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Abstract

We study quench dynamics of the Bose-Hubbard model by exact diagonalization. Initially the

system is at thermal equilibrium and of a finite temperature. The system is then quenched by

changing the on-site interaction strength U suddenly. Both the single-quench and double-quench

scenarios are considered. In the former case, the time-averaged density matrix and the real-time

evolution are investigated. It is found that though the system thermalizes only in a very narrow

range of the quenched value of U , it does equilibrate or relax well in a much larger range. Most

importantly, it is proven that this is guaranteed for some typical observables in the thermodynamic

limit. In order to test whether it is possible to distinguish the unitarily evolving density matrix from

the time-averaged (thus time-independent), fully decoherenced density matrix, a second quench is

considered. It turns out that the answer is affirmative or negative depending on whether the

intermediate value of U is zero or not.

PACS numbers: 05.70.Ln, 05.30.Jp, 05.30.-d
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I. INTRODUCTION

Out-of-equilibrium dynamics following a quantum quench is intensively studied at

present. The theme is pursued primarily along two intertwined lines. The first one is

about the equilibration and thermalization mechanism of a quantum system [1–11], a fun-

damental yet still open issue in statistical physics. The second one is about the the real-time

dynamical behavior of a many-body system [12–17], which is highly non-trivial in the regime

where the quasi-particle picture breaks down.

Among all the models investigated so far, the Bose-Hubbard model takes a special posi-

tion. As a paradigmatic strongly-correlated model, it can be realized accurately with cold

atoms in optical lattices, and especially, the parameters can be controlled (e.g. changed sud-

denly) to a high degree [18–20]. This nice property makes it an ideal candidate for studying

quantum quench dynamics both theoretically and experimentally. Up to now, in the few

theoretical works on the quench dynamics of the Bose-Hubbard model [3–6, 14, 15], the

state of the system before the quench is always assumed to be the ground state of the initial

Hamiltonian. That is, the system is assumed to be at zero temperature initially. However,

in this paper we shall start from a thermal equilibrium state. One should note that this

scenario is actually more experimentally relevant (surely it is also of great academic interests

in its own right). Because in current experiments, one generally gets not a single tube of cold

atoms, but instead a two-dimensional array of one-dimensional lattices for the cold atoms

[20]. In other words, an ensemble of one-dimensional Bose-Hubbard models is obtained

in one shot. Moreover, in view of the fact that the cold atoms are at finite temperatures

necessarily [21, 22], it is reasonable to start from a thermal state described by a canonical

ensemble density matrix [see Eq. (2) below].

As emphasized by Linden et al. [23], in the pursuit of thermalization, it is important

to distinguish the two closely related but inequivalent concepts of equilibration and ther-

malization. The latter is much stronger and has the trademark feature of the Boltzmann

distribution, whereas the former refers only to the stationary property of the density matrix

of a (sub)system or some physical observables. It is absolutely possible that a system equi-

librates but without thermalization. This is actually the case for the Bose-Hubbard model.

As revealed both in previous works (zero temperature case) [4, 5] and in the present paper

(finite temperature case), the Bose-Hubbard model thermalizes only if the quench amplitude
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is not so large, at least at the finite sizes currently accessible. However, it will be shown be-

low that in a much wider range of parameters, some generic physical observables equilibrate

very well. Among them are the populations on the Bloch states, which are readily measured

by the typical time-of-flight experiment [24]. Remarkably, this is actually guaranteed for

these quantities in the thermodynamic limit, i.e., when the size of the system gets large

enough.

The equilibration behavior of the physical observables poses a question. One is ready to

recognize that the equilibration of the physical observables is largely an effect of interference

cancelation instead of any dephasing or decoherence. Actually, the density matrix evolves

unitarily and in the diagonal representation of the Hamiltonian, its elements simply rotate

at constant angular velocities. A natural question is then, does the time-dependence of

the density matrix has any chance to manifest itself, given that it is almost absent in the

average values of the physical observables? This leads us to consider giving the system

a second quench. The concern is, would the system yield different long-time behaviors

if the second quench comes at different times? It turns out that the answer depends on

whether the intermediate Hamiltonian is integrable or non-integrable. In the former case,

the density matrix shows repeated appreciable recurrences and thus the dependence on the

second quench time is apparent. In the latter case, on the contrary, the density matrix shows

no sign of recurrence and quantitatively similar long-time dynamics is observed for quenches

at different times.

This paper is organized as follows. In Sec. II, the setting of the problem and the basic

approaches are given. In Sec. III, the dynamics after a single quench is studied. The

time-averaged density matrix and the real-time evolution of some physical observables are

investigated in detail. Based on the observation in this Section, we proceed to study the

scenario of a second quench in Sec. IV. Finally, we summarize the results in Sec. V.

