-Rabi oscillations as well as all three nonclassical behaviors; g(2)(0) ≤ 1, the
initial slope is positive, and there is an overshoot violation. The latter refers to g(2)(τ) violating the upper limit of
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FIG. 5: Plots are g
(2)
TT (τ) for g/γ = 2, κ/γ = 5, ∆1,+/γ = 0.1, and (a) |0〉 only, (b) 1√

2
[|0〉+ |5〉], (c) Pseudo-Boltzmann, and

(d) for 20 states with equal population.

the inequality in 42. In Fig. 10 we have a situation where we only have an overshoot violation in the ground state
case. This violation vanishes in the case of a superposition of ground and fifth excited state, as well as for an equal
population of 20 vibronic states. In Figure 11, we examine the effects of increasing spacing between the vibronic
levels. To this point we have dealt with detunings on the order of 0.1 linewidths. In Fig. 12 we can see that increasing
the detunings allows us to see a larger effect due to the beat frequency. Changing the detuning to 0.3 and 0.5 of γ,
we see that the initial slope is not nonclassical, but we still have g(2)(0) ≤ 1, and there is an undershoot violation. So
the nature of the nonclassicality is not changed. At a detuning of 2.0, we still have an undershoot violation as well
as evidence of oscillations at the beat frequency. In Figure 12, we examine the effects of increasing spacing between
the vibronic levels. In this case we have antibunching, a violation of inequality in Eq.(40). Changing the ∆1,+/γ to

0.3 and 0.5, we see that the initial slope is not nonclassical, but we still have g(2)(0) ≤ 1, and there is an undershoot
violation[7]. So the nature of that nonclassicality is not changed. At a detuning of 2.0,(Fig. 5c) we still have an
undershoot violation as well as evidence of oscillations at the beat frequency.

IV. 4.) WAVE-PARTICLE CORRELATIONS

Recently, Carmichael his co-workers have introduced a new intensity-field correlation function hθ(τ) that is of great
interest [56, 57]. Because hθ(τ) is an intensity-field correlation function, it takes the general form

hθ(τ) =
〈I(0)E(τ)〉
〈I〉〈E〉

, (46)

and for a quantized field, this becomes

hθ(τ) =
〈a†(0)aθ(τ)a(0)〉
〈a†a〉〈a0〉

, (47)

where we have, like for g(2)(τ), exploited normal and time ordering, and we have used the quantum mechanical field
quadrature operator :

aθ =
1

2

(
ae−ıθ + a†eıθ

)
. (48)
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FIG. 6: Plots are g
(2)
FF (τ) for g/γ = 2, κ/γ = 5, ∆1,+/γ = 0.1, and (a) |0〉 only, (b) 1√

2
[|0〉+ |5〉], (c) Pseudo-Boltzmann, and

(d) for 20 states with equal population.

In Eq. (48), θ is the phase of the local oscillator (LO) with respect to the average signal field. We see that with
the a acting to the right, and the a† acting to the left at t = 0, a collapsed state is prepared, the collapse being a
photon loss from the field, corresponding to a detection event. Then at t = τ one measures 〈aθ〉 conditioned on the
previous detection. This differs from a direct measurement of 〈aθ〉 with no conditioning. An ensemble average of the
latter measurements (necessary to get a good signal to noise ratio) would yield zero due to phase fluctuations. The
conditioned BHD measurement essentially looks at members of the ensemble with the same phase, a phase that is set
by the photodetection.

As with other correlation functions, like the second-order intensity correlation function g(2)(τ), restrictions can be
placed on hθ(τ) if there is an underlying positive definite probability distribution function for amplitude and phase
of the electric field, i.e. that the field is classical albeit stochastic. By ignoring third-order moments (a Gaussian
fluctuation assumption that is valid for weak fields), one finds

hθ(τ) = 1 + 2
〈: ∆aθ(0)∆aθ(τ) :〉

〈∆a†∆a〉
, (49)

and we see that the intensity-field correlation function is connected to the spectrum of squeezing [56]

Sθ(ω) ∝
∫ ∞

0

dτ cos(ωτ) [hθ(τ)− 1] . (50)

From this, it has been shown that the Schwartz inequality would yield

0 ≤ hθ(0)− 1 ≤ 1, (51)

and more generally

| hθ(τ)− 1 |≤| hθ(0)− 1 |≤ 1. (52)

Whenever there is squeezing, these inequalities do not hold for hθ(τ). Giant violations of these inequalities have
been predicted for an optical parametric oscillator, and a group of N atoms in a driven optical cavity, and have been
recently observed in the cavity QED system [57].

