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Experimental progress in the study of strongly interacting ultracold atoms has recently allowed the
observation of Efimov trimers. We study theoretically a non-conventional observable for these trimer
states, that may be accessed experimentally, the momentum distribution n(k) of the constitutive
bosonic particles. The large momentum part of the distribution is particularly intriguing: In addition
to the expected 1/k4 tail associated to contact interactions, it exhibits a subleading tail 1/k5 which
is a hall-mark of Efimov physics and leads to a breakdown of a previously proposed expression of
the energy as a functional of the momentum distribution.
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I. INTRODUCTION

Experiments with ultracold atoms have now entered
the regime of strong interactions, thanks to the possibil-
ity to manipulate the s-wave scattering a between cold
atoms with a magnetically induced Feshbach resonance
[1, 2]. This has led to a revolution in the study of the few-
body problem, as one can now have in a controllable way
a scattering length much larger (in absolute value) than
the range b (and the effective range) of the interaction po-
tential. In particular, this has allowed to confirm experi-
mentally [3, 4] the existence of the long-searched Efimov
effect [5–7]: As shown by Efimov in the early 1970’s, three
particles interacting via a short range potential with an
infinite scattering length may exhibit an infinite number
of trimer states with a geometric spectrum. The exis-
tence of an infinite number of bound states is usual, even
at the two-body level, for long range interactions, but
it is quite intriguing for short range interaction poten-
tials. This Efimov effect takes place for three (same spin
state) bosons [6], but it is more general, it also occurs for
example for two (same spin state) fermions and a third
distinguishable particle at least 13.607 times lighter [7, 8].

On the experimental side, an increasing number of ob-
servable quantities are now at hand. For Efimov physics,
the usual evidence of the emergence of an Efimov trimer
state is a peak in the three-body loss rate as a func-
tion of the scattering length [3]. Now radio-frequency
spectroscopic techniques can give a direct access to the
trimer spectrum [4]. For strongly interacting Fermi gases
(without Efimov effect) a very precise measurement of the
atomic momentum distribution n(k) was performed re-
cently, so precise that it allowed to see the large momen-
tum tail n(k) ∼ C/k4, k large but still smaller than 1/b,
and to quantitatively extract the coefficient C whose val-
ues were satisfactorily compared to theory [9]. The same
conclusion holds for the few-body numerical experiment
of [10]. Similarly, the first order coherence function g(1)

of the atomic field over a distance r, a quantity measured

for bosonic cold atoms [11] but not yet for fermionic cold
atoms, is related to the Fourier transform of n(k) and is
sensitive to the 1/k4 tail by a contribution that is non-
differentiable with respect to the vector r in r = 0 [12],
and that appeared in the many-body numerical experi-
ment of [13].

The occurrence of the 1/k4 tail in n(k) is a direct con-
sequence of two-body physics, that is of the binary zero-
range interaction between two particles, and it holds in
all spatial dimensions: According to Schrödinger’s equa-
tion for the zero-energy scattering state φ(r) of two par-
ticles of relative coordinates r, ∆rφ(r) ∝ δ(r) for a con-
tact (regularized Dirac delta) interaction [14], so that in

Fourier space φ̃(k) ∝ 1/k2 and n(k) ∝ |φ̃(k)|2 scales as
1/k4. On the contrary, the coefficient C, called contact,
depends on the many-body properties, and can be related
to the derivative of the gas mean energy (or mean free
energy at non-zero temperature) with respect to the scat-
tering length, as was shown first for bosons in one dimen-
sion [15], then for spin 1/2 fermions in three dimensions
[16–18], and for bosonic or fermionic, three dimensional
or bidimensional systems, in [19].

In this paper, we anticipate that experimentally, it may
be possible to measure with high precision the atomic mo-
mentum distribution in systems subjected to the Efimov
effect, for example in a Bose gas with a large scatter-
ing length [20–23]. To be specific, we consider in the
center of mass frame the Efimov trimer states for three
bosons interacting with infinite scattering length. After
recalling the expression of the three-body wavefunction
in section II, we obtain the expression of the momentum
distribution in terms of integrals over a single momentum
vector in section III, see Eqs.(18,19,20,21,22). As illus-
trated in section IV, this allows to perform a very precise
numerical evaluation of the momentum distribution for
all values of the single-particle wavevector k, and to an-
alytically obtain the large momentum behavior of n(k):
In addition to the expected C/k4 term at large k, we find
an unexpected 1/k5 subleading term, that is a direct and
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generic signature of Efimov physics [24], see (26). An-
other, more formal, consequence of this 1/k5 subleading
term is that the general expression giving the energy as
a functional of the momentum distribution n(k), derived
for the non-Efimovian case in [25] and extended (with
the same form) to the Efimovian case in [26], turns out
to be invalid in the Efimovian case [27]. We conclude in
section V.