II. BASIC FORMALISM

The time-dependent Hamiltonian of the Bose-Hubbard model is (~ = kB = 1 throughout

this paper)

H(t) = −J
M
∑

l=1

(a†lal+1 + a†l+1al) +
U(t)

2

M
∑

l=1

a†la
†
lalal. (1)
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Here M is the number of sites (the total atom number will be denoted as N) and a†l (al) is

the creation (annihilation) operator for an atom at site l. Note that here periodic boundary

condition is assumed. The parameters J and U are the nearest-neighbor hopping strength

and the on-site atom-atom interaction strength, respectively. The dynamics of the system

depends only on the ratio U/J , thus we will fix J throughout and set it as the energy scale.

We say the system is quenched if U is changed suddenly at some time from one value to

another. Experimentally, for cold atoms in an optical lattice, this can be realized by using

the Feshbach resonance.

Assume that initially the parameter U is of value Ui (the corresponding Hamiltonian

is denoted as Hi), and the system is at thermal equilibrium and of inverse temperature

βi = 1/Ti. Denote the m-th eigenvalue and eigenstate of Hi as E
i
m and |ψi

m〉, respectively.
The initial density matrix of the system is then

ρi =
1

Zi

exp(−βiHi) =

D
∑

m=1

pim|ψi
m〉〈ψi

m|, (2)

where Zi =
∑D

m=1 exp(−βiEi
m) is the partition function and pim = 1

Zi
exp(−βiEi

m) is the

probability of occupying the eigenstate |ψi
m〉. Note that D = (M+N−1)!

(M−1)!N !
is the dimension of

the Hilbert space H. The density matrix at time t is given formally as ρ(t) = U(t)ρiU
†(t),

with U(t) = T exp[−i
∫ t

0
dτH(τ)]. Here T means time ordering.

The Hamiltonian H(t) is invariant under the translation (al, a
†
l ) → (al+1, a

†
l+1). This

indicates that the total quasi-momentum of the system q =
∑M−1

k=0 ka†kak (mod M), where

a†k = 1√
M

∑M

l=1 exp(i2πkl/M)a†l is the creation operator for an atom in the k-th Bloch state,

is conserved. This property implies that if the full Hilbert space is decomposed into M

subspaces according to the values of q, i.e., H = ⊕M−1
q=0 H(q), the Hamiltonian and the density

matrix are always block-diagonal with respect to the q-subspaces, i.e.,H(t) = ⊕M−1
q=0 H

(q)(t)

and ρ(t) = ⊕M−1
q=0 ρ

(q)(t) [25, 26]. It is then possible to study the dynamics in each subspace

individually (which saves a lot of computational resource) and then gather the information

together (note that for the expectation values of quantities like a†kak, there are contributions

from each subspace). Here it is necessary to mention that though we should have done

the gathering or averaging process for many quantities studied below, we would rather not

do so, because it is observed that the system behaves quantitatively similar in all the q-

subspaces [27]. A single q-subspace captures the overall behavior very well. Therefore, our

strategy is to focus on some specific q-subspace (q = 1 actually), and take the normalization
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tr(ρ(q)(t)) = 1. It is understood that in the following all Hamiltonians, density matrices,

eigenvalues, and eigenstates refer to those belonging to this specific q-subspace. We will drop

the superscript q for notational simplicity.

III. A SINGLE QUENCH

Suppose at time t = 0 the system is quenched by changing the value of U from Ui to

Uf1 , which is then held on forever. The Hamiltonian later will be denoted as Hf1 , and the

eigenvalues and eigenstates associated will be denoted as Ef1
n and |ψf1

n 〉, respectivley. In the

representation of {|ψf1
n 〉}, the density matrix at time t is then simply (in this paper 〈· · · 〉

means quantum state averaging while · · · means time averaging)

ρ(t) =

Dq
∑

m,n=1

e−i(E
f1
m −E

f1
n )t〈ψf1

m |ρi|ψf1
n 〉|ψf1

m 〉〈ψf1
n |, (3)

where Dq ≃ D/M is the dimension of the specific q-subspace. It will prove useful to define

the time-averaged density matrix

ρ̄ = lim
T→∞

1

T

∫ T

0

dtρ(t)

=

Dq
∑

m,n=1

E
f1
m =E

f1
n

〈ψf1
m |ρi|ψf1

n 〉|ψf1
m 〉〈ψf1

n |. (4)

The time-averaged density matrix is of great relevance for our purposes. First, it is both

time-independent and variable-independent. Second, the time-averaged value of an arbitrary

operator O is given simply by 〈O〉 ≡ limT→∞
1
T

∫ T

0
tr(ρ(t)O)dt = tr(ρ̄O). That is, the time-

averaged density matrix contains the overall information of the dynamics of the system.

