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Abstract

An assembly of non interacting atoms may become correlated upon interaction with entangled

photons, and certain elements of their joint density matrix can then show collective resonances. We

explore experimental signatures of these resonances in the nonlinear response of a pair of two-level

atoms. We find that these resonances are canceled out in stimulated signals such as pump-probe

and two photon absorption due to destructive interference of two-photon-absorption and emission

pathways in the joint two-particle space. However, they may be observed in photon statistics

(Hanbury-Brown Twiss) measurements through the attenuation of two-time intensity correlations.
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I. INTRODUCTION

Two photon absorption of entangled photon pairs has been in the focus of extensive

current research. The linear (rather than quadratic) scaling of the signal with the incident

entangled photon generating laser intensity is promising for imaging applications, since it

allows to use much lower intensities[1–3], and avoid damage to the sample. Sources of non

classical light with entangled photons are currently widely used in quantum information

processing and secure communication.

Since the interaction with entangled photons can induce correlations and entanglement of

otherwise uncorrelated atoms, it is natural to expect new collective many-particle resonances

in the nonlinear response [18].

The standard calculation of the non linear response to classical light assumes that the

matter is made up of N non interacting systems (atoms or molecules) in the active zone. The

individual nonlinear susceptibilities or response functions of these atoms are additive; For

identical atoms it is sufficient to calculate the susceptibility of a single atom and multiply

it by N . The nonlinear response becomes then a single body problem and no cooperative

resonances are expected. It is not obvious how to rationalize the N scaling for non inter-

acting atoms had we chosen to perform the calculation in the many body space. Massive

cancellations of most light matter pathways recover in the end the final N signal scaling

[4].

When the atoms are coupled, the calculation needs to be done in their direct-product

many-body space whose size grows exponentially with N (∼ nN dimensions for n-level

atoms). For measurements with weak optical fields, only a smaller, power-law scaling,

subspace with few excitations is needed, e. g. the third order response only depends on

∼ N single exciton states and ∼ N(N − 1)/2 two exciton states. Multiexcitonic states show

up in the response of molecular aggregates such as photosynthetic complexes [5].

The interatomic coupling can be induced by the exchange of virtual photons leading to

dipole-dipole and cooperative spontaneous emission, superradiance [6]. In an insightful ar-

ticle [7], which inspired other work [8, 9], it was argued, that using time ordered entangled

photon pairs, two-body two-photon resonances, where two particles are excited simultane-

ously, can be observed in two photon absorption. This implies that the nonlinear response

is no longer additive and does not scale as N . Such cooperativity is not possible with clas-
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sical or coherent light field. Arguments were made that these are induced in two photon

absorption by the manipulation of the interference among pathways.

One consequence of this prediction is that the fluorescence from one atom can be en-

hanced by the presence of a second atom, even if they do not interact. This could be an

interesting demonstration of quantum nonlocality and the EPR paradox. In this paper we

use a superoperator formalism [10] to compute the nonlinear response to entangled light

and examine these arguments more closely. We investigate the destructive interference of

pathways for a pair of uncoupled two level atoms and analyze in which optical observables

the two photon resonances could be detected. We neglect direct interactions through the

exchange of photons, where cooperative effects are well known to occur, and only consider

uncoupled atoms, as was done in [7].

We find that pump probe signals contain no signature of particle correlations. They

remain additive ∼ N scaling. Two particle resonances then cancel out by destructive inter-

ference of pathways in the two body space and collective two photon absorption resonances

are absent, as in the case of classical light. However, Hanbury-Brown Twiss correlations [11]

do show signatures of cooperativity.

In Section II, we discuss the matter correlation induced by entangled photons, then

in Section III, we show that the two particle resonances in pump probe signals interfere

destructively. Finally in Section IV, we show how they can be observed through attenuation

of the photon-photon correlations.

II. CORRELATIONS INDUCED IN MATTER BY ENTANGLED PHOTONS

We consider two non-interacting atoms A and B coupled to the radiation field and de-

scribed by the Hamiltonian:

H = HA +HB +HF +HA
int +HB

int, (1)

HA
int = ṼAẼ, HB

int = ṼBẼ. (2)

Here HA and HB are the matter Hamiltonians and ṼA and ṼB are the dipole operators of

atoms A and B, HF is the field Hamiltonian and Ẽ is the total optical electric field operator.