II. NORMALIZED WAVEFUNCTION OF AN

EFIMOV TRIMER

A. Three-body state in position space

In this subsection we recall the wavefunction of an Efi-
mov trimer and give the expression of its normalization
constant. We consider an Efimov trimer state for three
same-spin-state bosons of mass m interacting via a zero
range potential with infinite scattering length. In or-
der to avoid formal normalisability problems, it is con-
venient to imagine that the Efimov trimer is trapped in
an arbitrarily weak harmonic potential, that is with a
ground state harmonic oscillator length aho arbitrarily
larger than the trimer size [28]. Since the center of mass
of the system is separable in a harmonic potential, this
fixes the normalisability problem without affecting the in-
ternal wavefunction of the trimer in the limit aho → +∞.
In this case, the energy of the trimer is essentially the free
space energy

Etrim = −~
2κ20
m

, κ0 > 0. (1)

According to Efimov’s asymptotic, zero-range theory [6],

κ0 =

√
2

Rt
e−πq/|s0|eArgΓ(1+s0)/|s0| (2)

where Rt > 0 is a length known as the three-body pa-
rameter [31], the quantum number q is any integer in Z,
and the purely imaginary number s0 = i|s0| is such that

|s0| cosh(
|s0|π
2

) =
8√
3
sinh(

|s0|π
6

), (3)

so that |s0| = 1.00623782510 . . . The corresponding
three-body wavefunction Ψ may be written for κ0aho →
+∞ as

Ψ(r1, r2, r3) = ψCM(C)

[

ψ(r12,
|2r3 − (r1 + r2)|√

3
)

+ψ(r23,
|2r1 − (r2 + r3)|√

3
) + ψ(r31,

|2r2 − (r3 + r1)|√
3

)

]

,

(4)

where C = (r1 + r2 + r3)/3 is the center of mass po-
sition of the three particles and the parameterization of
ψ is related to the Jacobi coordinates r = r2 − r1 and

ρ = [2r3 − (r1 + r2)]/
√
3. In our expression of Ψ, ψCM is

the Gaussian wavefunction of the center of mass ground
state in the harmonic trap, normalized to unity, and ψ is
a Faddeev component of the free space trimer wavefunc-
tion. The explicit expression of ψ is known [6]:

ψ(r, ρ) =
Nψ√
4π

Ks0(κ0
√

r2 + ρ2)

(r2 + ρ2)/2

sin[s0(
π
2 − α)]

sin(2α)
(5)

where Ks0 is a Bessel function and α = atan(r/ρ). The
normalization factor ensuring that ||Ψ||2 = 1 was not cal-
culated in [6]. To obtain its explicit expression, one first
performs the change of variables (r1, r2, r3) → (C, r,ρ),

whose Jacobian is D(r1, r2, r3)/D(C, ρ, r) = (−
√
3/2)3.

To integrate over r and ρ one then introduces hyper-
spherical coordinates in which the wavefunction sepa-
rates; one then faces known integrals on the hyperradius
[32] and on the hyperangles [33]. This leads to [34]:

|Nψ|−2 =

(√
3

2

)3
3π2

2κ20 cosh(
|s0|π
2 )

×
[

cosh(
|s0|π
2

) +
|s0|π
2

sinh(
|s0|π
2

)− 4π

3
√
3
cosh(

|s0|π
6

)

]

.

(6)

B. Three-body state in momentum space

To obtain the momentum distribution for the Efimov
trimer, we need to evaluate the Fourier transform of the
trimer wavefunction Ψ given by (4). Rather than directly
using (5), we take advantage of the fact that, for contact
interactions, the Faddeev component ψ obeys the non-
interacting Schrödinger’s equation with a source term.
With the change to Jacobi coordinates, the Laplace op-
erator in the coordinate space of dimension nine reads
∑3
i=1 ∆ri =

1
3∆C + 2

[

∆r +∆ρ

]

so that

−
[

κ20 −∆r −∆ρ

]

ψ(r, ρ) = δ(r)B(ρ). (7)

The source term in the right hand side originates from
the fact that

ψ(r, ρ) ∼
r→0

−B(ρ)

4πr
(8)

for a fixed ρ, this 1/r divergence coming from the replace-
ment of the interaction potential by the Bethe-Peierls
contact condition. Taking the Fourier transform of (7)
over r and ρ leads to

ψ̃(k,K) = − B̃(K)

k2 +K2 + κ20
, (9)

where the Fourier transform is defined as B̃(K) ≡
∫

d3ρ e−iK·ρB(ρ). B(ρ) is readily obtained from (5) by
taking the limit r → 0:

B(ρ) = −Nψ(4π)
1/2i sinh(

|s0|π
2

)
Ks0(ρ)

ρ
. (10)
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The Fourier transform of this expression is known, see
relation 6.671(5) in [32], so that

B̃(K) =
−2π5/2Nψ

K(K2 + κ20)
1/2

{

[

(K2 + κ20)
1/2 +K

κ0

]s0

− c.c.

}

(11)

where c.c. stands for the complex conjugate. Note that
the expression between the curly brackets simply reduces
to 2i sin(|s0|α) if one sets K = κ0 sinhα. What we shall

need is the large K behavior of B̃(K). Expanding (11)
in powers of κ0/K gives

B̃(K) = Nψ
2π5/2

K2

[

(2K/κ0)
−s0 − c.c.

]

+O(1/K4). (12)

The last step to obtain the trimer state vector in mo-
mentum space is to take the Fourier transform of (4),
using the appropriate Jacobi coordinates for each Fad-
deev component, or simply by Fourier transforming the
first Faddeev component using the coordinates (C, r,ρ)
given above and by performing circular permutations on
the particle labels. This gives

Ψ̃(k1,k2,k3) =

(√
3

2

)3

ψ̃CM(k1 + k2 + k3)

×
[

ψ̃

( |k2 − k1|
2

,
|2k3 − (k1 + k2)|

2
√
3

)

+(231)+ (312)
]

,

(13)

where the notation (ijk) means that the indices 1, 2, 3
have been replaced by i, j, k respectively.