Actually, as we will see later, for some quantities which fluctuate little in time, the time-

averaged density matrix tells almost a complete story. Third, the process of averaging over

time is a process of relaxation in that the entropy associated with ρ̄ is definitely no less than

that with the density matrix at an arbitrary time, i.e., S(ρ̄) ≥ S(ρ(t)) = S(ρi). This is a

corollary of the Klein inequality [31] and is reasonable since ρi contains all the information

of ρ̄ while the inverse is invalid. The equality also means that ρ(t) will never be damped,

and time-averaging is essential.
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Note that when Uf1 6= 0, generally there is no degeneracy between the eigenvalues of Hf1.

Therefore the time-averaged density matrix is simply diagonal in the basis of {|ψf1
n 〉}, i.e.,

ρ̄ =

Dq
∑

m=1

〈ψf1
m |ρi|ψf1

m 〉|ψf1
m 〉〈ψf1

m |

≡
Dq
∑

m=1

pm|ψf1
m 〉〈ψf1

m |, (5)

with

pm = 〈ψf1
m |ρi|ψf1

m 〉 = 1

Zi

Dq
∑

n=1

e−βiE
i
n|〈ψi

n|ψf1
m 〉|2 (6)

being the population on the eigenstate |ψf1
m 〉. In the special case of Uf1 = 0, the Hamiltonian

reduces to Hf1 =
∑M−1

k=0 ωka
†
kak, with ωk = −2J cos(2πk/M). In this case, each eigenvalue

is of the form
∑

k nkωk, under the constraints
∑

k nk = N and
∑

k knk ≡ q (mod M), and

there can be level degeneracy. However, we can always make some unitary transforms in

each degenerate subspace to make sure that ρ̄ is in the form of (5).

A. Time-averaged density matrix

Since the time-averaged density matrix provides an overall information of the dynamics

of the system, we look into it first. In Fig. 1, we consider the scenario of starting from the

same initial condition (Ui/J = 1, βiJ = 0.3) but quenching to six different values of Uf1

[28, 29]. In each panel, the logarithms of pm are plotted against the eigenvalues Ef1
m (red

dots). We have compared ρ̄ with a canonical ensemble density matrix ρc, which is defined

as

ρc =
e−βf1

Hf1

tr(e−βf1
Hf1 )

(7)

under the condition tr(ρcHf1) = tr(ρ̄Hf1) = tr(ρiHf1). Here βf1, the final inverse temper-

ature, is the only fitting parameter. In Fig. 1, the green dots which form a straight line

correspond to ρc.

We see that ρ̄ exhibits many interesting features. In the case of Uf1 = 0, ρ̄ agrees well

with ρc throughout the spectrum. In the case of Uf1/J = 2, ρ̄ agrees well with ρc in the

lower part of the spectrum, while deviates from it significantly in the higher part of the

spectrum. But overall the two are in good agreement since the weight of the higher part is

small. The case of Uf1/J = −1 is somewhat the reverse of the Uf1/J = 2 case. It is in the
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FIG. 1: (Color online) Semilog plots of pm versus the eigenvalues Ef1
m (red dots). The initial

state is the same for all the figures, with parameters (M,N, q,Dq) = (9, 9, 1, 2700), Ui/J = 1, and

βiJ = 0.3. The quenched values of U and the fitting inverse temperatures βf1 are shown in the

inserts. For comparison, the data with ρc (green dots) and p′m (blue dots) are also shown. The

black lines at the bottom depict the coarse-grained density of states of Hf1 (just for reference, not

corresponding to the vertical axis).

lower part of the spectrum that ln pm fluctuates wildly. In the higher part ln pm goes almost

linearly. Since the weight is dominated by the lower part, ρc is not a good approximation of

ρ̄. In the strong interaction limits of Uf1/J = ±10, another feature takes place. As a whole,

the red dots do not fall close to a single straight line, but they do form some stripes, and

the stripes are almost parallel with a common slope close to βi. It is easy to recognize that

each stripe corresponds to a bump in the density of states of Hf1.

In order to understand the various features in Fig. 1, we rewrite pm as

pm =
1

Zi

∫ +∞

−∞
dEe−βiEPm(E), (8)

where Pm(E) =
∑

n |〈ψi
n|ψf1

m 〉|2δ(E − Ei
n) is a probability distribution [30] associated with

|ψf1
m 〉. Note that Pm(E) is an intrinsic property of |ψf1

m 〉 independent of βi. We have tried

to characterize the distribution Pm(E) by its mean µm, its second central moment σ2
m, and
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FIG. 2: (Color online) The parameters µm, σm, and κm [see Eq. (9)] characterizing the probability

distributions Pm(E) associated with the eigenstates of Hf1 . Note that Figs. 2a-2f correspond to

Figs. 1a-1f, respectively.

its third central moment κ3m, which are defined as follows,

µm =

∫

dEPm(E)E = 〈ψf1
m |Hi|ψf1

m 〉, (9a)

σ2
m =

∫

dEPm(E)(E − µm)
2, (9b)

κ3m =

∫

dEPm(E)(E − µm)
3. (9c)

These quantities are presented in Fig. 2. These data enable us to understand Fig. 1. Suppose

for a distribution Pm(E) with (µm, σm), we define a Gaussian distribution

P ′
m(E) =

1√
2πσm

exp

(

−(E − µm)
2

2σ2
m

)

, (10)

which shares the same mean and variance with Pm but has vanishing third central moment.