We assume that the density matrix of the entire system is initially in a factorisable state:

ρ(t0) = ρA,0 ⊗ ρB,0 ⊗ ρph,0. (3)
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In the following we will use the interaction picture, where all time dependent operators

evolve with H0 = HF +HA +HB. The bookkeeping is greatly simplified by formulating the

problem using superoperators: For an arbitrary ordinary operator O, we define OLρ = Oρ

(left action) and ORρ = ρO (right action). We further define their linear combinations

O− = OL − OR and O+ = 1
2
(OL + OR) [19]. The time dependent density matrix is then

given by:

ρ(t) = T exp(−
ı

~

∫ t

t0

HA
int,−(τ)dτ −

ı

~

∫ t

t0

HB
int,−(τ)dτ)ρ0,Aρ0,Bρph,0. (4)

Here T is the time ordering operator, which when acting on products of superoperators, it

reorders them with increasing time arguments from right to left.

If the radiation field is classical then the matter density matrix factorizes and atoms A

and B remain uncorrelated at all times[12]:

ρ(t) = ρA(t)ρB(t) (5)

with:

ρA(t) = T exp(−
ı

~

∫ t

t0

HA
int,−(τ)dτ)ρ0,A, (6)

ρB(t) = T exp(−
ı

~

∫ t

t0

HB
int,−(τ)dτ)ρ0,B . (7)

This result remains valid for quantum fields, as long as all relevant field modes are in a

coherent state, and cooperative spontaneous emission is neglected and therefore behave

classically [10, 13].

For a quantum field we substitute Eq. (2) in Eq. (4) and obtain:

ρ(t) = T exp(−
ı

~

∫ t

t0

Ṽ A
L (τ)ẼL(τ)−

ı

~

∫ t

t0

Ṽ B
L (τ)ẼL(τ)

+
ı

~

∫ t

t0

Ṽ A
R (τ)ẼR(τ) +

ı

~

∫ t

t0

Ṽ B
R (τ)ẼR(τ))ρ0,Aρ0,Bρph,0. (8)

We define the reduced matter density matrix in the joint space w := trph(ρ). Upon expanding

Eq. (8) order by order in the field operators and tracing over the field modes, we obtain the

formal expansion:

w(t) =
∑

ν

∫ t

t0

dτ1 . . .

∫ t

t0

dτnν

∫ t

t0

dτ ′1 . . .

∫ t

t0

dτ ′mν
ρνA(τ1 . . . τnν

)ρνB(τ
′
1 . . . τ

′
mν

)

Fν(τ1 . . . τnν
, τ ′1 . . . τ

′
mν

). (9)
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where ν is summed over all possible pathways. Pathway ν has nν Ṽ A interactions and

mν Ṽ
B interactions. ρνA (ρνB) are time ordered products of system A (system B) operators

and Fν(τ1 . . . τnν
, τ ′1 . . . τ

′
mν

) are time ordered field correction functions. In each term of this

perturbative order by order calculation all the correlation functions are factorized between

the three spaces. The factorization Eq. (5) now no longer holds and atoms A and B may

become correlated or even entangled. We shall apply Eq. (9) in the following. Note that

pathways with nν = 0 ormν = 0 are single body pathways, where all interactions occur either

with system A or with B. Our interest is in the two body pathways, that can contribute to

collective response, where both nν and mν are finite.

Figure 1: The four unrestricted open-loop diagrams, which represent Pab(t). For rules see Ref. 14.

These diagrams correspond respectively to the integrands of the four terms in Eq. (A1).

A. Fourth order two body contributions to the density matrix

We assume that systems A and B are two-level atoms. The joint system has three states:

state |a〉 where system A is excited and system B is in ground state, |b〉 where system B is

excited and system A is in ground state and the state |ab〉 where both systems are excited.

The material Hamiltonian H0,el expanded in this basis thus reads:

HA +HB = ~εa|a〉〈a|+ ~εb|b〉〈b|+ ~(εa + εb)|ab〉〈ab|. (10)
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Hereafter we shall treat the matter-light interaction in the rotating wave approximation

(RWA). To that end, we partition Ẽ and Ṽ into positive (E, V ) and negative frequency (E†,

V †) components Ẽ = E + E† and Ṽ = VA + VB + V †
A + V †

B with:

VA = µa(|g〉〈a|+ |b〉〈ab|),

VB = µb(|g〉〈b|+ |a〉〈ab|),

Hint = VAE
† + VBE

† + V †
AE + V †

BE. (11)

We first calculate the population of the |ab〉 state Pab(t) = tr(|ab〉〈ab|ρ(t)) to lowest order

µ2
Aµ

2
B of two body contributions. It can be represented by the unrestricted loop diagrams

shown in Fig. 1 (see [14] for a rules and definitions).

The four terms corresponding to the four diagrams are given in Eq. (A1). They can be

combined to a single term with non ordered time variables.

