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Abstract

In the present work, we consider the dynamics of dark solitons as one mode of a defocusing

photorefractive lattice coupled with bright solitons as a second mode of the lattice. Our investiga-

tion is motivated by an experiment which illustrates that such coupled states can exist with both

components in the first gap of the linear band spectrum. This finding is further extended by the

examination of different possibilities from a theoretical perspective, such as symbiotic ones where

the bright component is supported by states of the dark component in the first or second gap, or

non-symbiotic ones where the bright soliton is also a first-gap state coupled to a first or second gap

state of the dark component. While the obtained states are generally unstable, these instabilities

typically bear fairly small growth rates which enable their observation for experimentally relevant

propagation distances.

PACS numbers: 05.45.Yv, 42.65.Tg, 42.65.Jx, 42.65.Hw, 42.82.Et, 63.20.Pw
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I. INTRODUCTION

The examination of the Hamiltonian continuum model with periodic potentials and its

discrete analog of lattice dynamical systems has been a topic of increasing popularity over

the past few years [1]. This is mainly due to their wide applicability in diverse physical

contexts including, but not limited to, the spatial dynamics of optical beams in coupled

waveguide arrays [2], optically-induced photonic lattices in nonlinear optics [3], temporal

evolution of Bose-Einstein condensates (BECs) in optical lattices in soft-condensed matter

physics [4], and the DNA double strand in biophysics [5].

A principal research theme in this direction is the study of existence and stability of

coherent structures in these models and their feasibility in experiments. Several years ago,

fabrication of nonlinear optical AlGaAs waveguide arrays [6] provided a first prototype

where many initial investigations arose, such as discrete diffraction, Peierls barriers, diffrac-

tion management [7], and gap solitons [8]. So far numerous fundamental investigations have

been pursued in waveguide arrays including modulational instability [9], four-wave-mixing

effects arising from the coupling of multiple components [10], as well as the study of interac-

tions of solitary waves with surfaces [11]. Subsequently, the formation of optically-induced

photonic lattices in photorefractive crystals became an ideal platform for the observation of

various types of solitonic structures. The theoretical proposal [12] and rapid experimental

realization of such (mainly 2D) lattices [13, 14], enabled the observation of, among others,

dipole [15], necklace [16], and rotary [17] solitons as well as discrete [18, 19] and gap [20]

vortices. Recently, waveguide arrays in lithium niobate (LiNbO3) crystal, which possess a

self-defocusing nonlinearity, have found significant applications in the study of modulation

instability [21], beam interactions [22], dark discrete solitons [23], bright gap solitons [24],

dark solitons in higher gaps [25], as well as Rabi oscillations [26].

Our goal in this work is to consider the case of vector solitons. Although they have been

studied both in the focusing case of bright-vector solitons in strontium barium niobate [27]

and the defocusing case of bright-gap-vector solitons in LiNbO3 [28], much less work has

been done in multi-component settings. Instead of mixtures of two solitary waves of the

same type as in the above cases, we aim to examine the mixture of a bright with a dark

soliton in photorefractive defocusing waveguide arrays. Such dark-bright states were first

created in the absence of lattices in photorefractive crystals over a decade ago [29] and their
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interactions were partially monitored [30]. In the context of BECs such solitary waves were

also predicted theoretically [31], and generalizations thereof were considered as well (such as

e.g. the dark-dark-bright or bright-bright-dark spinor variants of [32]). However, it was only

quite recently that such structures were experimentally observed [33–36]. This has led to a

renewed interest in this theme, by addressing the interactions of dark-bright solitons from

an integrable theory [37] or numerical [38] perspective, as well as their higher-dimensional

generalizations [39]. To the best of our knowledge, there is no earlier investigation of such

states in models with a periodic potential except in the context of nonlinear dynamical

lattices [40].