Replacing Pm in Eq. (8) by P ′
m, we get an approximation of pm,

p′m =
1

Zi

exp

(

−βiµm +
1

2
β2
i σ

2
m

)

. (11)

In Fig. 1, the p′m’s are represented by the blue dots. We see that as a whole p′m is a good

approximation of pm, except at the lower part of the spectrum in Fig. 1b. The reason is

clear—the κm’s there are the largest throughout all the figures, which indicates that the cor-
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responding distributions Pm are wide and asymmetric and thus cannot be well approximated

with a Gaussian distribution.

Now we can understand the good fittings in Figs. 1c and 1d. In these two cases, µm is

almost a linear function of Ef1
m , and σ2

m does not vary so much, therefore the exponent in

Eq. (11) goes almost linearly with Ef1
m . The situation is similar in the higher part of the

spectrum in Fig. 2b, and therefore we have a good linear fitting for the higher spectrum

part in Fig. 1b. In contrast, in Fig. 2e, µm varies wildly for adjacent Ef1
m , therefore we see in

Fig. 1e large fluctuations about the straight line. As for the parallel stripes in Figs. 1a and

1f, they are also understandable in terms of Figs. 2a and 2f, where µm form parallel stripes.

It is numerically checked and can be argued that the slopes of the stripes are almost unity.

Actually we have

Ef1
m = 〈ψf1

m |Hf1|ψf1
m 〉

= 〈ψf1
m |Hi|ψf1

m 〉+ (Uf1 − Ui)〈ψf1
m |Hint|ψf1

m 〉, (12)

where Hint =
1
2

∑M

l=1 a
†
la

†
lalal. Note that in the limit of large |Uf1/J |, the kinetic term in

the Hamiltonian (1) can be viewed as a perturbation to the second interaction term. The

spectrum of the latter is highly degenerate and consists of integral multipliers of Uf1 . The

effect of the perturbation is to mix up the eigenstates of the interaction Hamiltonian with

different eigenvalues and smooth the spectrum. That is why there are bumps in the density

of states in Figs. 1a and 1f and two adjacent bumps are placed roughly Uf1 apart. By

perturbation theory, it is easy to show that the second term in Eq. (12) varies on the order

of J2/|Uf1| ≪ J among eigenstates belonging to the same bump. Therefore, approximately

we have µm = Ef1
m − const for each bump and this explains why the stripes in Figs. 2a and

2f are of slope unity. In turn it explains [with the help of Eq. (11)] why we have the parallel

stripes in Figs. 1a and 1f, and especially the slopes are approximately βi.

It seems in Fig. 1 that ρc is a good approximation of ρ̄ only when |Uf1 − Ui| is small.

In Fig. 3, we employ the tools of distance D, fidelity F , and relative entropy Srel (for the

definitions see [31]) between two density matrices to quantify the difference or resemblance

between ρc and ρ̄. There it is clear that only in the range of |Uf1 − Ui|/J ≤ 1, we have

(D, 1− F, Srel) ≪ 1, which means ρ̄ is close to ρc. In the subsequent subsection we will see

that only in this range the expectation values of some generic physical observables according

to ρ̄ and ρc agree well.
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FIG. 3: The distance D and fidelity F between ρc and ρ̄, and the relative entropy of ρc with respect

to ρ̄, as functions of Uf1 . The initial state is the same as in Fig. 1.

B. Time evolution

We now proceed to study the time evolution of the system after the quench. In Fig. 2,

we show the time evolution of the populations on the Bloch states 〈a†kak〉. The six sub-

figures correspond to those in Fig. 1 respectively. For all the Uf1 ’s and all the k’s, 〈a†kak〉
equilibrate to their average values after a transient time, which is relatively longer in the

cases of Uf1/J = −1 and 5. In the special case of Uf1 = 0, there is no fluctuation at all. The

reason is simply that in this case, a†kak are conserved. We see that the time-averaged values

of 〈a†kak〉 predicted by ρ̄ (∗) and ρc (�) agree relatively well in the cases of Uf1 = 0 and 2.

