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Quantum Langevin model for exoergic ion-molecule reactions and inelastic processes
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We presents a fully quantal version of the Langevin model for the total rate of exoergic ion-
molecule reactions or inelastic processes. The model, which is derived from a rigorous multichannel
quantum-defect formulation of bimolecular processes, agrees with the classical Langevin model at
sufficiently high temperatures. It also gives the first analytic description of ion-molecule reactions
and inelastic processes in the ultracold regime where the quantum nature of the relative motion
between the reactants becomes important.
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The classical Langevin model for exoergic ion-molecule
reactions [1, 2] is one of the most fundamental and pow-
erful results in the theory of reactions. It has been shown
to be applicable to a variety of systems and over a wide
range of temperatures [2, 3]. As a model based on the
long-range interaction, it can be expected to be more ac-
curate the lower the temperature [4], until one reaches
a regime where quantum effects, more specifically the
quantum effects associated with the relative motion of
the reactants, become important.
An experimental study of reactions in this tempera-

ture regime, often referred as the ultracold regime, has
recently been realized for neutral-neutral reactions in a
landmark experiment by the JILA group [5]. While it is
not yet realized for charge-neutral systems, the growing
ability of making cold molecular samples [6] and manip-
ulating cold ions [7], implies that it may soon become a
reality. A sample process, likely among the first investi-
gated, would include the type

A+ +B2 → AB +B+ , (1a)

→ A+B+
2 , (1b)

→ (AB)+ +B , (1c)

where all reactions can be expected to be exoergic if the
ionization potential of atom A is considerably greater
than that of atom B. They can proceed with substan-
tial rates even in the limit of zero temperature as ion-
molecule interactions are generally expected to be barri-
erless at the short range [8].
The theory presented here, to be called the quantum

Langevin (QL) model for the total rate of exoergic ion-
molecule reactions or inelastic processes, gives the first
theoretical prediction on where and how the quantum
effects come into play and how the resulting behavior
deviates from the classical Langevin model. It is another
application of a new quantum framework for reactions [9]
that differs considerably from existing formulations [10],
and is used here to further illustrate the concepts behind
the theory.
In a conventional quantum theory of reactions [10], lit-

tle can be known about a reaction without a detailed
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knowledge of the potential energy surface (PES), the ac-
curacy of which is often insufficient for quantitative pred-
ications, especially at low temperatures. This has been
true even for ultracold atom-atom and ion-atom interac-
tions, where, to the best of our knowledge, no ab initio

PES for alkali metal systems has ever been sufficiently
accurate to predict the scattering length. All potentials
had to be modified by incorporating a substantial amount
of spectroscopic data (see, e.g., Ref. [11]). The same is-
sue becomesmuch more severe for multidimensional PES
in reactions, and will remain so for many years to come.
This difficulty, coupled with the exponential growth of
the Hilbert space beyond two-body [12], has limited the
conventional approach to a few simple systems such as
D+H2, with little hope for more complex systems.

The multichannel quantum-defect theory for reactions
(MQDTR), as outline in Ref. [9], with important moti-
vations and ingredients that come before it [5, 13–16],
offers a different perspective on reactions and inelastic
processes. It comes from a much wider assertion that
much can be known about a quantum system, specifi-
cally its behavior around a fragmentation threshold, sim-
ply from the types of long-range interactions among its
constituents. Whatever not yet known can be character-
ized by a few energy-insensitive parameters, which can
be further determined from a few experimental measure-
ments without any knowledge of the short-range interac-
tion, or even the strength of the long-range interaction.
This physical picture, which goes back to the original
quantum-defect theory for the Coulomb interaction [17],
has been well established in recent years for atom-atom
[18, 19] and ion-atom interactions [20], and to a lesser
degree for few-atom [21] and many-atom systems [22].
Its realization for reactions [9], as is further illustrated
in this work, frees the theory from being held hostage
by the details of PES, while ready to take advantage of
them when they are available. It also resolves a con-
ceptual disparity in existing theories of reactions. While
many classical models [2, 4] are based on the recognition
of the importance of the long-range interaction, the same
physical concept gets lost in the conventional quantum
formulations [10]. It is primarily due to this omission
that they have missed the universality and the simplicity
in reactions that have been uncovered in the landmark
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JILA experiment [5].
The QL model for ion-molecule reactions or inelas-

tic processes, to be presented here, is a special case
of a more general QL model [9] that is formally appli-
cable to bimolecular processes with arbitrary −Cn/R

n

(n > 2) type of long-range interaction in the entrance
channel. Other than the exponent n, the most impor-
tant characteristic of such a potential is its length scale
βn = (2µCn/h̄