Our motivation, presented in section II stems from an experiment in defocusing LiNbO3

waveguide arrays where a dark soliton state in the first gap (we will refer to this type of

state as “bubble” in what follows) is coupled to a bright soliton in the same gap. We will

show that these two waveforms coexist as a solitonic entity. Also, we will present conditions

under which such a molecule may break up in its constituents. This, in turn, motivates a

more detailed theoretical study of the different types of dark-bright states that can exist

in the system. Such coupled states will be identified between either a bubble (in the first

gap) or a higher-gap (i.e., the second gap in this case) dark soliton in the one component

with either a regular bright soliton or with a bright gap soliton. When a bubble or dark

soliton couples to a regular bright one, we refer to these solitons as symbiotic because

the bright component can not exist without the supporting dark component (due to the

defocusing nature of the nonlinearity). For the coupling with a bright-gap soliton, because

both components can persist individually, we refer to these states as non-symbiotic. We find

such multi-component solitary waves to be only weakly unstable, which is consonant with

our ability to experimentally observe case examples of such states. In section III, we set

up the model problem and benchmark it against experimental data by identifying its linear

band spectrum. In section IV, the numerical results for the above soliton families will be

given. Finally, in section V we summarize our findings and present conclusions as well as

some relevant directions for future study.
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II. EXPERIMENTAL MOTIVATION

To experimentally investigate such molecular solitonic states of dark and bright solitons,

we used a 1D waveguide array (WA) fabricated on an iron-doped lithium niobate (LiNbO3)

substrate by in-diffusion of titanium at high temperature. Arising from the bulk photovoltaic

effect, the substrate crystal displays a saturable type of defocusing nonlinearity [41]. The

transverse direction z is parallel to the ferroelectric c-axis. The direction of light propagation

is along the y-axis. The array investigated in the following experiments consists of 250

channels and has a grating period Λ = 8.5µm, which is the summation of the channel width

of 5µm and a spacing of 3.5µm between adjacent channels. One of the end facets of the

waveguide array sample is polished to optical quality to allow for direct observation of the

out-coupled light from the array with the help of a CCD camera.

In our experimental setup, we employed the prism-coupler scheme, with which we can

selectively excite different Bloch modes in any desired band. Furthermore, with this method

we can determine accurately the band structure of the waveguide array [42]. The experi-

mental layout is sketched in Fig. 1. First, the input light with a wavelength of 532 nm from

a frequency-doubled Nd:YVO4 laser is expanded by a beam expander into a plane wave and

then split into two separate beams. One beam propagates through a phase mask covering

half of the beam along the transverse direction z. As a consequence, the covered half of the

input beam experiences an additional π phase shift, thus a dark notch is generated at the

center of the intensity profile. Another beam is modulated by an oscillating mirror driven

by a function generator. With applied external modulation, this beam is mutually incoher-

ent with respect to the other beam: since the phase modulation is much faster than the

build-up time of the nonlinearity of our photorefractive crystal, no stationary interference

pattern forms with the other beam. With the combination of two cylindrical lenses L1 and

L2, the beam passing the phase mask is then imaged onto the waveguide. Here the focal

lengths of the two lenses are chosen in order to generate an ideal width of the dark notch

covering about two channels, which is the input light pattern for the excitation of a dark

soliton. The other beam is focused meanwhile by lens L2 with a diameter of roughly 10µm

and serves as the excitation light for the bright soliton. Both beams are coupled into the

waveguide array and co-propagate until they reach the end-facet of the sample. With a

high resolution CCD camera, in combination with a 20x microscopic objective lens, we can
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FIG. 1: Schematic experimental setup: HW, half-wave plate; P, polarizer; BE, beam expander; M’s,

mirrors; BS’s, beam splitters; OM, oscillating mirror; FG, function generator; PM, phase mask;

S, screen; L1 and L2, cylindrical lenses; MO’s, microscopic objectives; CCD’s, CCD cameras; PD,

photodiode; WA, waveguide array.

monitor around 25 channels of the intensity distribution on the end-facet. With this setup,

it is possible to adjust the input light distribution for both, the bright soliton and the dark

soliton separately, for example, the relative locations of the two solitons on the waveguide

array as well as different excitation angles for modes originating from different bands.