Pab(t) =
(

−
ı

~

)4
∫ t

t0

dt1

∫ t

t0

dt3

∫ t

t0

dt2

∫ t

t0

dt4〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t4)E
†(t2)E(t3)E(t1)〉. (12)

Since systems A and B are uncoupled, the relative time orderings of interactions with systems

A and B is immaterial: A prior interaction of system A does not change system B at all and

vice versa. This is why we could combine the four diagrams to yield a single term with non

time ordered time variables.

We note that if the system starts in a pure state |ψ〉, we can express Pab(t) as transition

matrix between the initial state |ψ〉 and the final state |ψ′〉 as:

Pab(t) =

∣

∣

∣

∣

∫ t

t0

dt1

∫ t

t0

dt2µAµBe
−ıεat1−ıεbt2〈ψ|E(t2)E(t1)|ψ

′〉

∣

∣

∣

∣

2

:= |Tab(t)|
2 (13)

with V †
A(t1) = eıεat2µA(|a〉〈g|+ |ab〉〈b|).

We first evaluate Eq. (12) using a classical field composed of two modes ωα and ωβ, which

is switched on at t = t0:

Ẽ(t) = θ(t− t0)(Eαe
ıωαt + Eβe

ıωβt) + c.c.. (14)
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Tab(t) is then given by:

Tab(t) =

∫ t

t0

dt2

∫ t

t0

dt4E
†(t4)E

†(t2)e
−ıEat2−ıEbt4

= −
Aαb(t)Aαa(t)

(εb − ωα − ıγ)(εa − ωα − ıγ)
−

Aαb(t)Aβa(t)

(εb − ωα − ıγ)(εa − ωβ − ıγ)

−
Aβb(t)Aαa(t)

(εb − ωβ − ıγ)(εa − ωα − ıγ)
−

Aβb(t)Aβa(t)

(εb − ωβ − ıγ)(εa − ωβ − ıγ)
(15)

with γ → 0 and

Aνm(t) = Eν(e
ı(ων−εm)t0−γt0 − eı(ων−εm)t−γt). (16)

We can further recast this as a product of probabilities, as expected from Eq. (5) for the

classical case:

Pab(t) =

∣

∣

∣

∣

ıAαa(t)

(εa − ωα − ıγ)
+

ıAβa(t)

(εa − ωβ − ıγ)

∣

∣

∣

∣

2 ∣
∣

∣

∣

ıAαb(t)

(εb − ωα − ıγ)
+

ıAβb(t)

(εb − ωβ − ıγ)

∣

∣

∣

∣

2

. (17)

This expression contains only single particle resonances ωa−ωα, ωb−ωβ and no two photon

resonances ωa + ωb − ωα − ωβ (cf. [12]).

We next consider a field made of entangled photon pairs of a cascade state |ψc〉 as used

in [7] and described by the wavefunction:

|ψc〉 =
∑

p,q

φp,q|1p, 1q〉,

φp,q =
gpαgqβexp[ı(p+ q) · rR]

(ωp + ωq − ωα − ωβ + ıγα)(ωq − ωβ + ıγβ)
. (18)

Where γα is the lifetime of the upper level of the three level cascade and γβ is the lifetime

of the intermediate state. p and q are the wavevectors of different modes in vacuum and gpα

are coupling constants. ωα is the transition frequency from the highest to the intermediate

state and ωβ is the transition frequency from the intermediate state to the ground state.

The two photon frequency ωp + ωq is distributed around ωα +ωβ with a narrow width of γα

the lifetime of the upper level, whereas the single photon frequencies ωq ωp are distributed

around ωβ (ωα) with a width of γβ (γα) the lifetime of the intermediate (highest) level.

Maximum entanglement occurs for γβ ≫ γα. Using Eq. (18) we have:

〈ψc|E(t2)E(t1)|vac〉 = Aθ(t1 − tR)θ(t2 − t1)e
(ıωβ−γβ)(t2−tR)e(ıωα−γα)(t1−tR)

+Aθ(t2 − tR)θ(t1 − t2)e
(ıωβ−γβ)(t1−tR)e(ıωα−γα)(t2−tR) (19)
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Here, θ(t2 − t1) and θ(t1− t2) assure that photons emitted around ωα come first followed by

ωβ. We assume that the A and B atoms have the same distance from the cascade source, so

that tR is the time retardation (with tR = |rR|/c).