Now consider the following quantity

〈IE〉2 ≤ 〈I〉2〈E〉2 (53)
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FIG. 7: Plots are g
(2)
TT (τ) for g/γ = 2.2, κ/γ = 10, ∆1,+/γ = 0.1, and (a) |0〉 only, (b) 1√

2
[|0〉+ |5〉], (c) Pseudo-Boltzmann,

and (d) for 20 states with equal population.

After some algebra we find

h2
0(0) =

〈IE〉2

〈I〉2〈E〉2

≤ 〈I
2〉〈E2〉
〈E〉2〈I〉2

≤ 〈I〉
〈E〉2

g(2)(0) (54)

≤ g(1)(0)g(2)(0) (55)

In the absence of an external potential g(2)(0) = |CCTg,1 /Cssg,1|2 = h2
0(0). As h0(0) will be nonclassical above 2, we must

have bunching to see nonclassical behavior in the conditioned fields. Also in the system considered here , we would
have h2 ≤ g(2); when we include an optical lattice we have

h0(0) =

∑
k C

c
1,g,k∑

k C
ss
1,g,k

(56)

g(2)(0) =

∑
k |Cc1,g,k|2∑
k |Css1,g,k|2

(57)

|h0(0)|2 =
|
∑
k C

c
1,g,k|2

|
∑
k C

ss
1,g,k|2

(58)

Just looking at the numerator, for two vibronic modes k values, we would violate Eq. (55).
As with g(2)(τ), we obtain an analytic solution using the quantum trajectory method, and again we look at weak

driving fields. We find

〈a†(0)aθ(τ)a(0)〉 = 〈ψc | aθ | ψc〉, (59)

where | ψc〉 is the collapsed state produced by the photodetection event, as in the case of g(2)(τ). Once again we need
only keep the states with two or less excitations (total in the cavity mode or internal energy) for weak driving fields.
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FIG. 8: Plots are g
(2)
TT (τ) for g/γ = 3, κ/γ = .1, ∆1,+/γ = 0.1, and (a) |0〉 only, (b) 1√

2
[|0〉+ |5〉], (c) Pseudo-Boltzmann, and

(d) for 20 states with equal population.

The result is that

hθ(τ) =
〈n〉SS〈aθ(τ)〉CT
〈n〉SS〈aθ(τ)〉SS

=
〈aθ(τ)〉CT
〈a0(τ)〉SS

. (60)

The expectation value of the field quadrature operator is given by

〈aθ〉 =
∑
n,l

(√
nC∗n,lCn−1,le

−ıθ +
√
n+ 1C∗n,lCn+1,le

ıθ
)
. (61)

In the weak field limit we have

〈âθ〉 =
∑
l

(
C∗1,lC0,le

−ıθ + C∗0,lC1,le
ıθ
)
. (62)

So finally then, for weak fields we have

hθ(τ) =

∑
l

(
CCT1,l C

CT
0,l e

−ıθ + CCT
∗
0,lC

CT
1,l e

ıθ
)

∑
l

(
CSS∗1,l CSS0,l + CSS∗0,l CSS1,l

) . (63)

For the fluorescent field, we have

hFFθ (τ) =
〈σθ(τ)〉CF
〈σ0(τ)〉SS

. (64)

which in terms of probability amplitudes is

hFFθ (τ) =
2Re

∑
l C

CF
0,e,l(τ)CCF0,g,l(τ)eiθ∑
l C

SS
0,e,lC

SS
0,g,l

. (65)



15

FIG. 9: Plots are g
(2)
FF (τ) for g/γ = 3, κ/γ = .1, ∆1,+/γ = 0.1, and (a) |0〉 only, (b) 1√

2
[|0〉+ |5〉], (c) Pseudo-Boltzmann, and

(d) for 20 states with equal population.

In Fig. 14 we plot hTTθ for g/γ = 2, κ/γ = 5, for the same choice of four states we have used. We see that in the case
of a highly localized atom (equal probability of 20 vibronic levels) the nonclassical nature of hTTθ is actually enhanced.
In the case of an admixture of ground and fifth excited states, the behavior of hTTθ is relatively unchanged from the
ground state case. This is due to the insensitivity of hTTθ to detunings in the weak coupling limit. In the strong
coupling regime, as shown in Fig. 15, we see the same general behavior, although for the case of 20 equal populations
we do see some dephasing of the vacuum-Rabi oscillations, due to the detunings of the various levels involved. Similar
behavior is seen in the case of hFFθ as shown in Figs. 16 and 17. Note that hFFθ (0) = 0.0, reflecting the fact that
after spontaneous emission, the dipole field envelope vanishes. In Fig. 18 we change the level spacing. We see that for
increasing vibronic level spacing the nature of the nonclassicality persists, but there is evidence of the beat frequency
between subsequent vibronic levels.