In the experiment, a bright gap soliton was excited from the first and a dark soliton

from the second band (a “bubble” according to our notation above), both at the edge of

the Brillouin zone. The centers of both solitons were carefully adjusted to overlap on the

same waveguide channel. We first checked under low optical power (less than 2 nW per

channel) the linear diffraction behavior of both the dark component [Fig. 2(a), top row]

and bright component [Fig. 2(a), bottom row]. Then, by blocking one of the input beams,

we formed individual gap solitons (either dark or bright) by increasing the optical power to

appropriately high values [Fig. 2(b)]. In all nonlinear experiments, the dark soliton from

the second band was formed under 150 nW optical power per channel. In order to analyze

the existence interval of the bubble-bright composite solitons, the input light power of the

bright soliton was varied, resulting in different power ratios of dark and bright components.
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FIG. 2: (Color online) Experimental results of light intensity distribution on the output facet

showing linear diffraction (a) and soliton formation of individual bright and dark components (b).

When both beams are launched with a power ratio of 4:3, a robust bubble-bright soliton is formed

(c) where both, bright and dark components are centered on the same channel.

At first, a bright soliton was formed at 200 nW per channel, yielding a power ratio to the

bright and dark solitons of 4:3. In this case, we observe a robust co-existence of the two

components at the output facet, as shown in Fig. 2(c). However, when we excite the bright

soliton at much higher power (400 nW per channel, resulting in a power ratio of 8:3), the

propagation constant µb of the bright component in this scenario is further decreased below

the existence threshold (see also the theoretical analysis below), while the propagation

constant µd of the dark component’s bubble state remains essentially unaffected. The

result of the experiment in this situation is a clear spatial shift of the bubble center by one

waveguide channel [Fig. 3(a)] due to the coupling with the bright soliton. This shift may be

understood as the initial phase of a repulsive interaction of the two constituents, and thus

suggests the non-existence (or strong instability) of bubble-bright solitons for these input

conditions. After reaching the steady-state for the input power ratio 8:3, we blocked the

input beam used for excitation of the bright soliton. Because the nonlinearity in lithium

niobate is non-instantaneous, the negative defect formed by the bright beam is still present

and is only slowly erased due to the photoconductivity generated by the remaining dark

beam. As a consequence, in the µd-µb plane (see the left panel in Fig. 6) we now move

upwards (i.e., µb increases) on a vertical line, reaching back the existence regime of robust
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FIG. 3: (Color online) When the input power ratio is increased (dominating bright component) a

shift of the dark soliton center is experimentally observed (a). A restoration of the center position

of the bubble state appears when the bright component is blocked (b). This process is reversible

in the experiment, and the bubble is forced to shift again from the center position when the bright

beam is switched on again (c).

bubble solitary waves. We thus observe a reversible effect, presented in Fig. 3(b): namely,

after the bright soliton is blocked, the dark soliton is restored to its original location. This

restoration proves directly the repulsive influence from the dominant bright soliton. When

the bright component is switched on again in Fig. 3(c), once again the strong repulsion

between bright and dark components forces the dark soliton to be shifted by one channel.

III. MODEL SETUP

In what follows, we will consider composite solitons with a dark (or bubble) wave in one

component coupled with a bright mode in the second component in the context of TE-TE

modes for the geometry of our waveguide array. We start by presenting the underlying

model in the full dimensional form with the paraxial approximation, and then we discuss

the non-dimensional variant of the model which will be used for our numerical computations.
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A. Dynamical equations

The paraxial equations for coupled TE-TE modes of the two beams represented by Ed

and Eb in what follows, are given by:

i∂XEd +
1

2k
∂ZZEd +

k

ns

(

∆n(Z) + ∆nnl

|Ed|
2 + |Eb|

2

1 + |Ed|2 + |Eb|2

)