This is consistent with the closeness between ρ̄ and ρc for these two values of Uf1 , as revealed

in Fig. 1 and Fig. 3. Here we would say the system thermalizes well in the Uf1/J = 2 case,

however, we would refrain from making the same statement for the Uf1 = 0 case. The reason

will be clear in the next Section.

Figure 4 is about a finite-sized system with some specific initial condition. However, here

we have some general statements. We argue that in the thermodynamic limit (M,N → ∞
with N/M fixed), as long as initially the system is at finite-temperature thermal equilibrium

and described by a canonical ensemble density matrix as (2), we should see steady behaviors

of the physical variables like a†kak.

Let A = a†kak and A =
∑

mnAmn|ψf1
m 〉〈ψf1

n | in the representation of {|ψf1
m 〉}. The

ensemble-averaged value of A at time t is

a(t) =
∑

mn

ρmnAnm exp[−i(Ef1
m − Ef1

n )t], (13)
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FIG. 4: (Color online) Time evolution of the populations on the Bloch states 〈a†kak〉. The figures

correspond to those in Fig. 1 in a one-to-one manner. In each figure, from up to down, the five

lines correspond to k = 0, . . . , 4. Another k’s are now shown because 〈a†kak〉 and 〈a†M−kaM−k〉 are

close to each other all the time. For each line, the markers of the same color on the right hand

side indicate the average value predicted by ρ̄ (∗) or value predicted by ρc (�), respectively. Note

that in (b) and (e), the time span investigated is longer than that in others. This is because the

transient times in (b) and (e) are relatively longer.

where ρmn ≡ 〈ψf1
m |ρi|ψf1

n 〉. Its time-averaged value is

ā = lim
T→∞

1

T

∫ T

0

dta(t) =
∑

m

ρmmAmm. (14)

Here note that for a generic HamiltonianHf1, there is no level degeneracy. The time-averaged

value of a2(t) is [32]

a2 = lim
T→∞

1

T

∫ T

0

dta2(t)

=
∑

mp

ρmmAmmρppApp +
∑

m6=n

ρmnAnmρnmAmn

=
∑

m

ρmmAmm

∑

p

ρppApp +
∑

m6=n

|ρmn|2|Amn|2

= ā2 +
∑

m6=n

|ρmn|2|Amn|2. (15)

Note that here it is assumed that there is no degeneracy of energy gaps. Thus we have for

11



the variance of a(t) in time, ∆2a = a2 − ā2,

∆2a =
∑

m6=n

|ρmn|2|Amn|2 ≤
∑

mn

|ρmn|2|Amn|2. (16)

Since A is semi-positive definite and bounded, we have |Amn|2 ≤ AmmAnn ≤ N2. Thus we

have

∆2a ≤ N2
∑

mn

|ρmn|2. (17)

Here we note that the summation is the square of the Frobenius norm of ρi in the represen-

tation of {|ψf1
m 〉}, which is invariant in all representations and is preserved by an arbitrary

unitary evolution [33]. Explicitly, we have

∑

mn

|ρmn|2 =
∑

mn

〈ψf1
m |ρi|ψf1

n 〉〈ψf1
n |ρi|ψf1

m 〉

=
∑

m

〈ψf1
m |ρ2i |ψf1

m 〉 =
∑

m

〈ψi
m|ρ2i |ψi

m〉

=
∑

m

(pim)
2. (18)

We argue that this quantity, which depends only on the initial state, decays exponentially

with the size M . Let Ei
m increase with m. We have

∑

m

(pim)
2 < pi1 =

e−βiE
i
1

Zi

=
e−βiE

i
1

e−βiFi
≃ e−βiαM

e−βiγM
, (19)

as M → ∞. Here in the ≃ relation we used the fact the ground state energy Ei
1 of Hi scales

linearly with M as well as the free energy Fi of the initial state [34]. The coefficients α and

γ are independent of M . Moreover, it is easy to see that α ≥ γ for any βi, with the equality

taken only in the limit of βi = +∞ or Ti = 0+, and α− γ increases monotonically with Ti.

This makes sure that pi1 would not grow exponentially with M and transcend unity.

With (17) and (19), we get an upper bound for ∆a,

∆a ≤ cM exp(−βiθM), θ =
1

2
(α− γ) ≥ 0, (20)

where c is some constant. The upper bound of ∆a helps us determine an upper bound for

the probability of finding a(t) deviating away from the mean ā by a distance larger than ǫ.

Actually, following Reimann [35], using the Chebyshev inequality [36], we have

Prob(|a(t)− ā| > ǫ) <
∆2a

ǫ2
. (21)

12



For a fixed value of ǫ, the upper bound decreases exponentially with the size of the system

according to (20). The statement that physical variables like a†ak will show steady behaviors

in the thermodynamic limit then follows.