III. INTEGRAL EXPRESSION OF THE

MOMENTUM DISTRIBUTION

To obtain the momentum distribution for an Efimov
trimer state, it remains to integrate over k3 and k2

the modulus square of the Fourier transform (13) of the
trimer wavefunction. In the limit κ0aho → +∞ where
one suppresses the harmonic trapping, one can set

|ψ̃CM(k1 + k2 + k3)|2 = (2π)3δ(k1 + k2 + k3) (14)

so that the trimer is at rest in all what follows. Integra-
tion over k3 is then straightforward:

n(k1) = 3

(√
3

2

)6
∫

d3k2
(2π)3

∣

∣

∣
ψ̃(

|k2 − k1|
2

,

√
3|k1 + k2|

2
)

+ ψ̃(|k2 +
1

2
k1|,

√
3

2
k1) + ψ̃(|k1 +

1

2
k2|,

√
3

2
k2)
∣

∣

∣

2

. (15)

The factor 3 in the right hand side results from the fact
that, as e.g. in [16], we normalize the momentum distri-
bution n(k) to the total number of particles (rather than

to unity):

∫

d3k

(2π)3
n(k) = 3. (16)

Also note that the sum of the squares of the arguments
of ψ̃ is constant and equal to k21 + k22 + k1 · k2 for each
term in the right hand side of (15). When using (9),
one can thus put the denominator in (9) as a common
denominator, to obtain

n(k1) =

∫

d3k2
(2π)3

[

B̃(
√
3
2 |k1 + k2|) + B̃(

√
3
2 k1) + B̃(

√
3
2 k2)

]2

(43/34)(k21 + k22 + k1 · k2 + κ20)
2

.

(17)

For simplicity, we have assumed that the normalization
factor Nψ is purely imaginary, so that B̃(K) is a real
quantity.
In the above writing of n(k1), the only “nasty” contri-

bution is B̃(
√
3|k1 + k2|/2); the other contributions are

“nice” since they only depend on the moduli k1 and k2.
Expanding the square in the numerator of (17), one gets
six terms, three squared terms and three crossed terms.
The change of variable k2 = −(k′

2 + k1) allows, in one
of the squared terms and in one of the crossed terms, to
transform a nasty term into a nice term. What remains
is a nasty crossed term that cannot be turned into a nice
one; in that term, as a compromise, one performs the
change of variable k2 = −(k′

2 + k1/2). We finally obtain
the momentum distribution as the sum of four contribu-
tions,

n(k1) = nI(k1) + nII(k1) + nIII(k1) + nIV(k1), (18)

with

nI(k1)=
34

43

∫

d3k2
(2π)3

B̃2(
√
3
2 k1)

(k21 + k22 + k1 · k2 + κ20)
2

(19)

nII(k1)=
34

43

∫

d3k2
(2π)3

2B̃2(
√
3
2 k2)

(k21 + k22 + k1 · k2 + κ20)
2

(20)

nIII(k1)=
34

43

∫

d3k2
(2π)3

4B̃(
√
3
2 k1)B̃(

√
3
2 k2)

(k21 + k22 + k1 · k2 + κ20)
2

(21)

nIV(k1)=
34

43

∫

d3k2
(2π)3

2B̃(
√
3
4 |2k2 + k1|)B̃(

√
3
4 |2k2 − k1|)

(κ20 + k22 +
3
4k

2
1)

2
.

(22)

An interesting question is to know if one can go be-
yond the integral expressions Eqs.(19,20,21,22), that is if
one can obtain an explicit expression for the momentum
distribution, at most in terms of special functions. The
contribution nI(k1) is straightforward to calculate:

nI(k1) =

√
3

4π

(

3

4

)3
B̃2(

√
3k1/2)

(k21 + 4κ20/3)
1/2

. (23)

The contribution nII(k1) is also explicitly calculable by

performing the change of variable k2 = (2/
√
3)κ0 sinhα
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and using the identity that can be derived from contour
integration:

∫ +∞

−∞
dα

eisα

coshα− coshα0
=

2π sin[s(iπ − α0)]

sinhα0 sinh(sπ)
, (24)

where s is any real number and α0 is any complex number
with non-zero imaginary part. This also allows to obtain
an explicit expression of nIII(k1) if one further applies
integration by part, integrating the factor sin(|s0|α). We
do not give however the resulting expressions since, con-
trarily to these first three contributions to n(k1), the
contribution nIV(k1) in (22) blocked our attempt to cal-
culate n(k1) explicitly. For k1 = 0 however it becomes
equal to the contribution nII. n(k1 = 0) can thus be eval-
uated explicitly in terms of κ0 and s0, see an Appendix
in [19]. In numerical form this gives

n(k = 0) =
55.43379775608 . . .

κ30
. (25)

IV. APPLICATIONS

A. Numerical evaluation of n(k) at all k

The integral expression of n(k) derived in section III
allows a straightforward and very precise numerical cal-
culation of the single-particle momentum distribution
for an infinite scattering length Efimov trimer, once all
the doable angular integrations have been performed in
spherical coordinates of polar axis k1. The result is
shown for low values of k in Fig.1a, and for high values
of k in Fig.1b. In particular, Fig.1b was constructed to
show how n(k) approaches the asymptotic behavior (26)
derived in the next subsection, that is to reveal the ex-
istence of a 1/k5 sub-leading oscillating term. Note that
the accuracy of the numerics may be tested from (25)
and from the explicit analytical expressions of nI (given
in (23)), of nII and of nIII (not given).