Ed = 0 ,

i∂XEb +
1

2k
∂ZZEb +

k

ns

(

∆n(Z) + ∆nnl

|Ed|
2 + |Eb|

2

1 + |Ed|2 + |Eb|2

)

Eb = 0 , (1)

with ∆n(Z) being the refractive index profile and the propagation direction denoted as

the x-direction. One can find “stationary” solutions of this system by defining:

Ed(X,Z) = eiβdXu(Z), Eb(X,Z) = eiβbXv(Z), (2)

where βd,b are the propagation constants in the X-direction and u(Z) and v(Z) the

amplitude profiles of each TE mode, which, in turn, satisfy:

−βdu+
1

2k
∂ZZu+

k

ns

(

∆n(Z) + ∆nnl

u2 + v2

1 + u2 + v2

)

u = 0 ,

−βbv +
1

2k
∂ZZv +

k

ns

(

∆n(Z) + ∆nnl

u2 + v2

1 + u2 + v2

)

v = 0 , (3)

The values used in the experiments are the following ones:

ns = 2.2341, λ = 532 nm, Λ = 8.5 µm, k =
2πns

λ
= 26.386 µm−1, ∆nnl = 2.5×10−4

(4)

(cf. also the discussion given in section II) where ns is the refractive index of the LiNbO3

substrate for extraordinary polarized light, λ is the wavelength of the input light, Λ is the

period of the waveguide array and ∆nnl is the maximum refractive index change induced by

the nonlinearity.

The refractive index profile can be determined by adjusting the experimental Bloch bands

showing the change of the effective refractive index ∆neff ≡ neff − ns, with neff = βk0 and

k0 = k/ns being the transverse wavevector in vacuum. The refractive index is then given

by:
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∆n(Z) = ∆n0 +∆n1V (Z) (5)

with

V (Z) = cos

(

2πZ

Λ

)

− 0.25 cos

(

4πZ

Λ

)

(6)

and

∆n0 − ns = 27.567× 10−4, ∆n1 = 8.35× 10−4 . (7)

Figure 4 shows the correspondence between the experimentally observed Bloch bands [42]

and the theoretically computed ones. Clearly, the above set of parameters offers a very good

handle on the linear part of the problem.
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FIG. 4: Bloch bands numerically (full lines) and experimentally (circles) determined.

B. Non-dimensional equations and parameters

The non-dimensional version of the system of Eqs. (1) is given by

i∂xu+
1

2
∂zzu+ [η0 + ηV (z)]u + ν

u2 + v2

1 + u2 + v2
u = 0 ,

i∂xv +
1

2
∂zzv + [η0 + ηV (z)]v + ν

u2 + v2

1 + u2 + v2
v = 0 , (8)
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while the stationary states are solutions of:

−µdu+
1

2
∂zzu+ [η0 + ηV (z)]u + ν

u2 + v2

1 + u2 + v2
u = 0 ,

−µbv +
1

2
∂zzv + [η0 + ηV (z)]v + ν

u2 + v2

1 + u2 + v2
v = 0 . (9)

The non-dimensional parameters are related to the experimental ones by the following

relations:

µd,b =
kΛ2βd,b

α2
, ν = ±

k2Λ2∆nnl

α2ns

, (10)

η =
k2Λ2∆n1

α2ns

, η0 =
k2Λ2∆n0

α2ns

. (11)

The parameter α has been introduced so that the non-dimensional values are of O(1).

Throughout the calculations, it has been fixed to α = 10. The sign of ν indicates either self-

focusing (positive) or self-defocusing (negative). Additionally, the nondimensional distances

are given by

z = αZ/Λ, x =
βd,b

µd,b

X =
α2

kΛ2
X . (12)

The refractive index profile and parameters are given now by

V (z) = cos

(

2πz

α

)

− 0.25 cos

(

4πz

α

)

(13)

η = 0.1880, η0 = 0.6207, ν = ±0.0563 (14)

and the change of the effective refractive index is

∆neff =
βd,bλ

2π
=

α2λ2µd,b

4π2nsΛ2
(15)

for each (dark and bright) component.