Here some comments are worthy. Though in the derivation above we have in mind a

sudden quench, it is easy to see that the conclusion actually applies to any protocol of

quench. For example, the Hamiltonian can be changed continuously over some period (as

in [14, 15]), or quenched multiple times (as in Sec. IV below), as long as after some point

it is never changed again. The reason lies in that the Frobenius norm of the density matrix

ρ(t) is conserved under unitary evolutions, and thus is independent of the historical or the

final values of H(t), but is determined entirely by the initial state. As for the operator

A, only the properties of semi-positive-definiteness and boundedness are used. Thus similar

conclusions apply to other operators such as a†ka
†
kakak and a

†
lal, or operators in other models.

Finally, it should be mentioned that the conclusion relies on the fact that the quantity in

Eq. (18) is bounded by some exponentially decreasing function, which is the case only at

finite temperatures (βi <∞). At zero temperature, the quantity in Eq. (18) is always equal

to unity and thus the problem is still open.

IV. A SECOND QUENCH: TYPICALITY

It is shown in Fig. 4 that after a finite transient time, the physical variables equilibrate

to their average values exhibiting minimal fluctuations. Moreover, it has been proven that

the amplitudes of the fluctuations will decrease exponentially with the size of the system.

Therefore, the observation is that the system, described by the density matrix ρ(t), is almost

indistinguishable from a system described by the time-averaged density matrix ρ̄, as far as

the simple realistic physical variables are concerned. This is remarkable. Because though

ρ(t) evolves unitarily and suffers no loss of information of ρi, it behaves as if it were fully

decoherenced. The question is then, to what extent can we hold onto this belief? Is it

possible to distinguish ρ(t) and ρ̄, or ρ(t1) and ρ(t2) (t1 6= t2), by some means? Motivated

by this problem, we have considered the scenario of giving the quenched system a second

quench. That is, after the first quench at t = 0 which changes U from Ui to Uf1 , at time

t = t1, the system is quenched again by changing the value of U from Uf1 to Uf2 , which is

then held on forever. The concern is, would the long-time dynamics of the system depends

13



on the specific time t1?

Denote the Hamiltonian associated with Uf2 as Hf2 . The density matrix of the system

later is given by ρ(t) = e−iHf2
(t−t1)ρ(t1)e

iHf2
(t−t1) (for t > t1). As before, we are interested

in the long-time averaged value of ρ(t),

ρ̄t1 = lim
T→∞

1

T

∫ T

0

dtρ(t1 + t), (22)

since it has been shown and proven above that the dynamics of the system is to a large extent

captured by the time-averaged density matrix. Here the subscript indicates the dependence

on the time t1. It is also useful to define the average of ρ̄t1 with respect to t1,

Ω = lim
T→∞

1

T

∫ T

0

dt1ρ̄t1

= lim
T→∞

1

T

∫ T

0

dte−iHf2
tρ̄eiHf2

t. (23)

The second equality means that Ω is actually the time-averaged density matrix associated

with an initial state ρ̄ [see Eqs. (4) and (5)] and a Hamiltonian Hf2 . One purpose of defining

Ω is to set a reference state independent of t1.

To gain an overall idea of the dependence of the long-time dynamics on t1, we have

studied the distance between Ω and ρ̄t1 , D(Ω, ρ̄t1) ≡ 1
2
tr
√

(Ω− ρ̄t1)
2, and the time-averaged

value of 〈a†kak〉,

〈a†kak〉t1 ≡ lim
T→∞

1

T

∫ T

0

dt · tr(ρ(t1 + t)a†kak)

= tr(ρ̄t1a
†
kak), (24)

as functions of t1. Note that the average value of 〈a†kak〉t1 with respect to t1 is given by Ω,

lim
T→∞

1

T

∫ T

0

dt1〈a†kak〉t1 = tr(Ωa†kak). (25)

This is another reason for defining Ω. The quantities D(Ω, ρ̄t1) and 〈a†kak〉t1 are shown in

Fig. 5. Eight pairs of (Uf1 , Uf2) are examined with the same initial condition as in Fig. 1. We

see that for all cases with Uf1 6= 0, both D and 〈a†kak〉t1 settle down to their average values

quickly. However, for the special case of Uf1 = 0, both D and 〈a†kak〉t1 display repeated

recurrences, without any sign of equilibration. The situation is the reverse of that in Fig. 4,

where 〈a†kak〉 does not show any fluctuations in the case of Uf1 = 0.
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FIG. 5: (Color online) The distance D between the matrices Ω and ρ̄t1 (upper panels) and the

time-averaged values of 〈a†kak〉 (lower panels), as functions of the time of the second quench t1.