B. Large momentum behavior of n(k)

Starting from the integral representation
Eqs.(19,20,21,22), we show in the Appendix A that
the single-particle momentum distribution has the
asymptotic expansion at large wavevectors:

n(k) =
k→∞

C

k4
+
D

k5
cos
[

2|s0| ln(
√
3k/κ0) + ϕ

]

+ . . . (26)

where we recall that the trimer energy is Etrim =
−~

2κ20/m, and the quantities C, D and ϕ derived in the

Appendix A are given by

C/κ0 = 8π2 sinh(|s0|π/2) tanh(|s0|π)/
[

cosh(
|s0|π
2

)

+
|s0|π
2

sinh(
|s0|π
2

)− 4π

3
√
3
cosh(

|s0|π
6

)
]

(27)

= 53.09722846003081 . . . (28)

D/κ20 ≃ −89.26260 (29)

ϕ ≃ −0.8727976. (30)

The crucial point is that D 6= 0: Due to the Efimov
effect, the momentum distribution has a slowly decaying
O(1/k5) oscillatory subleading tail.

C. Breakdown of the usual energy-momentum

distribution relation

In [26] it was proposed that the expression of the en-
ergy as a functional of the momentum distribution, de-
rived in [25] for equal mass spin 1/2 fermions, also holds
for bosons (apart from the appropriate change of numer-
ical factors). In the present case of a free space Efimov
trimer at rest with an infinite scattering length, the en-
ergy formula of [26] reduces to

Etrim
?
=

∫

d3k

(2π)3
~
2k2

2m

[

n(k)− C

k4

]

. (31)

We have however put a question mark, because the
asymptotic expansion (26) implies that the integral in
(31) is not well-defined: After the change of variables

x = ln(
√
3k/κ0), the integrand behaves for x→ +∞ as a

linear superposition of e2i|s0|x and e−2i|s0|x, that is as a
periodic function of x oscillating around zero. This was
overlooked in [26].
At first sight, however, this does not look too serious:

One often argues, when one faces the integral of such an
oscillating function of zero mean, that the oscillations at
infinity simply average to zero. More precisely, let us
define the cut-off dependent energy functional

E(Λ) =

∫

k<Λ

d3k

(2π)3
~
2k2

2m

[

n(k)− C

k4

]

, (32)

where the integration is limited to wavevectors k of mod-
ulus less than the cut-off. For Λ → +∞, E(Λ) is asymp-
totically an oscillating function of the logarithm of Λ,
oscillating around a mean value Ē. The naive expec-
tation would be that the trimer energy Etrim equals Ē.
This naive expectation is equivalent to the usual trick
used to regularize oscillating integrals, consisting here in

introducing a convergence factor e−η ln(
√
3k/κ0) in the in-

tegral without momentum cut-off and then taking the
limit η → 0+:

lim
η→0+

∫

R3

d3k

(2π)3
~
2k2

2m

[

n(k) − C

k4

]

e−η ln(
√
3k/κ0) = Ē.

(33)
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FIG. 1: For a free space Efimov trimer at rest composed of three bosonic particles of mass m interacting via a zero-range,
infinite scattering length potential, single-particle momentum distribution n(k) as a function of k. (a) Numerical calculation
from the expression for n(k) appearing in Eq.(18). (b) Numerical calculation (solid line) and asymptotic behavior (26) (dashed
line), with the horizontal axis in log scale. The unit of momentum is κ0, such that the trimer energy is −~

2κ2
0/m.

To test the naive regularization procedure, we per-
formed a numerical calculation of E(Λ), using the result
(18) to perform a very accurate numerical calculation of
n(k). The result is shown as a solid line in Fig.2. We also
developed a more direct technique allowing a numerical
calculation of E(Λ) without the knowledge of n(k), see
Appendix B: The corresponding results are represented
as + symbols in Fig.2 and are in perfect agreement with
the solid line. As expected, E(Λ) is asymptotically an os-
cillating function of the logarithm of Λ, oscillating around
a mean value Ē.
To formalize, we introduce an arbitrary, non-zero value

kmin of the momentum. We define δn(k) = n(k) − C/k4

for k < kmin, and for k > kmin:

δn(k) = n(k) −
{

C

k4
+
D

k5
cos
[

2|s0| ln(
√
3k/κ0) + ϕ

]

}

.

(34)
The introduction of kmin ensures that the integral of
k2δn(k) over all k converges around k = 0. The sub-
traction of the asymptotic behavior of n(k) up to order
O(1/k5) for k > kmin ensures that the integral of k2δn(k)
over all k converges at infinity. As a consequence we get
in the large cut-off limit

E(Λ) = Ē+
~
2D

8π2m|s0|
sin[2|s0| ln(

√
3Λ/κ0)+ϕ]+O(1/Λ),

(35)
with

Ē = − ~
2D

8π2m|s0|
sin[2|s0| ln(

√
3kmin/κ0) + ϕ]

+

∫ +∞

0

dk
~
2k4

4π2m
δn(k). (36)

From this last equation (36) and the numerical calcu-
lations of n(k) first up to k = 1000κ0 and then up to
k ≃ 5500κ0, we get two slightly different values of Ē,
which gives an estimate with an error bar [35]:

Ē ≃ 0.89397(3)Etrim. (37)

The conclusion is that Ē (significantly) differs fromEtrim:
The naive regularization of the energy formula proposed
in [26] does not give the correct value of the trimer energy.