C. Stability equations

Once stationary solutions of the boundary value problem (with periodic / anti-periodic

boundary conditions, depending on the nature of the examined solution) of Eqs. (9) are
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identified, their linear stability is considered by means of a Bogolyubov-de Gennes analysis.

Namely, small perturbations [of order O(δ), with 0 < δ ≪ 1] are introduced in the form

Ed(z, x) = eiµdx
[

u0(z) + δ(P (z)eiωz +Q∗(z)e−iω∗z)
]

,

Eb(z, x) = eiµbx
[

v0(z) + δ(R(z)eiωz + S∗(z)e−iω∗z)
]

, (16)

and the ensuing linearized equation are then solved to O(δ), leading to the following

eigenvalue problem:

ω















P (z)

Q(z)

R(z)

S(z)















=















L1 L2 L3 L3

−L2 −L1 −L3 −L3

L3 L3 L4 L5

−L3 −L3 −L5 −L4





























P (z)

Q(z)

R(z)

S(z)















, (17)

for the eigenfrequency ω and the associated eigenvector (P (z), Q(z), R(z), S(z))T , where

Lj , j = 1 . . . 5 are the following operators:

L1 = −µd +
1

2

d2

dz2
+ [η0 + ηV (z)] + ν

[

u2

0
+ v2

0

1 + u2
0
+ v2

0

+
u2

0

(1 + u2
0
+ v2

0
)2

]

,

L2 = ν
u2

0

(1 + u2
0
+ v2

0
)2

,

L3 = ν
u0v0

(1 + u2
0 + v20)

2
,

L4 = −µb +
1

2

d2

dz2
+ [η0 + ηV (z)] + ν

[

u2
0 + v20

1 + u2
0 + v20

+
v20

(1 + u2
0 + v20)

2

]

,

L5 = ν
v2
0

(1 + u2
0 + v20)

2
, (18)

where it has been taken into account that u0(z), v0(z) ∈ R. Once the stationary solutions

are found to be linearly unstable (i.e., Im{ω} 6= 0), then the dynamical manifestation of

the corresponding instabilities is monitored through direct numerical simulations of Eq. (8).

As we will see in the next section, all of the analyzed solutions are unstable, although their

growth rates are so small that long propagation distances x are needed in order to observe

the emergence of the pertinent instabilities.
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IV. NUMERICAL RESULTS

We now present our results for the several types of coherent structures considered in our

system in the self-defocusing setting (i.e. ν < 0). All of them are composed of a bright

soliton in the 1st band gap. The dark structure can be of two types. It may be a bubble,

located in the 1st band gap and arising from the top of the second Bloch band in which case

the overall phase shift between the two endpoints of the domain is 0. Alternatively, it may

be a (genuine) dark soliton, which emerges from the bottom of the second Bloch band, and,

consequently, its propagation constant is found in the second band gap and it bears a phase

shift of π between the domain endpoints.

We make one more terminological distinction between the different types of waveforms

that can arise. In particular, the emerging bubble/dark-bright structures can either be

symbiotic or not. In the first case, the bright soliton is unstaggered and emerges from the

top of the first band (zero mode). These modes are called symbiotic because an isolated

bright component would not exist in this form for the relevant values of the propagation

constant; it necessitates the formation of an effective potential by its dark (or bubble)

counterpart in order to co-exist with it. In the second (non-symbiotic) case, the bright

soliton is staggered and emerges from the bottom of the first band as a genuine gap soliton

that would be sustained in the system even in the absence of the other component.

These two distinctions (dark or bubble waves for the first component, symbiotic or non-

symbiotic ones depending on the nature of the second component) give rise to four possibil-

ities for the ensuing structures dubbed as follows: symbiotic / non-symbiotic bubble-bright

soliton (S-BBS / NS-BBS) and symbiotic / non-symbiotic dark-bright soliton (S-DBS / NS-

DBS). Among the four, it is the NS-BBS that was observed in our experimental motivation

in section II. Figure 5 shows prototype examples of the input field profiles for each of these

four solutions.

