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Information-theoretic treatment of tripartite systems and quantum channels

Patrick J. Coles,∗ Li Yu,† Vlad Gheorghiu,‡ and Robert B. Griffiths§

Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

A Holevo measure is used to discuss how much information about a given POVM on system a is
present in another system b, and how this influences the presence or absence of information about
a different POVM on a in a third system c. The main goal is to extend information theorems
for mutually unbiased bases or general bases to arbitrary POVMs, and especially to generalize
“all-or-nothing” theorems about information located in tripartite systems to the case of partial

information, in the form of quantitative inequalities. Some of the inequalities can be viewed as
entropic uncertainty relations that apply in the presence of quantum side information, as in recent
work by Berta et al. [Nature Physics 6, 659 (2010)]. All of the results also apply to quantum channels:
e.g., if E accurately transmits certain POVMs, the complementary channel F will necessarily be noisy
for certain other POVMs. While the inequalities are valid for mixed states of tripartite systems,
restricting to pure states leads to the basis-invariance of the difference between the information
about a contained in b and c.

PACS numbers: 03.67.-a, 03.67.Hk

I. INTRODUCTION

A significant part of current quantum information re-
search can be understood as an attempt to find answers
to the following question: How much of what kind of in-
formation about what is located where? In this paper
we provide specific answers to these questions in the case
of a general tripartite quantum system: subsystems a, b,
and c are described by some sort of quantum state (pre-
probability) that induces a joint probability distribution
on different properties of these systems. Appropriate sta-
tistical correlations can then be thought of in terms of,
for example, system b containing information of some sort
about certain physical properties of system a. To discuss
how much information of this kind is contained in or can
be found in b requires some sort of quantitative measure,
and it is natural to look for something resembling the
well-known Shannon measures in classical information;
see [1] for a modern introduction to this subject.

Although it is rather natural to treat systems a, b and
c on an equal footing—and that is the perspective of this
paper—one can also think of the properties as existing at
different times. For example, a might be the entrance to
a quantum channel with b, possibly but not necessarily
the same physical system, the output of the channel and
c the “environment” at this later point in time. Such
a dynamical perspective is well-known in classical infor-
mation theory as it applies to a noisy channel, where
it can be discussed using the same information mea-
sures, e.g., the mutual information H(X :Y ), that ap-
ply to statistically-correlated systems (think of a shared
key used for cryptographic purposes) at the same time, a
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static perspective. Both perspectives are also possible for
problems in quantum information theory, though this has
not received as much attention as we think it deserves,
and viewing expressions which are formally the same (or
closely related) from distinct points of view can make a
valuable contribution to one’s intuitive understanding of
a situation.

Of course, quantum information theory is more gen-
eral than classical information theory, so the conceptual
ideas provided by the latter are insufficient for discussing
the quantum world. In this paper we take the perspective
that a valuable way to think about the quantum case is to
distinguish different types or species of quantum informa-
tion [2]. For example, if a is a single qubit the distinction
between |0〉 and |1〉 constitutes the “z” type of informa-
tion, whereas the distinction between |+〉 and |−〉, with
|±〉 = (|0〉 ± |1〉)/

√
2, is the “x type.” Each type by it-

self, even when it refers to microscopic (thus “quantum”)
properties, follows the usual rules of classical information
theory. This allows one to immediately transfer a large
body of mathematical formalism and associated physical
intuition from the classical to the quantum domain with-
out risk of falling prey to inconsistencies and paradoxes.
The quantum nature of the microscopic world then man-
ifests itself through the fact that incompatible types of
information, corresponding to non-commuting projective
decompositions of the identity, cannot be combined: this
is the single framework rule (see, e.g., Ch. 16 of [3]) that
allows a fully-consistent use of probabilities in the quan-
tum domain.1

1 It is important to note that a type of information as defined
here refers primarily to a microscopic quantum property rather
than the outcome of a measurement. A correctly constructed
measurement apparatus can reveal the property of a microscopic
system, so that, for example a Stern-Gerlach apparatus followed
by detectors can determine if the spin-half particle entering the
apparatus had Sz = +~/2 or −~/2, corresponding to the qubit
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In this paper we generalize the notion of a type of quan-
tum information so that it includes not only a projective
decomposition of the identity, a set of projectors that
sum to the identity, but also a general POVM, a collec-
tion of positive operators that sum to the identity. The
idea, discussed in Sec. II A, is that while the operators in
a POVM are in general not orthogonal, each corresponds
to a projector on a larger Hilbert space, the Naimark ex-
tension (which is not unique), and the collection of such
projectors sums to the identity on the larger space thus
constituting a particular type of quantum information in
the sense previously discussed.