An analytical representation of Ē in terms of single
integrals can be obtained, see Appendix C. This analyti-
cal calculation gives a physical explanation of the failure
of the naive regularization: It is inconsistent to add by

hand the regularization factor e−η ln(
√
3k/κ0) at the last

stage, that is in the integrand of (31). To be consistent,
the momentum cut-off function has to be introduced at
the level of the three-body problem. Then the subleading
1/k5 term in the momentum distribution acquires a small
non-oscillating component, of order η/k5, that gives a
non-zero contribution to the integral (31) for η → 0+,

since
∫ +∞
kmin

dk k4 η
k5 e

−η ln(
√
3k/κ0) does not tend to zero in

this limit. The resulting integral representation of Ē con-
firms the numerical result and allows to evaluate Ē with
a better precision:
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Ē/Etrim = 1− 4 cosh(|s0|π/2)
π
√
3

[

cosh(|s0|π/2) +
|s0|π
2

sinh(|s0|π/2)−
4π

3
√
3
cosh(|s0|π/6)

]−1

×
∫ +∞

0

dq

{

2 ln(q) cos(|s0| ln q)
1 + q2 + q4

+
16q ln[(1 + q2)/4]

|s0|(1 + q2)(q2 + 3)2
sin

(

|s0| ln
1 + q

|1− q|

)

+4 ln

(

1 + q2

|1− q2|

)

cos

(

|s0| ln
1 + q

|1− q|

)[

1

2(q2 + 3)
+

ln[2(1 + q2)/(q2 + 3)]

1− q2

]}

(38)

= 0.8939667780883 . . . (39)
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FIG. 2: Cut-off dependent energy E(Λ) as defined in (32)
for a free space infinite scattering length Efimov trimer with
a zero-range interaction, as a function of the logarithm of
the momentum cut-off Λ. Solid line: numerical result ob-
tained via a calculation of the momentum distribution n(k).
Symbols +: direct numerical calculation of E(Λ) as exposed
in the Appendix B. Dashed sinusoidal line: asymptotic os-
cillatory behavior of E(Λ) for large Λ, obtained by omitting
O(1/Λ) in (35). Dashed horizontal line: mean value Ē around
which E(Λ) oscillates at large Λ. The values of Ē obtained
analytically (38) and numerically (37) are indistinguishable
at the scale of the figure, and clearly deviate from the dot-
ted line giving the true energy Etrim of the trimer, exempli-
fying the failure of a at a first sight convincing application
of an energy formula for bosons in three dimensions. The
unit of momentum κ0 is such that the true trimer energy is
Etrim = −~

2κ2
0/m.

V. CONCLUSION

We have calculated the single-particle momentum dis-
tribution n(k) for the free space Efimov trimer states
of same spin state bosons interacting via a zero-range
potential with an infinite scattering length. The asymp-
totic behavior of n(k) at large wavevectors, that we de-
termined with good precision, is of particular interest:
In addition to the C/k4 tail expected from two-body
physics, it has a subleading oscillating 1/k5 contribution,
which is a signature of Efimov physics that one may try
to observe experimentally.
We obtained the analytical expression for the coeffi-

cient C, see (27). This coefficient can also be obtained

by a direct calculation in position space, using the fact
that C is proportional to

∫

d3ρ |B(ρ)|2 [19, 34]. This
result allows to calculate the trimer energy for a finite
scattering length a, to first order in 1/a, thanks to the
relation [19]

(

∂Etrim

∂(−1/a)

)

Rt

=
~
2C

8πm
(40)

where the derivative is taken for a fixed value of the three-
body parameter Rt. In other words, we obtained analyt-
ically the derivative at −π/2 of Efimov’s universal func-
tion ∆(ξ) [5]. In numerical form, it gives ∆′(−π/2) =
2.125850069373 . . ., which refines the previously known
numerical estimate ≃ 2.12 [5]. Furthermore, the exis-
tence of the 1/k5 subleading term leads to a failure of
the relation proposed in [26] expressing the energy as a
functional of the single-particle momentum distribution,
which was not obvious a priori.
We have considered here the particular case of Efimov

trimers. The coefficient of the 1/k5 subleading term was
however obtained in Appendix A by taking the zero-
energy limit κ0 → 0. We thus expect that the phe-
nomenology of the 1/k5 subleading term persists, not
only for any other three-body system subjected to Efimov
physics (such as two fermions of mass M and a lighter
particle of mass m with a mass ratio M/m > 13.607
[7, 8]), but also for a macroscopic Bose gas, at least for
strong enough interactions [21] so as to make the sub-
leading 1/k5 term sizeable and maybe accessible to mea-
surements.
Note: After completion of this work, (i) the expression
of the coefficient of the 1/k5 subleading tail of n(k) in
terms of the derivative of the energy with respect to the
logarithm of the three-body parameter Rt, and (ii) the
appropriate energy formula taking into account the Efi-
movian subleading 1/k5 term, appeared in [36] for a Bose
gas with an arbitrary number of particles.
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Appendix A: Leading and next-to-leading terms for

n(k) at large momentum

Here we derive the asymptotic expansion (26). We
shall take the large k1 limit, or equivalently formally the
κ0 → 0 limit for a fixed k1. From the asymptotic be-
havior (12) we see that B̃2(k1) involves a sum of “os-
cillating” terms involving k2s01 or k−2s0

1 , and of “non-
oscillating” terms. We shall calculate first the resulting
non-oscillating contribution, then the resulting oscillat-
ing one, up to order 1/k51 included.

a. Non-oscillating contribution up to O(1/k5
1)

We consider the small κ0 limit successively for each of
the four components of n(k1) in (18).
Contribution I: Taking directly κ0 → 0 in the integral
defining nI, replacing B̃(k1) by its asymptotic behavior
(12) and averaging out the oscillating terms k±2s0

1 gives
the leading behavior

〈nI(k1)〉 ≃
3
√
3

8π
|Nψ|2

4π5

k51
. (A1)

Contribution II: In the integrand of (20), we use the
splitting

(k21 + k22 + k1 · k2 + κ20)
−2 = k−4

1

+
[

(k21 + k22 + k1 · k2 + κ20)
−2 − k−4

1

]

. (A2)

The first term in the right hand side gives a contribution
exactly scaling as 1/k41 . In the contribution of the second
term in the right hand side, one may take the limit κ0 →
0 and replace B̃2(