V. 5.) CONCLUSION

We have considered the photon statistics of a cavity QED system while including quantized center of mass motion
along the cavity axis. In the limit of weak driving fields we have found analytic results for intensity correlations of
the transmitted and fluorescent fields; as well as for the cross-correlations between the transmitted and fluorescent
intensities. We find that for intensity correlations for the transmitted field, having a significant population outside
the ground vibronic level is deleterious to sub-Poissonian statistics, photon antibunching, and overshoot/undershoot
violations. This is explained due to the sensitivity of these nonclassical effects to detunings between the atom-cavity
system and the driving field. It is found that significant population in vibronic levels that are out of resonance by a
half a linewidth is sufficient to severely modify the results; a highly localized atom, spread over many vibronic levels
only exhibits nonclassical effects over a very small parameter range. For the fluorescent intensity correlations, we do
not find such a sensitivity, this is due mainly to the nature of single atom fluorescence where the atom can only emit
one photon at a time. The cross-correlations exhibit the assymetry noted by Denisov et. al., and this asymmetry is
not degraded significantly by a distribution over vibronic levels.

We have also found analytic results for hθ(τ) for the transmitted and fluorescent fields. There is no time asymmetry
for weak driving fields. The nonclassical behavior in hθ(τ) is not generally degraded by a distribution over vibronic
levels; indeed it is sometimes enhanced.

This material is based upon work supported by the National Science Foundation under Grant No. 0555572.
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FIG. 10: Plots are g
(2)
TT (τ) for g/γ = 1, κ/γ = .77, ∆1,+/γ = 0.1, and (a) |0〉 only, (b) 1√

2
[|0〉+ |5〉], (c) Pseudo-Boltzmann,

and (d) for 20 states with equal population.

FIG. 11: Plots are g
(2)
TT (τ) for g/γ = 1, κ/γ = 1.6. All trials use 1√

2
[|0〉+ |5〉] as the vibrational state distribution with (a)

∆1,+/γ = 0.1, (b) ∆1,+/γ = 0.3, (c) ∆1,+/γ = 2.0, (d) ∆1,+/γ = 0.5.
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FIG. 12: Plots are g
(2)
TT (τ) for g/γ = 1, κ/γ = 1.6. All trials use 1√

2
[|0〉+ |5〉] as the vibrational state distribution with (a)

∆1,+/γ = 0.1, (b) ∆1,+/γ = 0.3, (c) ∆1,+/γ = 2.0, (d) ∆1,+/γ = 0.5.

FIG. 13: This is a common experimental setup for measuring hθ(τ). In this figure, the source would be either the transmitted
or fluoresced portion of the field. LO denotes Local Oscillator, a
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FIG. 14: Plots are hTTθ (τ) for g/γ = 2, κ/γ = 5 , ∆1,+/γ = 0.1. (a) |0〉 only. (b) 1√
2

[|0〉+ |5〉]. (c) Pseudo-Boltzmann. (d) All

states equal population.

FIG. 15: Plots are hTTθ (τ) for g/γ = 3, κ/γ = .1 , ∆1,+/γ = 0.1. (a) |0〉 only. (b) 1√
2

[|0〉+ |5〉]. (c) Pseudo-Boltzmann. (d)

All states equal population.
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FIG. 16: Plots are hTTθ (τ) for g/γ = 3, κ/γ = .1 , ∆1,+/γ = 0.1. (a) |0〉 only. (b) 1√
2

[|0〉+ |5〉]. (c) Pseudo-Boltzmann. (d)

All states equal population.

FIG. 17: Plots are hFFθ (τ) for g/γ = 1, κ/γ = .77 , ∆1,+/γ = 0.1. (a) |0〉 only. (b) 1√
2

[|0〉+ |5〉]. (c) Pseudo-Boltzmann. (d)

All states equal population.
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FIG. 18: Plots are hTTθ (τ) for g/γ = 1, κ/γ = .77 , ∆1,+/γ = 0.1. (a) |0〉 only. (b) 1√
2

[|0〉+ |5〉]. (c) Pseudo-Boltzmann. (d)

All states equal population.
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