Tab(t) = µAµBA

∫ t

t0

dt2

∫ t

t0

dt4〈ψc|E
†(t4)E

†(t2)|vac〉e
−ıεat2−ıεbt4

=
Abα,aβ(t)

(εb − ωα − ıγα)(εa − ωβ)− ıγβ

+
Aaα,bβ(t)

(εa − ωα − ıγα)(εb − ωβ − ıγβ)

+
ATPA(t)(εa + εb − 2ωβ − ı2γβ)

(εa − ωβ − ıγβ)(εb − ωβ − ıγβ)(εa + εb − ωβ − ωα − ıγα − ıγβ)

(20)

with

Anν,mµ(t) = µAµBA(e
ıωnu(t−tR)−γν(t−tR) − e−ıεmtR−ıεntR), (21)

ATPA(t) = µAµBA(e
−ıεatR−ıεbtR − e−ı(εa+εb)t+ı(ωα−ωβ−γα−γβ)(t−tR)). (22)

The first two terms in Eq. (20) represent single-particle-resonances, where the two sys-

tems are excited individually. They differ only in the time ordering in which the two pho-

tons excite the two systems, so in the first term the interaction with the atom A comes

first and atom B is excited first. The third term represents collective two photon reso-

nances εa + εb − ωβ − ωα. This resonance disappears, if ωα = ωβ and γα = γβ, since then

(εa + εb − ωβ − ωα − ıγα − ıγβ) and εa + εb − 2ωβ − ı2γβ cancel. In that case the two

photon cannot be distinguished, since both parameters ω and γ are the same. Therefore

the entangled photon pair does not include a distinguishable time ordering (no which-way

information) like in the other cases. This causes are full destructive cancellation, since it

contains no information about the time ordering of the photons like in the classical case.

These arguments were made in [7].

Comparing Eq. (15) and Eq. (20), we see that two photon resonances are induced by

the lack of time ordering in the photonic field. This is a second kind of a interference effect,

the first interference, which eliminates one particle observables, was based on the lack of

time ordering of the absorption of the two systems, while this interference effect originally

described in [7] is based on a lack of time ordering of the two photons. Only the single body

single photon resonances remain.
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Figure 2: The six unrestricted open-loop diagrams which represent Pa(t). These diagrams corre-

spond respectively to the integrands of the six terms in Eq. (A2).

In summary, we have demonstrated that after the interaction with entangled photons the

matter density matrix is no longer of a direct product form ρAρB. It becomes correlated

and shows collective two particle resonances.

We next turn to the excited state population of A, which is given by Pab(t)+Pa(t), where

Pa(t) = tr(|a〉〈a|ρ(t)) (the population of the excited state of A is the sum of two terms with

B either in excited or unexcited state). We shall calculate only the ∼ µ2
Aµ

2
B contributions to

Pa, which are relevant to our discussion. There are of course other single body terms ∼ µ2
A

and ∼ µ4
A, which will be ignored. Pa(t) is given by the six diagrams given in Fig, 2 and

corresponding equations are given in Eq. (A2).

Diagrams (ii), (iii), (v) and (vi) contain the normally-ordered field correlation function

〈E†(τ4)E
†(τ3)E(τ2)E(τ1)〉, that entered in Pab (Eq. (12). Here, two photons are first ab-

sorbed and then emitted. Both absorptions are caused by the incident photons and are

therefore stimulated by the external light source. These four terms will be denoted two

photon absorption (TPA) pathways. Note that these products are ordered along the loop but

not in real time. The other two diagrams ((i) and (iv)) contain the 〈E†(t2)E(t3)E
†(t4)E(t1)〉

correlation function. They represent the sequence (along the loop) absorption, emission, ab-

sorption emission, where a photon is absorbed and emitted followed by a second absorption
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and emission of a photon. This can be recast as a normally ordered correlation plus a term

that includes a commutator:

〈E†(t2)E(t3)E
†(t4)E(t1)〉 = 〈E†(t2)E

†(t4)E(t3)E(t1)〉+ 〈E†(t2)[E(t3), E
†(t4)]E(t1)〉 (23)

The second absorbed photon can be either from the external photon field or a spontaneously

emitted photon from the atom, which absorbed the first photons. We shall therefore denote

the second term a spontaneous emission pathway.

Since the commutators are c numbers, this emission and absorption does not depend

on the external fields and is therefore a spontaneous process. The spontaneous emission

pathways introduce a coupling between the two systems, since a photon emitted by system

B can be absorbed by system A. This coupling has both real (dipole-dipole) and imaginary

(superadiance) parts. These couplings will obviously result in collective signals which in-

volve several atoms. We shall consider conditions where these couplings are weak and the

spontaneous terms may be safely neglected. The spontaneous contributions, responsible for

superradiance, are proportional to γ

εa−εb
, where γ is the radiative decay rate. We assume

a large frequency mismatch εa − εb, so that we can make this parameters small. Hereafter

we neglect these contributions [15]. The question we wish to address is whether cooperative

effects exist in this limit through the manipulation of the stimulated pathways.