As mentioned above, Fig. 4 shows the position of the linear Bloch bands which are also

relevant for the identification of the nonlinear localized modes that arise in the system.

In particular, the first band is located in the interval µ1d ≡ 0.6755 < µ < 0.6833 ≡ µ1u

[3.00 × 10−3 < neff < 3.03 × 10−3], the second one is µ2d ≡ 0.4614 < µ < 0.5181 ≡ µ2u

[2.05 × 10−3 < neff < 2.30 × 10−3] and the third one at µ3d ≡ 0.1806 < µ < 0.3567 ≡ µ3u

[0.80× 10−3 < neff < 1.58× 10−3].
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FIG. 5: (Color online) Soliton profiles for bubble-bright (top panels) and dark-bright (bottom

panels) solitons. Profile of the electric field for a NS-BBS with µb = 0.64 and µd = 0.49 (left panel

in top line), S-BBS with µb = 0.66 and µd = 0.48 (right panel in top line), NS-DBS with µb = 0.65

and µd = 0.33 (left panel in bottom line), and S-DBS with µb = 0.67 and µd = 0.32 (right panel

in bottom line). Blue dashed lines: input field of the bright component. Black solid lines: input

field of the dark component. The red solid lines in each case illustrate a rescaled form of V (x) to

indicate the location of the potential wells.

Our numerical computations show that, in absence of coupling between the modes,

the bright soliton can be identified in the first gap for µ1d + ν < µb < µ1d (i.e. µb ∈

[0.6192, 0.6755], and ν here as well as below denotes an appropriate shift) whereas bubble-

type solutions also exist for µ2u + ν < µd < µ2u (i.e. µd ∈ [0.4618, 0.5181]). Due to the

nonlinear shift of the excited second band towards lower values of µ, the propagation con-

stant of the bubble falls into the range of first gap of the linear band strucure [43]. In

turn, the dark soliton can be identified for lower values of the propagation constant, namely

for µ3u + ν < µd < µ3u (i.e. µd ∈ [0.3004, 0.3567]). In the case of the two coupled beam

components within the waveguide array, the existence interval is narrower. Furthermore,

the existence range depends qualitatively on the symbiotic / non-symbiotic character of the
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FIG. 6: (Color online) Existence range for bubble-bright (left) and dark-bright (right) solitons.

Relevant endpoints of the linear spectrum (and cutoff points below which we were unable to

continue the solution) are denoted by corresponding horizontal or vertical dashed lines.

soliton. More specifically, the accessible range of µd, for a given µb, is always wider for sym-

biotic solitons than for non-symbiotic ones. Additionally, the existence range of symbiotic

solitons is limited from above by µ1u. Figure 6 depicts the existence range for dark-bright

and bubble-bright symbiotic as well as non-symbiotic solitary waves.

We have examined the linear stability of the obtained solutions, finding that the relevant

waveforms are generically unstable in the spectral sense. I.e., we have identified an imaginary

or complex eigenfrequency associated with the linearization spectrum around these profiles,

however the growth rate is typically fairly small (. 10−3 in non-dimensional units, i.e.,

. 0.05 mm−1 in dimensional units) and always less than 10−2 in non-dimensional units

corresponding to 0.5 mm−1 in dimensional ones. Consequently, instabilities appear at a

sufficiently large propagation distance X (inversely proportional to the above growth rate).

Figure 7 shows the growth rate dependence with ∆neff,d and ∆neff,b for the four analyzed

structures; notice the colorbar on the right indicating the magnitude of the respective growth

rates. In order to test the effect of instabilities, a random perturbation of magnitude ∼ 10−3

is introduced to the input field profile. The main dynamical observed outcome is the mobility

of the dark component of the soliton. This implies a break-up of the structure; however,

there are two realizations thereof depending on the symbiotic or non-symbiotic nature of the

state. In the case of a non-symbiotic solitons (i.e., for NS-BBS and for NS-DBS), the bright

component remains at rest forming a genuine bright gap soliton. On the other hand, in the
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FIG. 7: (Color online) Growth rates for bubble-bright (top) and dark-bright (bottom) solitons.