2)1/(n−2), where µ is the reduced mass in
the entrance channel. It determines the scale parame-
ters for other relevant physical observables, such as the
energy, with a scale of sE = (h̄2/2µ)(1/βn)

2, the temper-
ature, with a scale of sE/kB, and the rate of reactions,
with a scale of sK = πh̄βn/µ [9]. For ion-molecule in-
teractions, n = 4 and C4 = αq2/2, corresponding to
the polarization potential, with α being the average po-
larizability of the molecule and q the charge of the ion.
The realization of the QL model for this class of sys-
tems is made possible by a recent reformulation of the
quantum-defect theory (QDT) for −1/R4 potential [20],
which gives, in particular, analytic results for the quan-
tum transmission probability to be used in this work.
In Ref. [9], we have shown that under the Langevin as-

sumption, corresponding to the assumption of no reflec-
tion by the inner potential, the total rate of reactions and
inelastic processes follows a universal behavior uniquely
determined by the exponent n characterizing the type of
long-range interaction in the entrance channel. Different
systems with the same type of potentials differ from each
other only in scaling. Specifically, the rate constant for
the total rate of reactions and inelastic processes can be
written as

K(T ) = sKK(n)(Ts) , (2)

where sK is the rate scale defined earlier, and K(n)(Ts)
is a universal function of the scaled temperature, Ts =
T/(sE/kB), given by

K(n)(Ts) =
2√
π

∫ ∞

0

dx x1/2e−xW(n)(Tsx) . (3)

Here W(n)(ǫs) is a scaled total rate before thermal av-
eraging. It depends on energy only through the scaled
energy ǫs = ǫ/sE, and has contributions from all partial
waves

W(n)(ǫs) =

∞
∑

l=0

W(n)
l (ǫs) , (4)

where W(n)
l is a scaled partial rate given by

W(n)
l (ǫs) = (2l + 1)T c(n)

l (ǫs)/ǫ
1/2
s , (5)

in which T c(n)
l (ǫs) = |t(oi)l (ǫs)|2 is the quantum transmis-

sion probability through the long-range potential at the
scaled energy ǫs and for partial wave l [19].
For n = 4, corresponding to the ion-molecule inter-

action, the quantum transmission probability, T c(4)
l (ǫs),

0 2 4 6 8 10

(εs)
1/4

0

1

2

3

4

Sc
al

ed
 P

ar
tia

l R
at

e

l=0
l=1
l=2
l=3
l=4

n=4

FIG. 1. (color online) The scaled partial rates W
(n)
l (ǫs) for

n = 4, corresponding to −1/R4 type of interaction in the
entrance channel.
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FIG. 2. (color online) The scaled total rate W
(n)(ǫs) for n =

4, corresponding to −1/R4 type of interaction in the entrance
channel.

which is the only quantity required to determine the
universal rate function in the QL model, can be found
analytically as a part of the QDT for −1/R4 potential
[19, 20]. The result is

T c(4)
l (ǫs) =

2M2
ǫsl

[1− cos(2πν)]

1− 2M2
ǫsl

cos(2πν) +M4
ǫsl

, (6)

where ν is the characteristic exponent and Mǫsl is one
of the universal QDT functions for the −1/R4 potential,
both of which are as given in Ref. [20].
Figure 1 illustrates the resulting scaled partial rates

W(n)
l for n = 4. Figure 2 shows the corresponding to-

tal rate W(n). We note that the oscillatory structure in
the total rate is neither a resonance nor an interference
phenomenon. It is instead a result of the quantization of
angular momentum, with contributions from a discrete
set of partial waves peaking at different energies, as illus-
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FIG. 3. (color online) The universal rate function K
(n)(Ts)

for −1/R4 type of interaction in the entrance channel (solid
line). The dash-dot line represents the prediction of the clas-
sical Langevin model, as given by Eq. (12). The dashed line
represents the QDT expansion as given by Eq. (11).