In the case of classical or coherent fields, the two terms in Eq. (23) can be easily distin-

guished experimentally since the former scale quadratically in the incident light intensity,

whereas the latter scale linearly. For measurements with entangled photon pairs. Both scale

linearly and the distinction is less obvious.

Pa(t) includes also spontaneous contributions. For them the time ordering between atoms

A and B is crucial Eq.(A2), by causality since a photon can only be absorbed, if it was

emitted before the absorption. If we neglect the spontaneous contributions and only include

the stimulated ones, we can write it also as a single term with non time ordered variables

(cf. Fig. 2 and Eq. (A2):

Pa(t) = −Pab(t), (24)

so that the population of the excited state of A Pa(t) + Pab(t) is zero and is not affected by

the collective resonances. Those resonances present processes, where the state with atom

B unexcited transfers to the state with an excited atom B without affecting the reduced
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density matrix of A ρA. We thus do not expect any enhanced fluorescence from A. The two

photon absorption signal vanishes.

Below, we show in an alternative way, why single particle properties are not affected by

two body contributions. In Liouville space the time dependent density matrix is given by

Eq. (4). We now make use of the algebraic relation of superoperators[10]:

Hint,− = E+V− + E−V+. (25)

Let us first assume, that the electric field operators commute and set E− = 0. We then

calculate the expectation value of a system A operator OA:

tr(OAρ(t)) = tr(OAT exp

(

−
ı

~

∫ t

t0

E+(t
′)V A

− (t′)dt′
)

exp

(

−
ı

~

∫ t

t0

E+(t
′)V B

− (t′)dt′
)

ρA,0ρB,0ρph,0). (26)

Since the trace of a commutator vanishes and since there are only V B
− operators for system

B, then all correlation functions of the form 〈V B
− V

B
− · · ·V B

− 〉 = 0. The only contributing

terms are when the second exponent is expanded to the zeroth order. We thus get

tr(OAρ(t)) = trph(trA(OATAexp

(

−
ı

~

∫ t

t0

E+(t
′)V A

− (t′)dt′
)

ρA,0)ρph,0). (27)

The nonlinear response function is thus additive despite the non linearity (Eq. (28)), where

SA (SB) is given by the response of the isolated system A (B). There are no cooperative terms.

The E−V+ terms in Eq. (25), which were ignored in the argument contain field commutators

and are responsible for the spontaneous terms, which represent radiative transfer and were

neglected in this work.

III. TWO-BODY CONTRIBUTIONS TO THE PUMP-PROBE SIGNAL CANCEL

BY INTERFERENCE

In Section II, we argued based on the analysis of matter pathways, that the two photon

absorption signal should show no collective two particle contributions. Here we derive the

same result it by calculating the pump probe signal directly. We show that this signal

contains no collective resonances. Two photon absorption is a component of the pump

probe signal and thus does not show such resonances.
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Pump probe signals are obtained by a superposition of the field generated in the sample

with an external (local oscillator) field Ed. They are given by [10]:

Spp = SA + SB, (28)

Sν(t) = Im(tr(E†
d(t)Vν(t)ρ(t))) ν = A,B, (29)

where Ed denotes the group of modes of the optical field, which are detected. Starting with

Eq. (9), the pump probe signal of A and B has the general form:

Spp(t) =
∑

ν

∫ t

t0

dτ1 . . .

∫ t

t0

dτnν

∫ t

t0

dτ ′1 . . .

∫ t

t0

dτ ′mν
(trA(VAρ

ν
A(τ1 . . . τnν

))trB(ρ
ν
B(τ

′
1 . . . τ

′
mν

))

+trA(ρ
ν
A(τ1 . . . τnν

))trB(VBρ
ν
B(τ

′
1 . . . τ

′
mν

)))

Fν(τ1 . . . τnν
, τ ′1 . . . τ

′
mν

). (30)

We focus on the third order two body contribution:

S
(3)
A (t) =

( ı

~

)3
∫ t

t0

dt3

∫ t3

t0

dt2

∫ t2

t0

dt1Im(〈E†
d(t)Va(t)Hint,−(t3)Hint,−(t2)Hint,−(t1)〉). (31)

(SB can be obtained similarly). In fourth order it contains single particle parts S
(3)
A (t), ∼ µ4

A

and two body parts S
(3)
A (t), ∼ µ2

aµ
2
b . As before, we only consider the lowest order two body

∼ µ2
Aµ

2
B terms, which can show collective effects.

S
(3)
A (t) can be represented by the six close time path loop (CTPL) diagrams shown in

Fig. 3 (For rules see [14]):

S
(3)
A (t) = S

(3)
ia (t) + S

(3)
ib (t) + S

(3)
iia (t) + S

(3)
iib (t)

+S
(3)
iii (t) + S

(3)
iv (t)− c.c.. (32)