Left (resp. right) panels correspond to symbiotic (resp. non-symbiotic) structures.

symbiotic solitons, this is impossible due to the non-existence of a bright waveform of this

type. Hence, most of the bright component energy moves towards the opposite direction

of the dark component in the case of the bubble (i.e., for S-BBS) while part of the energy

moves with the dark component. For the S-DBS, most of the energy appears to move

together with the dark component. A summary of this scenario is shown in the panels of

Fig. 8. To indicate the growth rates and unstable eigenmodes of the solutions dynamically

followed in Fig. 8, we show in Fig. 9 their respective spectral planes. It is worth remarking

that, in most cases, the instabilities are of exponential and oscillatory type, except in the

case of S-BBS, where most of the instabilities are purely oscillatory. On the other hand,

to connect these results with the experimental motivation of Section II, let us point out

that for the NS-BBS considered therein the increase of the power is tantamount to a larger

instability growth rate and hence the observation of the mobility of the dark component,
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while the bright one forms a genuine gap soliton in agreement with our numerics (top panel

of Fig. 8). This repulsive effect between the two components is also evident through the

blocking of the bright channel and the restoration of the bubble at the center, while the

reintroduction of the interaction between the beams naturally and reversibly reinstates the

repulsive bubble mobility effect.

V. CONCLUSIONS AND FUTURE CHALLENGES

In the work presented in this paper, we have considered the case of two-component dark-

bright type solitary wave states in defocusing photorefractive waveguide arrays. Motivated

by experiments in LiNbO3 arrays, which illustrated a bubble-type soliton state in one com-

ponent coupled to a bright gap solitary wave in the second one, we delved into a theoretical

examination of the different composite states that can emerge in this system. In particu-

lar, we revealed the potential for four distinct types of waves, namely non-symbiotic and

symbiotic, dark-bright and bubble-bright ones. We numerically revealed (within a model

benchmarked against the linear band structure) the persistence boundaries of such solutions.

We also analyzed their linear stability which exhibits a typically weak instability in all of

them (with fairly small growth rates). This instability is so weak that it permits, appar-

ently, the experimental observability of the states. Nevertheless, in suitable regimes even

the experimental dynamics manifests the potential break-up of the composite states.

Naturally, this investigation paves the way for numerous additional studies. On the

one hand, from an experimental viewpoint it would certainly be interesting to identify the

other proposed structures. On the other hand, investigating interactions of such composite

structures would also offer relevant insights as was done experimentally e.g. with simpler

states in [22], or as was done numerically in [40] and in different (BEC) dark-bright contexts

in [36, 38]. Generalizations of such states in two-dimensional waveguide arrays with the

formation of vortex-bright states [39] or of genuinely discrete variants thereof [44] would

also be an exciting theme for future investigations.
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FIG. 8: (Color online) Top row: propagation of the squared modulus of the electric field for the

dark (left) and bright (right) components of a NS-BBS with µd = 0.48 and µb = 0.635. Second

row: propagation of the squared electric field for the dark (left) and bright (right) components of

a S-BBS with µd = 0.48 and µb = 0.67. Third row: propagation of the squared modulus of the

electric field for the dark (left) and bright (right) components of a NS-DBS with µd = 0.32 and

µb = 0.64. Bottom row: propagation of the squared electric field for the dark (left) and bright

(right) components of a S-DBS with µd = 0.31 and µb = 0.66 .
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FIG. 9: (Color online) Stability panels for the solitons of Fig. 8, namely for the NS-BBS in the top

left, the S-BBS in the top right, the NS-DBS of the bottom left and S-DBS of the bottom right.
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