The dashed lines in the lower panels indicate the average values of the corresponding solid lines,

i.e., values given by Ω [see Eq. (25)]. The initial state is the same as in previous Figures. The

parameters (Uf1 , Uf2) are shown in the inserts.
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FIG. 6: (Color online) The figure-of-merit of recurrence R as a function of time. Also shown are

D(Ω, ρ̄t1) and 〈a†kak〉t1 . Note the correlation between the three in (a) and (c). In (a) and (b),

the initial state is the same as in previous Figures, i.e., (M,N, q,Dq) = (9, 9, 1, 2700), Ui/J = 1,

and βiJ = 0.3. In (c) and (d), the initial state is of (M,N, q,Dq) = (6, 10, 1, 497), Ui/J = 1, and

βiJ = 0.3. The values of (Uf1 , Uf2) are given in the inserts. Note that in (c), the variables are

periodic in t1, with a period of 2π~/J . This agrees with the fact that the energy gaps (Ef1
m −Ef1

n )/J

are all integers in this case.

This phenomenon is due to the recurrence of the density matrix ρ(t) to ρi [37]. From

Eq. (3), we see that in the representation of {|ψf1
m 〉}, the mn-th off-diagonal element of ρ(t)

rotates at an angular frequency of Ef1
m − Ef1

n . In the generic case of Uf1 6= 0, the energy

gaps Ef1
m − Ef1

n are quite random and incommensurate, and thus recurrence of the density
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matrix is rare. More precisely, the span between two times when all the matrix elements of

ρ(t) get (nearly) in phase again is extraordinarily large. On the contrary, in the special case

of Uf1 = 0, all eigenvalues and hence all the energy gaps Ef1
m −Ef1

n are integral combinations

of the few basic frequencies ωk, and thus the probability of recurrence is much higher. To

demonstrate that the sharp peaks in Figs. 5c and 5d are due to recurrences of the density

matrix ρ(t) to ρi, we define the figure-of-merit of recurrence,

R(t) =
|
∑′

m,n ρ
2
m,ne

−i(E
f1
m −E

f1
n )t|

∑′
m,n ρ

2
mn

, (26)

where the prime means the summation is over (m,n) such that Ef1
m 6= Ef1

n . It is clear that

0 ≤ R ≤ 1 and R = 1 when and only when all the off-diagonal elements get in phase.

In Figs. 6a and 6b, which share the same parameters as Figs. 5c and 5e respectively,

we have shown R(t1) together with D(Ω, ρ̄t1) and 〈a†kak〉t1 . In Fig. 6a, we see that every

time D(Ω, ρ̄t1) and 〈a†kak〉t1 get close to their values at t1 = 0, R(t1) shows a peak. In

other words, there is a strong positive correlation between R(t1) and D(Ω, ρ̄t1) and 〈a†kak〉t1 .
In comparison, in Fig. 6b, R(t1) drops quickly from unity to less than 0.2 and remains

low all the time, and in turn D(Ω, ρ̄t1) and 〈a†kak〉t1 do not show any recurrence. To further

consolidate the connection between the recurrence of ρ(t) and that of D(Ω, ρ̄t1) and 〈a†kak〉t1 ,
we have considered the case of M = 6. In this case, if Uf1 = 0, all the basic frequencies ωk

(ωk = 0, ±1, or ±2J) are commensurate, and thus there exist perfect recurrences, as shown

in Fig. 6c. There we see clearly that D(Ω, ρ̄t1) and 〈a†kak〉t1 return to their original values

at t1 = 0 periodically, and this happens when and only when R returns to unity. However,

once Uf1 6= 0 is set nonzero (see Fig. 6d) and thus the commensurability of the energy gaps

is destroyed, the situation returns to that in Fig. 6b. Finally, we should mention that by

extensive exploration in the parameter space, it is found that as long as Uf1 = 0 the positions

of the major peaks (such as those in Figs. 5c, 5d, 6a, and 6c) are insensitive to the values

of (N, q, βi, Ui, Uf2), but are almost completely determined by the value of M . This fact

constitutes another support of the connection between the recurrence of the density matrix

and that of D and 〈a†kak〉t1 , since the basic frequencies ωk are determined only by M .

The fact revealed in Fig. 5 and Fig. 6 is quite interesting. The long-time dynamics

of the system is sensitive or insensitive to the time span t1 between the two quenches,

depending on whether the intermediate Hamiltonian Hf1 is integrable (Uf1 = 0) or non-

integrable (Uf1 6= 0). In the integrable case, 〈a†kak〉t1 exhibits large fluctuations and repeated
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FIG. 7: (Color online) Time evolution of the population on the k = 0 Bloch state 〈a†0a0〉 [38]. Other

k’s show similar behavior and thus are not shown. The figures correspond to those in Fig. 5 one-to-

one. The initial state is the same as in Fig. 1 and Fig. 4. In (a)-(d), the different t1’s investigated

are (0, 0.35, 20, 40, 60, 70, 80, 90)~/J , while in (e)-(h), the different t1’s are (0, 0.35, 5, 10, 15, 20)~/J .