√
3k2/2) by its asymptotic expression

to get the subleading 1/k51 contribution. Performing the
change of variable k2 = k1q in the integral and averaging
out the oscillating terms k±2s0

1 gives

〈nII(k1)〉 =
C

k41
− 3

√
3

2π
|Nψ |2

4π5

k51
+ o(1/k51), (A3)

with

C = 3(
√
3/2)6

∫

d3k2
(2π)3

2B̃2(
√
3k2/2). (A4)

We calculate C from the exact expression (11) of B̃: We
integrate over solid angles and we use the change of vari-

ables
√
3
2 k2 = κ0 sinhα, where α varies from zero to +∞,

to take advantage of the fact that

B̃(κ0 sinhα) = − 2π5/2Nψ

κ20 sinhα coshα

(

es0α − e−s0α
)

. (A5)

This leads to

C = 12π3(
√
3/2)3

|Nψ|2
κ0

∫ +∞

0

dα
2− (e2s0α + c.c.)

coshα
,

(A6)

where we used the fact that N 2
ψ = −|Nψ|2. The resulting

integral over α may be extended over the whole real axis
because the integrand is an even function of α; it may
then be evaluated by using the general result (that we
obtained with contour integration)

K(θ, s) ≡
∫ +∞

−∞
dα

eisα

coshα+ cos θ
=

2π

sin θ

sinh(sθ)

sinh(sπ)
(A7)

where s is a real number and θ ∈]0, π[. One simply has
to take θ = π/2, s = 0 and s = |s0| respectively. We get

C =
24π4

κ0

(√
3

2

)3
2 sinh2(|s0|π/2)
cosh(|s0|π)

|Nψ |2. (A8)

This, together with (6), leads to the explicit expression
(27) for C.
Contribution III: We directly take the limit κ0 → 0
and we replace the factors B̃ by their asymptotic expres-
sions in (21). After the change of variable k2 = k1q,
angular integration and averaging out of the oscillating
terms k±2s0

1 , this gives

〈nIII(k1)〉 =
9

2π2

4π5|Nψ|2
k51

∫ +∞

0

dq
qs0 + q−s0

q4 + q2 + 1
+o(1/k51).

(A9)
In this result, we change the integration variable setting
q = eα, where α varies from −∞ to +∞. The odd com-
ponent of the integrand (involving sinhα) gives a vanish-
ing contribution. The even component of the integrand
involves a rational fraction of coshα to which we apply
a partial fraction decomposition. Then we use (A7) to
obtain

nIII(k1) =
4π5|Nψ|2

k51

3
√
3

2π

sinh(π|s0|/3) + sinh(2π|s0|/3)
sinh(π|s0|)
+ o(1/k51). (A10)

Contribution IV: We directly take the limit κ0 → 0
and we replace the factors B̃ by their asymptotic ex-
pressions in (22). We perform the change of variable
k2 = (k1/2)q, we average out the oscillating terms k±2s0

1 .
The angular integration in spherical coordinates of axis
the direction of k1 may be performed using

∫

dv

(

1 + v

1− v

)s0/2

(1− v2)−1 =

(

1 + v

1− v

)s0/2

/s0,

(A11)
where the variable v is restricted to the interval (−1, 1).
This leads to

〈nIV(k1)〉 =
4π5|Nψ |2

k51

36

π2

∫ +∞

0

dq
q

q2 + 1
(q2 + 3)−2

×
[

s−1
0

(

q + 1

|q − 1|

)s0

+ c.c.

]

+ o(1/k51). (A12)

Calculating this integral directly is not straightforward
because of the occurrence of the absolute value |q − 1|.
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We thus split the integration domain in two intervals.
For q ∈ [0, 1] we set q = (X − 1)/(X + 1) (an increasing
function of X , where X spans [1,+∞]). For q ∈ [1,+∞]
we set q = (X + 1)/(X − 1) (a decreasing function of X ,
where X here also spans [1,+∞]). Then

〈nIV(k1)〉 =
4π5|Nψ |2

k51

9

2π2

∫ +∞

1

dX

X

{

(X −X−1)

× (X2 − 1 +X−2)

(X2 + 1 +X−2)2
[

s−1
0 Xs0 − s−1

0 X−s0]
}

+o(1/k51).

(A13)

We then set X = eα, where α ranges from zero to +∞,
and we use the fact that the resulting integrand is an
even function of α to extend the integral over the whole
real axis. We integrate by parts, integrating the factor
sin(α|s0|), and we perform a partial fraction decompo-
sition of the resulting rational fraction of coshα. Using
(A7) and its derivatives with respect to θ, we get

〈nIV(k1)〉 =
72π5|Nψ|2

k51

{

cosh(
2π|s0|

3
)− cosh(

π|s0|
3

)

−
√
3

6
|s0|
[

sinh(
2π|s0|

3
)+sinh(

π|s0|
3

)
]}

/[2π|s0| sinh(π|s0|)]

+ o(1/k51). (A14)

Sum of the four contributions: Summing up the non-
oscillating terms in 1/k51 of the contributions nI, nII, nIII

and nIV, we obtain as a global prefactor

S = −
√
3

8
+

cosh(2π|s0|/3)− cosh(π|s0|/3)
|s0| sinh(π|s0|)

. (A15)

Multiplying (3) on both sides by sinh(|s0|π/2) and using

2 sinha sinh b = cosh(a+ b)− cosh(a− b), ∀a, b (A16)

we find that S is exactly zero. As a consequence, the
non-oscillating part of the momentum distribution of an
infinite scattering length Efimov trimer behaves at large
k as

〈n(k1)〉 =
C

k41
+ o(1/k51). (A17)

b. Oscillating contribution at large k1

In the large k1 tail of the momentum distribution, we
now include oscillating terms, having oscillating factors
such as k±2s0

1 . The calculation techniques are the same as
in the previous subsection, so that we give here directly
the result. We find that the leading oscillating terms
scale as 1/k51:

n(k1)−〈n(k1)〉 = −12π5

k51
|Nψ|2



A
(

k1
√
3

κ0

)2s0

+ c.c.