The question “How much?” has motivated an ongo-
ing search for measures that extend the very useful idea
of entanglement beyond bipartite pure states where it
was first introduced. Despite a great deal of effort and a
large number of intriguing results [5], it seems fair to say
that there remain a large number of unanswered ques-
tions even for bipartite mixed states, not to mention the
multipartite case. It is not obvious that a single number
representing the entanglement, or even a small collection
of numbers, will suffice to embody the physical insights
needed for a better understanding of such systems. In
this paper we introduce measures of information that de-
pend explicitly on the (quantum) type of information one
is considering, so we can address the question of, for ex-
ample, how well a noisy quantum channel performs for
different types of input. The definitions and a detailed
discussion of these measures will be found in Sec. III; at
this point it suffices to note that they are of the Holevo
form using the quantum von Neumann entropy, though
in some cases they can be generalized using other types
of entropy.

As well as direct quantitative measures of informa-
tion certain differences in information measures, e.g., the
amount of information of a given type that is in b minus
how much is in c, are of interest. We refer to these as
entropy or information biases. It is not without interest
that the coherent information [6] when expressed in the
language of tripartite systems is (or least can be thought
of as) such a bias; see Sec. III C. In Sec. IV we show that
under appropriate circumstances an information bias will
be independent of the type of information under consid-
eration.

One of the most striking features of quantum infor-

states |0〉 or |1〉, and in this case the z information initially pos-
sessed by the particle is translated into distinct macroscopic ap-
paratus states, making the z information “visible” or “classical.”
(For an important application to quantum information theory
of the idea that a macroscopic quantum outcome reveals a prior
microscopic state, see [4]; for a detailed discussion of the mea-
surement process in fully quantum terms, see Chs. 17 and 18
of [3].) However, the concept of z information can also be used
in situations, such as when a qubit is just entering a quantum
channel, where trying to relate it to a measurement, at least as
a physical process occurring at that point in time, is not very
helpful.

mation is that if information of a particular type cor-
responding to some orthonormal basis w of system a is
perfectly present (perfect correlation, no noise) in system
b for the quantum state under discussion, this prevents
or excludes a type of information v corresponding to a
basis mutually unbiased (MU) with respect to w—that
is, v and w are mutually-unbiased bases (MUBs)—from
being present in a third system c. In Sec. V of this paper
we present quantitative generalizations of this and some
other “all-or-nothing” theorems to situations in which,
for example, almost all information of the w type of in-
formation about a is in b and one wants to bound how
much v information, where v is only approximately MU
with respect to w, can be present in c.

In particular, Theorem 5 in Sec. VB presents a bound
of this form. It extends to POVMs an important in-
equality proved in [7], earlier conjectured in [8], using
a somewhat simpler proof. This extension was also re-
cently proven in [9] using smooth entropies; in contrast
our proof approach is based on the relative entropy. Var-
ious consequences, including the application to a channel
and its complementary channel, are worked out in var-
ious corollaries. As well as thinking of this result as a
bound on the amounts of two strongly incompatible (in
the sense of almost MUB) types of information about
a present in different locations, Theorem 5 constitutes
a generalized entropic uncertainty relation for system a
when the coupling to another system or systems is taken
into account (“quantum side information” in the sense
discussed in [8, 10]).

Several additional quantitative generalizations of all-
or-nothing results are given in Secs. VA, VC, and VD.
The all-or-nothing results can be succinctly stated as fol-
lows for orthonormal bases u, v, and w of a, where u and
v are MU relative to w (but not necessarily to each other).
If the w type of information is perfectly present in b, then
(1) ρac is block diagonal in the w basis (Lemma 4), (2)
the amount of u information in b is equal to the amount
of v information in b (Theorem 8), (3) if the v information
is perfectly present in b then there is a perfect quantum
channel from a to b (Theorem 10), (4) if the w infor-
mation is completely absent from c, then no information
about a is in c: the two are decoupled (Theorem 11).

The remainder of this paper is organized as follows.
Section II is an introduction to tripartite systems, in-
cluding the connection with quantum channels and their
complements, and provides details of what we mean by
different types of quantum information. Various quanti-
tative measures of information are introduced, and some
of their properties discussed, in Sec. III. Our main results,
which, as indicated above, provide quantitative bounds
on the location of various types of information in differ-
ent systems, occupy Secs. IV and V. Section VI relates
our work to various other approaches and publications.
A summary, which provides an overview of how the dif-
ferent theorems are related to each other, is in Sec. VII A,
followed by an indication of issues worth further explo-
ration in Sec. VII B. To make the main presentation com-
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pact and easier to follow, all but the very shortest proofs
have been relegated to appendices.