Note that in each figure, the black and green lines correspond to t1 = 0 and 0.35~/J , respectively.

recurrences. The system retains the memory of the initial state under the control of the

Hamiltonian Hf1. By contrast, in the non-integrable case, 〈a†kak〉t1 go over to their average

values (predicted by Ω) after a transitory period, showing little dependence on t1 afterwards.

Combined with Fig. 4, the picture is that ρ(t) evolving under the control of a non-integrable

Hamiltonian, not only yields the expectation values of a†kak as if it were ρ̄, but even responds

to the second quench as if it were ρ̄.

In Fig. 7, we have checked this picture by studying the real time evolution of 〈a†kak〉 with
k = 0 under the double-quench scenario. The eight figures shown correspond to those in

Fig. 5 respectively. For each pair of (Uf1 , Uf2), we have studied the evolution of 〈a†0a0〉 for

several different values of t1. We see that in all the cases with Uf1 6= 0, as long as t1 is larger

than the transient time, which can be roughly read from Fig. 5, the later evolution of 〈a†0a0〉
is quantitatively independent of t1. On the contrary, in the case with Uf1 = 0, the later

values of 〈a†0a0〉 vary wildly for different values of t1 [39].

Here it is instructive to combine Fig. 4 and Fig. 7 and compare. In the Uf1 6= 0 cases,

there is a sense of typicality [40, 41]. The density matrix ρ(t) governed by Hf1 is surely

non-stationary. However, for ρ(t) at different times, they yield almost the same expectation
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values for the observables, and moreover, they share almost the same response to the same

quench. In the case of Uf1 = 0, what Fig. 7 reveals is a good complement to that in

Fig. 4c. It demonstrates that it is inappropriate to say that the system thermalizes in

Fig. 4c, even though the density matrices and expectation values of the observables agree—

since according to one’s everyday experience, a system in thermal equilibrium should not

show any time dependence to the same kick.

V. CONCLUSIONS AND DISCUSSIONS

We have studied the quench dynamics of the Bose-Hubbard model both analytically and

numerically. The issues of thermalization and equilibration are investigated comprehensively.

On the thermalization side, which concerns whether the quenched system behaves like

a canonical ensemble, it is found that this is the case only for small-amplitude quenches

(at least for the finite-sized system investigated). However, the time-averaged density ma-

trix does manifest many interesting features in different regimes. These features are self-

consistently understood after a study of the overlaps between the eigenstates of Hi and

Hf1. Here we would like to say that it is urgent and would be very helpful to develop some

analytical tools so that some general relations between the eigen-systems of Hi and Hf1 can

be established. These tools and relations would also be useful to determine whether the

non-thermalization phenomenon observed is just a finite-size effect.

On the equilibration side, where the issue is whether physical observables relax to sta-

tionary values without appreciable fluctuations, the result is that this is indeed the case

for quantities as 〈a†kak〉 which are of most interest. Moreover, it is proven analytically that

for these quantities the fluctuations in time will decay exponentially with the size of the

system. Therefore, the overall picture is that generally the system equilibrates but without

thermalization.

The second quench reveals something more intriguing. First, the subsequent dynamics

depends or not on the waiting time t1 according to Uf1 = 0 or not. The underlying reason is

the recurrence or not of the initial density matrix, which in turn has its root in the eigenvalue

statistics of the Hamiltonian Hf1. This effect leaves us the impression that a non-integrable

Hamiltonian has more “dephasing power” than an integrable one. Possibly it can be a tool

to check the integrability of a Hamiltonian. Second, in the case of Uf1 6= 0, it is found that
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the system described by ρ(t1) responds to the second quench as if it were ρ̄ for t1 larger than

the transient time. This means that we can take the equilibration more seriously—ρ(t1) and

ρ̄ not only yield almost the same expectation values for the generic physical variables but

also yield almost the same dynamics after a quench. Moreover, the fact that the transient

time is short indicates that the intermediate Hamiltonian Hf1, which is non-integrable, is

effective in “dephasing” the initial density matrix. In another perspective, the dynamics of

the system is sensitive to the fluctuations of U . This implies that in future experiments,

accurate control of U would be a necessity to interpret the results correctly.

It is instructive to compare these behaviors of the present system with that of the spin

glass systems. There, under a somewhat similar motivation, a temperature cycle, which is

a counterpart of the double-quench here, is implemented [42]. The interesting observation

is that some quantities exhibit apparent rejuvenation and memory effects—a consequence

of the hierarchically organized quasi-equilibrium states. In comparison, here in our case, no

obvious rejuvenation is present and the memory effect is visible only when Uf1 = 0.
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