Paths (ia) and (ib), include two photon transitions. They have a negative sign, due the odd

number of interactions on the right side of the diagram:

S
(3)
ia (t) = −

( ı

~

)3
∫ t

t0

dt2

∫ t2

t0

dt1

∫ t

t0

dt3〈VA(t)V
†
A(t1)〉〈VB(t3)V

†
B(t2)〉〈E

†(t3)E
†
d(t)E(t2)E(t1)〉,

S
(3)
ib (t) = −

( ı

~

)3
∫ t

t0

dt2

∫ t2

t0

dt1

∫ t

t0

dt3〈VA(t)V
†
A(t2)〉〈VB(t3)V

†
B(t1)〉〈E

†(t3)E
†
d(t)E(t2)E(t1)〉.

(33)

We can combine the two paths by interchanging the times t1 and t2 in S
(3)
ib and introducing
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Figure 3: The six closed time path loop (CTPL) diagrams for the two body pump probe signal

generated at atom A Eq. (32). For rules see Ref. 14. Here the observation time t is always

chronologically the last but is obviously not the last along the loop. (i) Eq. (33) and (ii) Eq. (35)

use TPA pathways (two absorption processes followed by two emissions along the loop), (iii) Eq.

(37) and (iv) Eq. (38) are emission pathways (absorption, emission, absorption, emission) along

the loop. Similar diagrams apply to the signal genrated at system B by interchanging the indices

a and b.

a field commutator [E(t1), E(t2)], which vanishes in this case:

S
(3)
i (t) = S

(3)
ia (t) + S

(3)
ib (t),

S
(3)
i (t) = −

( ı

~

)3
∫ t

t0

dt2

∫ t

t0

dt1

∫ t

t0

dt3〈VA(t)V
†
A(t1)〉〈VB(t3)V

†
B(t2)〉〈E

†(t3)E
†
d(t)E(t2)E(t1)〉.

(34)

Repeating the same steps for pathways (iia) and (iib), we obtain:

S
(3)
iia (t) =

( ı

~

)3
∫ t

t0

dt3

∫ t3

t0

dt2

∫ t2

t0

dt1〈VA(t)V
†
A(t1)〉〈VB(t3)V

†
B(t2)〉〈E

†
d(t)E

†(t3)E(t2)E(t1)〉,

S
(3)
iib (t) =

( ı

~

)3
∫ t

t0

dt3

∫ t3

t0

dt1

∫ t1

t0

dt2〈VA(t)V
†
A(t1)〉〈VB(t3)V

†
B(t2)〉〈E

†
d(t)E

†(t3)E(t2)E(t1)〉,

S
(3)
ii (t) = S

(3)
iia (t) + S

(3)
iib (t),

S
(3)
ii (t) =

( ı

~

)3
∫ t

t0

dt3

∫ t3

t0

dt1

∫ t3

t0

dt2〈VA(t)V
†
A(t1)〉〈VB(t3)V

†
B(t2)〉〈E

†
d(t)E

†(t3)E(t2)E(t1)〉.

(35)

Alternatively Eq. (35) can be obtained directly from Eq. (34) by changing the temporal

arguments of V †
B and V †

A and relabeling of the times.
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Pathway (iii), which represents a ground state bleaching process is given by:

S
(3)
(iii)(t) =

( ı

~

)3
∫ t

t0

dt1

∫ t1

t0

dt3

∫ t3

t0

dt2〈VA(t)V
†
A(t1)〉〈VB(t3)V

†
B(t2)〉〈E

†
d(t)E(t1)E

†(t3)E(t2)〉.

(36)

We shall bring the product of field operators into a normal form and add a commutator (see

Eq. (A3)):

S
(3)
(iii)(t) =

( ı

~

)3
∫ t

t0

dt1

∫ t1

t0

dt3

∫ t3

t0

dt2〈VA(t)V
†
A(t1)〉〈VB(t3)V

†
B(t2)〉〈E

†
d(t)E

†(t3)E(t2)E(t1)〉

+
( ı

~

)3
∫ t

t0

dt1

∫ t1

t0

dt3

∫ t3

t0

dt2〈VA(t)V
†
A(t1)〉〈VB(t3)V

†
B(t2)〉〈E

†
d(t)[E(t1), E

†(t3)]E(t2)〉.

(37)

Finally diagram (iv) which represents excited state emission gives:

S
(3)
(iv)(t) =

( ı

~

)3
∫ t

t0

dt1

∫ t

t0

dt2

∫ t2

t0

dt3〈VA(t)V
†
A(t1)〉〈VB(t3)V

†
B(t2)〉〈E

†(t3)E(t2)E
†
d(t)E(t1)〉.