II. SYSTEMS WITH THREE PARTS

A. POVMs and types of information

Much work in contemporary quantum information the-
ory is devoted to particular instances of what may be
called the tripartite system problem defined in the follow-
ing way. Let Habc = Ha ⊗Hb ⊗Hc be a tensor product
of Hilbert spaces of dimensions da, db, dc, all assumed to
be finite, and let

Ia =
∑

j

Paj , Ib =
∑

k

Qbk, Ic =
∑

l

Rcl (1)

be three POVMs, decompositions of their respective iden-
tities into finite sets of positive operators, hereafter re-
ferred to as Pa, etc.

2 [Note that we use the symbols a,
b, and c as subscripts (but occasionally on line) to label
subsystems, and indices j, k, l, etc. to label the POVM
elements.] What can be said about the joint probability
distribution

Pr(Paj , Qbk, Rcl) = Tr(PajQbkRclρabc), (2)

where ρabc is a density operator acting as a pre-
probability (generator of probabilities in the terminology
of Sec. 9.4 of [3]), perhaps but not necessarily a projec-
tor |Ω〉〈Ω| on the pure state |Ω〉? In particular, what is
its information-theoretic significance? One is, of course,
interested in how these probabilities, and the correspond-
ing marginal distributions such as

Pr(Paj , Qbk) =
∑

l

Pr(Paj , Qbk, Rcl) = Trab(PajQbkρab),

(3)

with ρab the partial trace over Hc of ρabc, depend upon
the indices j, k, and l. But of equal, or even greater inter-
est is their dependence upon the choice of POVMs in (1).
Here quantum theory, in contrast to classical physics, al-
lows an enormous number of possibilities.
In what follows we shall want to distinguish various dif-

ferent types of POVM. A rank-1 POVM is one in which
all the positive operators are of rank 1, which is to say
proportional to projectors on one-dimensional spaces; we
will employ symbols L, M , N to denote such POVMs.
When all the POVM elements are projectors (orthogonal
projection operators) we have a projective decomposition

2 It is sometimes helpful to imagine the three parts as residing
in three different places, say three different laboratories where
Alice, Bob, and Carol can carry out separate preparations and
measurements on them.

of the identity. A rank-1 projective decomposition is as-
sociated with an orthonormal basis ; e.g., the orthonormal
basis w = {|wj〉} of Ha gives rise to the decomposition

Paj = |wj〉〈wj |. (4)

In what follows we use the lower case letters u, v, and
w to denote orthonormal bases, and where useful add a
subscript, e.g., wa, to indicate the corresponding system
or Hilbert space. A second basis v = {|vj〉} is mutually

unbiased (MU) relative to w—the terms complementary

or conjugate are also in use—thus v and w are mutu-
ally unbiased bases (MUBs), when |〈vj |wk〉| = 1/

√
da is

independent of j and k.
Unlike a general POVM, a projective decomposition

can be given a simple physical interpretation: the pro-
jectors, or the subspaces onto which they project, form
a quantum sample space: a collection of mutually ex-
clusive physical properties one and only one of which is
true; see Ch. 5 of [3]. In previous work [2] such a pro-
jective decomposition was called a type of information:
e.g., Πa = {Πaj} is a type of information about the sys-
tem a. Two types of information Πa and Φa about the
same system are compatible provided every projector in
one set commutes with every projector in the other set:
ΠajΦak = ΦakΠaj for every j and k; otherwise they are
incompatible. Two distinct rank-1 projective decomposi-
tions, or the corresponding orthonormal bases, are nec-
essarily incompatible if they differ by more than simply
relabeling the projectors, and two MUBs are incompat-
ible to the maximum extent possible. Probabilistic ar-
guments in quantum mechanics cannot combine results
from incompatible decompositions—the single framework

rule, see Ch. 16 of [3]—without risk of generating contra-
dictions and paradoxes.
However, in the present paper we generalize the notion

of a type of information about (say) system a to include
any POVM Pa when interpreted using a Naimark exten-

sion; see [11, 12] or Sec. 9-6 of [13]. Assume that the
Hilbert space Ha is a subspace of a larger Hilbert space
HA, with Ea the operator on HA that projects onto Ha.
If HA has been appropriately chosen there is a projective
decomposition {ΠAj} of its identity IA such that