trated in Fig. 1. The W(n) is related to the total reactive

and inelastic cross section, σur, by σur = (πβ2
n)Σ

(n)
ur (ǫs),

in which Σ
(n)
ur (ǫs) = W(n)/ǫ

1/2
s is the scaled total inelas-

tic and reactive cross section. We note that the oscilla-
tory structure in W(n) is much less visible in the cross
section, making it difficult to detect experimentally.
Figure 3 illustrates the universal rate function K(n)(Ts)

for n = 4, which is the thermal average of the total rate
shown in Fig. 2. In the ultracold regime of Ts ≪ 1, sim-
pler analytic formulas for rates and cross sections can be
derived using the QDT expansion [23] of the transmis-
sion probability. For small scaled energies ǫs, it can be
shown from the QDT for n = 4 [20] that

T c(4)
l=0 =

4ā
(4)
sl=0ǫ

1/2
s

(1 + ā
(4)
sl=0ǫ

1/2
s )2

+O(ǫ5/2s ) , (7)

T c(4)
l=1 =

4ā
(4)
sl=1ǫ

3/2
s

(1 + ā
(4)
sl=1ǫ

3/2
s )2

+O(ǫ7/2s ) , (8)

and

T c(4)
l≥2 = 4ā

(4)
sl ǫ

l+1/2
s +O(ǫl+5/2

s ) , (9)

where

ā
(4)
sl =

(2l+ 1)2

[(2l + 1)!!]4
, (10)

is called the scaled mean scattering lengths for a −1/R4

potential, after similar quantities for −1/R6 potential
[23]. We note that such analytic expansions could not
have been derived from either the WKB theory [24],
or the top-of-barrier analysis [25], as to be discussed in
more details elsewhere [26]. Substituting Eqs. (7)-(9) into

TABLE I. Sample scale parameters for ion-molecule reac-
tions and inelastic processes. The β4 = (2µC4/h̄

2)1/2 is
the length scale associated with the polarization potential
−C4/R

4, where C4 = αq2/2 with α being the average po-
larizability of the molecule. sE/kB = (h̄2/2µ)(1/β4)

2/kB is
the corresponding temperature scale. sK = πh̄β4/µ is the
rate scale corresponding to β4. It is given here in units of
10−9 cm3s−1.

System α (a.u.) β4 (a.u.) sE/kB (K) sK
D+-1H2 5.41a 99.7 8.65× 10−3 1.05
1H+-7Li2 216b 608 2.49× 10−4 6.83
7Li+-87Rb2 553b 2610 1.90× 10−6 4.08
138Ba+-87Rb2 553b 8800 1.45× 10−8 1.21
40Ca+-133Cs2 675b 6540 5.83× 10−8 1.99
40Ca+-40K87Rb 526b 5400 9.78× 10−8 1.88

a From Ref. [27].
b From Ref. [28].

Eqs. (3)-(5) gives the expansion of K(4)(Ts) in the ultra-
cold regime of Ts ≪ 1,

K(4)(Ts) = 4ā
(4)
sl=0 −

16(ā
(4)
sl=0)

2

√
π

T 1/2
s

+18
[

(ā
(4)
sl=0)

3 + ā
(4)
sl=1

]

Ts +O(T 2
s ) . (11)

Here ā
(4)
sl=0 = 1 and ā

(4)
sl=1 = 1/225 are the scaled mean

scattering lengths for l = 0 and l = 1, respectively. A
comparison of this QDT expansion with the exact result
is shown in Fig. 3.
At high temperatures as characterized by Ts ≫ 1, it is

straightforward to show, from the semiclassical limit of
the transmission probabilities [19], that