(38)

as we did in Eq. (37), we shall use Eq, (A3) and recast it as:

S
(3)
(iv)(t) =

( ı

~

)3
∫ t

t0

dt1

∫ t

t0

dt2

∫ t2

t0

dt3〈VA(t)V
†
A(t1)〉〈VB(t3)V

†
B(t2)〉〈E

†
d(t)E

†(t3)E(t2)E(t1)〉

+
( ı

~

)3
∫ t

t0

dt1

∫ t

t0

dt2

∫ t2

t0

dt3〈VA(t)V
†
A(t1)〉〈VB(t3)V

†
B(t2)〉〈E

†(t3)[E(t2), E
†
d(t)]E(t1)〉.

(39)

Upon combining pathways (i)-(iv), we find that the stimulated contributions propor-

tional to 〈E†
d(τ4)E

†(τ3)E(τ2)E(τ1)〉 interfere destructively and cancel out, leaving only the

spontaneous emission terms:

S
(3)
A (t) =

(

−
ı

~

)3
∫ t

t0

dt1

∫ t1

t0

dt3

∫ t3

t0

dt2〈VA(t)V
†
A(t1)〉〈VB(t3)V

†
B(t2)〉〈E

†
d(t)[E(t1), E

†(t3)]E(t2)〉

+
(

−
ı

~

)3
∫ t

t0

dt1

∫ t

t0

dt2

∫ t2

t0

dt3〈VA(t)V
†
A(t1)〉〈VB(t3)V

†
B(t2)〉〈E

†(t3)[E(t2), E
†(t)d]E(t1)〉.

(40)

Here the commutator [E(t1), E
†(t3)] appears, E(t) =

∑

sCse
−ıωstas which is directly

connected to the commutator [as, a
†
s′] = δss′. Eq. (40) describes a process, where a photon

is first absorbed by system B. Then another photon is spontaneously emitted and absorbed
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by system A. This term scales like linear response times the spontaneous emission rate, it

describes radiative transfer.

Obviously two photon absorption resonances ωα+ωβ = ωa+ωb of two uncoupled systems

do not occur when the driving fields are classical. The mechanism of interference presented

in [7] was different, from the destructive interference mechanism described here. These

details will be discussed below.

We now discuss the observation of two body resonances. The most obvious observable is

the photon number, so that in the experiment the change of the photon numbers is detected

for the two body part ∆ABnph. In the following, we will use the conservation of the sum of

photon number and exciton number implied by the RWA Hamilton operator. The change in

photon numbers will depend on the following probabilities: The excitation probability of Pab

means that two photon are absorbed (counts twice) and the excitation probability of only

system A Pa and of only system B Pb (we assume that both photons have equal frequency

and are resonant to the two photon absorption):

∆ABnph = −2Pab(t)− Pa(t)− Pb(t). (41)

Now, in the stimulated (emission and TPA) pathways absorption, we know that Pab(t) and

Pa(t) cancel and that Pab(t) and Pb(t) cancel. So for the stimulated pathways, we get:

∆ABnph = 0. (42)

These arguments on a matter perspective [14, 16] are consistent with the more general

results of this section, where we showed that the stimulated two body part vanishes. One

photon observables do not show collective resonances between uncoupled systems. Since our

Hamiltonian connects the photon number with the exciton number, the photon number itself

is a single particle observable like the population of state a or state b and therefore vanishes.

IV. CONCLUSIONS

Since our analysis shows that two photon absorption vanishes by interference, it will be

of interest to identify an observable, that does reveal the resonances of Pab(t). We now show

that this can be done by two photon counting (Hanbury-Brown-Twiss measurements)[11].

For our entangled photon state Eq. (18), the change in the photon-photon correlation

15



∆AB,ph−corr is attributed to any buildup of probability, that the combined system is in

either system A or system B or both, which will cause an reduction of the photon-photon

correlation:

∆AB,ph−corr = −Pab(t)− Pa(t)− Pb(t). (43)

Since Pab(t) now does not enter with a factor two (unlike Eq. (41) the stimulated con-

tributions can only cancel with one of the two other contributions Pa(t) or Pb(t), and we

have:

∆AB,ph−corr = −Pb(t). (44)

The interference mechanism, which caused the cancellation for the stimulated signal and the

photon number, does not lead to a full cancellation, two photon absorption between the two

systems might be observed. The term Pb(t) remains. However, since the stimulated part

Pab(t) and Pb(t) are the same, we can reformulate this quantity as for the stimulated part:

∆AB,ph−corr = Pab(t). (45)

Now the remaining term was used in [7] for the derivation of a two photon absorption. In

order to verify the existence for the attenuation of the photon-photon correlation, we evaluate

Pab(t) or Pb(t), and discuss the possible interference due to the lack of time ordering of the

two absorptions. Since uncoupled systems do not include the information on which path

was selected by the system, because the interaction matrix elements of system A are not

changed by a prior interaction of system B (and vice versa). The calculation of Pab(t) for the

example of an entangled photon pair produced by a cascade state showed, that two body

resonances are indeed present. (cf. Eq.(20))

The changes in the two photon correlation function should be visible in the attenuation

of the photon-photon correlation function. The difference of the photon-photon correlation

of an entangled photon source measured with and without the sample is proportional to

Pab(t). Collective resonances are visible in the photon photon correlation function photon

statistics and not in single particle quantities, such as a two photon absorption.