Paj = EaΠAjEa. (5)

In addition, one can always arrange that for each j the
rank of ΠAj is the same as the rank of Paj , though one
may need an additional projector, call it ΠA0, which is
orthogonal to Ea, so the corresponding Pa0 is the zero
operator. (It is possible to set things up so that the rank
of ΠAj exceeds that of Paj , but in light of (5) the re-
verse is impossible.) An important special case used in
proving later results is that any rank-1 POVM N on a is
equivalent to some rank-1 projective decomposition (or-
thonormal basis) onA [12]. One can if one wishes think of
HA as a tensor product Ha⊗He, where He is the Hilbert
space of some reference system, and Ha is itself (isomor-
phic to) the subspace of kets of the form |ψ〉 ⊗ |e0〉, with
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|e0〉 a fixed, normalized ket inHe. In this case the density
operator on A is ρA = ρae = ρa⊗|e0〉〈e0|, and Ea in (5) is
simply Ia ⊗ |e0〉〈e0|. Starting with the projective decom-
position ΠA for the larger system A, one can think of the
corresponding positive operators defined in (5) as conve-
nient mathematical tools for computing probabilities in
those cases in which the density operator ρA has support
in the subspace Ha onto which Ea projects. From this
perspective, and using the corresponding Naimark exten-
sions for b and c, one could reformulate the results given
in later sections of this paper in terms of projective de-
compositions on the larger Hilbert spaces. However, the
use of POVMs provides in many cases a simpler mathe-
matical form, and a theorem that refers to an arbitrary
POVM obviously includes projective decompositions as
particular cases. Nonetheless, when thinking in physical
or operational terms about the type of information rep-
resented by a general POVM Pa it is helpful to employ
its Naimark counterpart.
The information about a POVM Pa = {Paj} is said to

be completely or perfectly present in system b provided
the conditional density operators

pjρbj = Tra(Pajρab); pj := Pr(Paj) = Tr(Pajρa), (6)

on Hb are mutually orthogonal: ρbjρbj′ = 0 for j 6= j′.
Conversely, this type of information is (completely) ab-

sent from b when the conditional density operators ρbj
are identical. One can visualize this in terms of measure-
ments as follows. Suppose a POVM {Paj} measurement
is carried out on system a. Can the value of j be deduced
by carrying out an appropriate sort of measurement on
system b? If the ρbj are orthogonal to each other this
is clearly possible using (projective) measurements cor-
responding to a suitable decomposition {Qbk} of Ib. But
in the other extreme in which the ρbj are identical it
is clear that no measurement on b will provide any in-
formation about j. It is worth noting that one obtains
the same values in (6) by replacing the formulas with
pjρbj = TrA(ΠAjρAb) and pj = Tr(ΠAjρA), so all of our
measures in Sec. III B quantifying the presence of the Pa

information in b, depending only on {pj , ρbj}, will be un-
affected by replacing Pa with its Naimark extension ΠA.

B. Quantum channels

In some sense the most natural way to state the var-
ious results given below in Secs. IV and V is in terms
of correlations in which all three parts a, b, and c are
treated, at least formally, in a symmetrical fashion. But
some of the more interesting applications are to quan-
tum channels and complementary channels, in which the
channel entrance is not treated in the same way, either
formally or intuitively, as the channel output. Hence in
order to facilitate application of our results to the case of
channels, we provide a brief explanation, using ideas in
[14, 15], of why the “tripartite” and the “channel” prob-
lem are not only closely related to each other, but in some

sense identical problems in the case where one restricts
attention to a pure-state pre-probability |Ω〉 ∈ Habc.

V





a

a′
|Φ〉

a

b

c





|Ω〉

FIG. 1: How |Ω〉 is produced by applying the isometry V to
an entangled state |Φ〉.