K(4)(Ts) ∼ 2 , (12)

in agreement with the classical Langevin model [1, 2].
Figure 3 shows that the transition from quantum to semi-
classical behavior occurs over a temperature range of
sE/kB, which we generally refers as the van der Waals
temperature scale. The rate goes from 4sK at the thresh-
old to approximately the Langevin rate of 2sK beyond
sE/kB. Figure 3 also shows that the oscillatory structure
present in W(n) has mostly been washed out by thermal
averaging.
All scaled results can be put on absolute scales us-

ing a single parameter, the average polarizability of the
molecule α. It determines both the rate scale sK and the
temperature scale sE/kB. Sample scale parameters are
given in Table I. They are chosen to illustrate that the
meaning of the ultracold regime, if defined as the range
of temperatures over which the quantum effects are im-
portant, is very different for different systems. It covers a
much broader temperature range for lighter systems than
for heavier ones. They are also chosen to imply that we
expect the QL model to be applicable not only to non-
polar molecules, but also to small polar molecules such
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as KRb [5], with the main difference being that its upper
range of applicability will be more limited. It is interest-
ing to note from the table that despite wide variations of
temperature scales for different systems, the rate scales
are of the same order of magnitude, ∼ 10−9 cm3s−1,
which is roughly 100 times greater than those for neutral-
neutral reactions [9].
In conclusion, we have presented a fully quantal ver-

sion of the Langevin model for exoergic charge-neutral
reactions and inelastic processes. It is a universal model
in which different systems differ only in scaling, further
illustrating the concept that even in a purely quantum
theory, there are important aspects of reactions that can
be understood without detailed knowledge of the PES at
the short range. Such aspects include not only the to-
tal rate of reactions and inelastic processes, presented
here, but also the elastic cross section and the total
cross section, to be presented elsewhere. For a state-
to-state partial cross section, it can be shown from the
underlying MQDTR [9] that while its absolute value re-
quires the short-range PES, its energy dependence can
still be parametrized using the same universal transmis-

sion probabilities T c(n)
l (ǫs). We point out that the QL

model is applicable not only to molecules in the ground
or low-lying states, but also to molecules in vibrationally
highly excited states and to atoms in selective Rydberg
states (ones with significant quantum defect). In such ap-
plications, the theory connects with quantum few-body

physics [29], and provides a description of their behavior
outside of the so-called universal regime, a region that
has been difficult to treat using other methods because
of the large number of open channels. In a mathematical
abstraction with even broader implications, the QL mod-
els presented here and earlier in Ref. [9] represents one
type of universal behaviors that can emerge whenever the
number of open channels in a set of coupled channel (or
close-coupling) equations becomes large. It is our belief
that uncovering and taking advantage of such universal
behaviors will be the key to a more systemic understand-
ing of quantum systems beyond two-body.
At higher temperatures where the molecules start to

explore interactions of shorter range, the universal be-
havior as represented by the QL model will be broken,
and be replaced by more system-specific behaviors that
will distinguish, e.g., between a polar and a nonpolar
molecule. Extracting universal behaviors at such shorter
length scales will require explicit treatment of anisotropic
interactions, such as charge-dipole for a polar molecule,
within the MQDTR framework, and will be the next chal-
lenge for the theory.
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[16] Z. Idziaszek, G. Quéméner, J. L. Bohn, and P. S. Juli-

enne, Phys. Rev. A 82, 020703 (2010).
[17] C. H. Greene, U. Fano, and G. Strinati, Phys. Rev. A

19, 1485 (1979); M. J. Seaton, Rep. Prog. Phys. 46, 167
(1983).

[18] B. Gao, E. Tiesinga, C. J. Williams, and P. S. Julienne,
Phys. Rev. A 72, 042719 (2005) and references therein.

[19] B. Gao, Phys. Rev. A 78, 012702 (2008).
[20] B. Gao, Phys. Rev. Lett. 104, 213201 (2010).
[21] I. Khan and B. Gao, Phys. Rev. A 73, 063619 (2006).
[22] B. Gao, J. Phys. B 37, L227 (2004); Phys. Rev. Lett.

95, 240403 (2005).
[23] B. Gao, Phys. Rev. A 80, 012702 (2009).
[24] E. Merzbacher, Quantum Mechanics (John Wiley &

Sons, New York, 1998).
[25] S. J. Ward and J. H. Macek, Phys. Rev. A 62, 052715

(2000).
[26] M. Li, C. Makrides, and B. Gao, Bull. Am. Phys. Soc.

55 No. 5, 171 (2010).



5

[27] W. Kolos and L. Wolniewicz, The Journal of Chemical
Physics 46, 1426 (1967).

[28] V. Tarnovsky, M. Bunimovicz, L. Vušković, B. Stumpf,
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