In summary, in this paper, we have analyzed the destructive interference mechanism

of stimulated two body contributions from uncoupled systems. We found that for single

particle observables (either matter or photon), no two body contributions can be measured

16



in uncoupled atoms by stimulated signals such as pump probe. That means also, that no two

photon resonances can be abserved in this case. However these resonances are measurable

in the photon-photon correlation function.
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Appendix A: Fourth order calculation of excited state populations

Using the diagramatric rules given in [14], we obtain from Fig. 1,

Pab(t) =
(

−
ı

~

)4
∫ t

t0

dt1

∫ t1

t0

dt3

∫ t

t0

dt2

∫ t2

t0

dt4〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t2)E
†(t4)E(t3)E(t1)〉

+
(

−
ı

~

)4
∫ t

t0

dt3

∫ t3

t0

dt1

∫ t

t0

dt2

∫ t2

t0

dt4〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t2)E
†(t4)E(t3)E(t1)〉

+
(

−
ı

~

)4
∫ t

t0

dt1

∫ t1

t0

dt3

∫ t

t0

dt4

∫ t4

t0

dt2〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t2)E
†(t4)E(t3)E(t1)〉

+
(

−
ı

~

)4
∫ t

t0

dt3

∫ t3

t0

dt1

∫ t

t0

dt4

∫ t4

t0

dt2〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t2)E
†(t4)E(t3)E(t1)〉. (A1)
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We used that, since E(t) =
∑

sAse
ıks·r−ıωstas and since [as, as′] = 0 the commutators

[E(t1), E(t2)] vanish. Similary from Fig. 2, we have:

Pa(t) = −

(

−ı

~

)4 ∫ t

t0

dt1

∫ t1

t0

dt4

∫ t4

t0

dt3

∫ t

t0

dt2〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t2)E(t1)E
†(t4)E(t3)〉

−

(

−ı

~

)4 ∫ t

t0

dt4

∫ t4

t0

dt1

∫ t1

t0

dt3

∫ t

t0

dt2〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t2)E
†(t4)E(t3)E(t1)〉

−

(

−ı

~

)4 ∫ t

t0

dt4

∫ t4

t0

dt3

∫ t3

t0

dt1

∫ t

t0

dt2〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t2)E
†(t4)E(t3)E(t1)〉

−

(

−ı

~

)4 ∫ t

t0

dt1

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t4)E(t3)E
†(t2)E(t1)〉

−

(

−ı

~

)4 ∫ t

t0

dt1

∫ t

t0

dt3

∫ t3

t0

dt2

∫ t2

t0

dt4〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t2)E
†(t4)E(t3)E(t1)〉

−

(

−ı

~

)4 ∫ t

t0

dt1

∫ t

t0

dt3

∫ t3

t0

dt4

∫ t4

t0

dt2〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t2)E
†(t4)E(t3)E(t1)〉.

(A2)

We can substitute the relation

〈E†(t2)E(t1), E
†(t4)E(t3)〉 = 〈E†(t2)[E(t1), E

†(t4)]E(t3)〉+ 〈E†(t2)E
†(t4)E(t3)E(t1)〉.(A3)

In the first and forth terms and collect the terms to obtain:

Pa(t) = −
(

−
ı

~

)4
∫ t

t0

dt1

∫ t

t0

dt3

∫ t

t0

dt2

∫ t

t0

dt4〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t4)E
†(t2)E(t3)E(t1〉

−

(

−ı

~

)4 ∫ t

t0

dt1

∫ t1

t0

dt4

∫ t4

t0

dt3

∫ t

t0

dt2〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t2)[E(t1), E
†(t4)]E(t3)〉

−

(

−ı

~

)4 ∫ t

t0

dt1

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt4〈gA|VA(t2)V
†
A(t1)|gA〉〈gB|VB(t4)V

†
B(t3)|gB〉

〈E†(t4)[E(t3), E
†(t2)]E(t1)〉.

(A4)
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The first term is the sum of all six stimulated terms. The other two are the spontaneous

terms.
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