+ o(1/k51) (A18)

where the complex amplitude A is the sum of the con-
tributions coming from each of the four components
(19,20,21,22) of the moment distribution,

A = AI +AII +AIII +AIV. (A19)

We successively find

AI =
3

8π2

∫ +∞

0

dq
q2

q4 + q2 + 1
=

√
3

16π
, (A20)

AII =
3

4π2

∫ +∞

0

dq
q2s0

q2
[

(q4 + q2 + 1)−1 − 1
]

(A21)

= −
√
3

4π

sinh(4π|s0|/3) + sinh(2π|s0|/3)
sinh(2π|s0|)

, (A22)

AIII =
3

2π2

∫ +∞

0

dq
qs0

q4 + q2 + 1
=

√
3

4π sinh(π|s0|)

×
{

sinh(
2π|s0|

3
) + sinh(

π|s0|
3

)

−i
√
3
[

cosh(
2π|s0|

3
)− cosh(

π|s0|
3

)
]}

, (A23)

AIV =
12

π2
2−2s0

∫ +∞

0

dq
[ q(1 + q2)s0

(q2 + 3)2(q2 + 1)

×
∫ 2q/(1+q2)

0

dv
(1− v2)s0/2

1− v2

]

(A24)

≃ 0.0243657158− 0.0698680251i. (A25)

We have calculated analytically all these integrals, ex-
cept for (A24) where the angular integration gives rise to
the integral over v in (A24) and thus to a difficult hyper-
geometric function. We used numerical integration for
(A24). Finally

A ≃ 0.1022397786− 0.1218775240i. (A26)

Appendix B: Direct calculation of E(Λ)

To calculate the cut-off dependent energyE(Λ) defined
in (32) for an infinite scattering length Efimov trimer,
the method consisting in calculating the momentum dis-
tribution n(k) and then integrating (32) is numerically
demanding: A double integral has to be performed to ob-
tain n(k), see (22), so that the evaluation of E(Λ) results
in a triple integral. A more direct formulation, involving
only a double integration, is proposed here. One simply
rewrites (32) as

E(Λ) =

∫

R3

d3k

(2π)3
f(k)

~
2k2

2m

[

n(k)− C

k4

]

(B1)

where the function f(k) is equal to unity for 0 ≤ k ≤ Λ
and is equal to zero otherwise. Then one plugs in (B1) the
expression (18) of n(k), also replacing C with its integral
expression (A4). An integration over two vectors in R

3
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appears, so that E(Λ) = Eeasy(Λ) + Ehard(Λ) with

Eeasy(Λ) =
34

43

∫

d3k

(2π)3
f(k)

~
2k2

2m

∫

d3q

(2π)3

[

−2B̃2(
√
3
2 q)

k4

+
B̃2(

√
3
2 k) + 2B̃2(

√
3
2 q) + 4B̃(

√
3
2 k)B̃(

√
3
2 q)

(k2 + q2 + k · q+ κ20)
2

]

(B2)

Ehard(Λ) =
34

43

∫

d3k

(2π)3
f(k)

~
2k2

2m

∫

d3q

(2π)3

2B̃(
√
3
2 |q+ k/2|)B̃(

√
3
2 |q− k/2|)

(q2 + 3
4k

2 + κ20)
2

. (B3)

The first part Eeasy of this expression originates from the
bits nI, nII, nIII of the momentum distribution and from
C; angular integrations may be performed, one is left
with a double integral over the moduli k and q. Taking
κ0 as a unit of momentum and ~

2κ20/m as a unit of energy
in what follows:

Eeasy(Λ) =

(

3

4π

)4 ∫ Λ

0

dk
k4

2

∫ +∞

0

dq q2
[

− 2B̃2(
√
3
2 q)

k4

+
B̃2(

√
3
2 k) + 2B̃2(

√
3
2 q) + 4B̃(

√
3
2 k)B̃(

√
3
2 q)

(k2 + q2 + 1)2 − k2q2

]

(B4)

that we integrate numerically. The second part Ehard(Λ)
in (B3) originates from the bit nIV of the momentum
distribution. Performing the change of variables q =
(k1 − k2)/2 and k = k1 + k2 ensures that the factors B̃
are now functions of the moduli k1 and k2 only,

Ehard(Λ) =
34

43

∫

d3k1
(2π)3

∫

d3k2
(2π)3

1

2
(k1+k2)

2f(|k1+k2|)

× 2B̃(
√
3
2 k1)B̃(

√
3
2 k2)

(k21 + k22 + k1 · k2 + 1)2
(B5)

so that angular integrations may again be performed, in-
volving the integral

I(k1, k2) =
1

2

∫ 1

−1

du
k21 + k22 + 2k1k2u

(k21 + k22 + k1k2u+ 1)2

× f

(

√

k21 + k22 + 2k1k2u

)

(B6)

=
1

k1k2

[

ln(1 + k21 + k22 + k1k2u)

+
1 + (k21 + k22)/2

1 + k21 + k22 + k1k2u

]max[−1,min(1,U)]

−1
(B7)

where u is the cosine of the angle between the vectors
k1 and k2, U = [Λ2 − (k21 + k22)]/(2k1k2), max(a, b)
(resp. min(a, b)) is the largest (resp. smallest) of the
two numbers a and b, and the notation [F (u)]ba stands
for F (b)−F (a) for any function F (u). We also used the

fact that |k1 + k2| ≤ Λ if and only if u ≤ U . This leads
to

Ehard(Λ) =

(

3

4π

)4 ∫ +∞

0

dk1 k
2
1

∫ +∞

0

dk2 k
2
2 I(k1, k2)

× B̃(

√
3

2
k1)B̃(

√
3

2
k2). (B8)

Further simplifications may be performed. One can map
the integration to the domain k1 ≥ k2 since the integrand
is a symmetric function of k1 and k2. Then performing
the change of variable k1 = q + k/2 and k2 = q − k/2,
and using the fact that I(k1, k2) = 0 if k1 − k2 > Λ, we
obtain the useful form

Ehard(Λ) =

(

3

4π

)4

2

∫ Λ

0

dk

∫ +∞

k/2

dq (q2 − k2/4)2

×I(q+1

2
k, q−1

2
k)B̃

[√
3

2
(q + k/2)

]

B̃

[√
3

2
(q − k/2)

]

,

(B9)

that we integrate numerically. A useful result to control
the numerical error due to the truncation of the integral
over q to a value≫ Λ and≫ 1 is I(q+k/2, q−k/2) ∼

q→+∞
(k4 − Λ4)/(8q6).

Appendix C: Analytical expression for Ē

As explained in the main text, the naive regularization
(33) of the energy formula gives an energy Ē that actually
differs from the energy of the trimer Etrim, because the
momentum space cut-off function was introduced at the
last stage of the calculation. Here we introduce a mo-
mentum cut-off function at the level of the three-body
wavefunction, simply by making the substitution

B̃(k) → B̃η(k) ≡ B̃(k) e−ηα (C1)

where we have set k = κ0 sinhα so that α =
ln[
√

1 + k2/κ20 + k/κ0]. For this consistent regulariza-
tion, we expect that the usual energy formula holds in
the limit of a vanishing η, and this was checked explicitly
in Appendix H of [19]. This means that

lim
η→0+

Eη = Etrim (C2)

with

Eη =

∫

R3

d3k

(2π)3
~
2k2

2m

[

nη(k) −
Cη
k4

]

. (C3)

The single-particle momentum distribution nη is ob-

tained by replacing the function B̃ by B̃η in
Eqs.(18,19,20,21,22). Its large k asymptotic behavior can
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be obtained along the lines of Appendix A: nη(k) =
nasymp
η (k) +O(1/k6) with

nasymp
η (k) =

Cη
k4

+
e−2η ln(

√
3k/κ0)

k5

{

D̄η

+Dη cos
[

2|s0| ln(
√
3k/κ0) + ϕη

]}

. (C4)

In the limit η → 0+ one has to recover (26) so that
the coefficient D̄η of the non-oscillating 1/k

5 contribution
tends to zero in that limit. However, as we shall see,
D̄η/η does not tend to zero, which leads to the failure
of the naive regularization. The expressions of the other
coefficients Cη, Dη and ϕη are not needed.
Following (34) we define δnη(k) as nη(k) − Cη/k

4 for
k < kmin and as nη(k) − nasymp

η (k) for k > kmin. This
results in the splitting

Eη =

∫

R3

d3k

(2π)3
~
2k2

2m
δnη(k)

+
~
2

4π2m

∫ +∞

xmin

dx e−2ηx[D̄η +Dη cos(2|s0|x+ ϕη)]

(C5)

where the change of variable x = ln(
√
3k/κ0) was used

so that xmin = ln(
√
3kmin/κ0). For η → 0+, we can re-

place in the right hand side of (C5) δnη(k) with δn(k)
since the first integral converges absolutely, but we can-
not exchange the η → 0+ limit and the integration in the
second integral. After explicit calculation of this second
integral, we take η → 0+ and we recognize Ē from (36)
so that

Etrim = Ē +
~
2

8π2m
lim
η→0+

D̄η

η
. (C6)

The last step is to calculate D̄η, with the same tech-

niques as in the Appendix A. One finds

D̄η =
9

2π2
|Nψ|24π5

[

π

4
√
3
+ Iη + Jη +Kη

]

(C7)

with

Iη =

∫ +∞

0

dq
−(1 + q2)

1 + q2 + q4
e−2η ln q (C8)

Jη =

∫ +∞

0

dq
qs0 + q−s0

1 + q2 + q4
e−η ln q (C9)

Kη =

∫ +∞

0

dq
8q

1 + q2
e
−η ln

(

1+q2

4

)

(q2 + 3)2

∫
2q

1+q2

0

dv
e−η ln

√
1−v2

1− v2

×
[

(

1 + v

1− v

)s0/2

+ c.c.

]

. (C10)

The contributions Iη, Jη and Kη originate respectively
from the bits nII , nIII and nIV in the decomposition (18)
generalized to nη. Taking the derivative with respect to
η and then taking the limit η → 0+ gives (38). More
precisely, one finds that

dIη
dη

|η→0+ = 0 (C11)

dJη
dη

|η→0+ =

∫ +∞

0

dq (− ln q)
qs0 + q−s0

1 + q2 + q4
(C12)

which, together with (38) and (C6), suffices to determine
dKη

dη |η→0+ so that we do not reproduce here its lengthy

expression. The remarkable fact that
dKη

dη |η→0+ may be

expressed as an integral over a single variable q, whereas
the expression of Kη for a general η in (C10) involves a
double integral, results from an integration by part over q

in (C10), taking the derivative of the bit
∫ 2q/(1+q2)

0
dv . . ..
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