Consider the situation shown in Fig. 1 where

|Ω〉 = (Ia ⊗ V )|Φ〉. (7)

is the result of applying an isometry

V =
∑

j

|sj〉〈a′j | (8)

to the a′ part of an entangled state |Φ〉 ∈ Ha⊗Ha′ , with
Ha′ a copy (i.e., the same dimension) of Ha. Here {|a′j〉}
is some orthonormal basis of Ha′ held fixed during the
following discussion, we are assuming that da 6 dbdc,
and the requirement that V be an isometry, which is to
say V †V = Ia is equivalent to the assumption that the
kets {|sj〉} form an orthonormal collection spanning the
subspace Hs = VHa′ of Hbc.
If, in particular, |Φ〉 is the fully-entangled state

|Φ〉 = (1/
√
da)

∑

j

|aj〉 ⊗ |a′j〉, (9)

then

|Ω〉 = (1/
√
da)

∑

j

|aj〉 ⊗ |sj〉, (10)

is an example of what in [14] is called a channel ket,
characterized by the property that

ρa = Trbc(|Ω〉〈Ω|) = Ia/da. (11)

Indeed, given a pre-probability |Ω〉 such that (11) holds,
it is necessarily a fully-entangled state on Ha⊗Hbc, so it
will have a Schmidt form (10) for {|aj〉} a given orthonor-
mal basis of Ha, and using the orthonormal collection of
states {|sj〉} corresponding to this Schmidt decomposi-
tion one can define a corresponding isometry V by means
of (8). Thus by employing map-state duality (see e.g.
[14] or Ch. 11 of [15]) one can move from a channel ket
|Ω〉 satisfying (11) to an isometry V or the reverse.
From an information-theoretic perspective the isome-

try V corresponds to saying that all information about
the system a is in the system bc, and in fact in the sub-
space Hs of Hbc spanned by the |sj〉 in (10). The partial
traces onto Hb and Hc in a sense “project down” parts of
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this information onto these subsystems. Thus, not sur-
prisingly, the projector Υ onto Hs along with its partial
traces down to Hb and Hc,

Υ = V V † =
∑

j

|sj〉〈sj |,

Υb = Trc(Υ), Υc = Trb(Υ), (12)

play useful roles in our thinking about these problems, as
they in a sense describe, in a basis-independent way, how
the subspaceHs is “oriented” relative to the factor spaces
Hb and Hc. Note that while Υ is a projector, Υb and Υc

are positive operators but (in general) not projectors.
The isometry V in (8) can be used to define a quantum

channel from a to b through the superoperator

E(A) = Trc(V AV
†) =

∑

l

KlAK
†
l (13)

that maps the space L(Ha) of operators on Ha to the
corresponding space L(Hb) of operators on Hb. Here the
Kraus operators are maps from Ha to Hb of the form

Kl = 〈cl|V =
∑

j

〈cl|sj〉〈aj |, (14)

where {|cl〉} is an orthonormal basis of Hc, and 〈cl|sj〉 is
a ket in Hb, defined in an obvious way, not just a complex
number. Because V is an isometry the Kraus operators
satisfy the usual closure condition

∑
K†

lKl = Ia. (15)

The complementary channel from a to c,

F(A) = Trb(V AV
†) =

∑

m

LmAL
†
m, (16)

is defined in a similar way with Kraus operators

Lm = 〈bm|V =
∑

j

〈bm|sj〉〈aj |, (17)

for {|bm〉} some orthonormal basis ofHb, and these again
satisfy the closure condition analogous to (15).
The superoperators E and F , and their adjoints E†

and F† relative to the usual Frobenius inner product
〈P, Q〉 = Tr(P †Q), can be expressed directly in terms
of ρabc = |Ω〉〈Ω|, or its partial traces such as ρab, using
formulas such as

E(A) = daTra[(A
T ⊗ Ib)ρab],

[E†(B)]T = daTrb[(Ia ⊗B)ρab], (18)

where T denotes the transpose relative to the basis {|aj〉}
employed in (9) and (10). The complete positivity of E
is equivalent to the requirement that ρab be a positive
operator; in some respects this is simpler and more com-
pact than the traditional definition. For it to be trace

preserving it is necessary that ρa be Ia/da, (11). Since
in general neither ρb nor ρc is proportional to the cor-
responding identity, the adjoints E† and F† are not (in
general) trace preserving, and in this sense are not quan-
tum channels. This is one respect in which “tripartite”
language is more flexible than “channel” language.
It is also worth observing that the superoperator E

uniquely determines |Ω〉 up to local unitaries on Ha and
Hc for a fixed dc. This is because a set of Kraus op-
erators is generated, (14), using an orthonormal basis
{|cl〉} of Hc, and one can invert the process by writing
V =

∑
l |cl〉Kl, where of course the result depends on the

choice of basis {|cl〉}. Different orthonormal bases on Hc,
as is well-known, simply give rise to different collections
of Kraus operators which represent the same quantum
channel or operation. In this sense a channel completely
determines its complementary channel for a fixed dc, and
vice versa, up to local unitaries. However, different in-
sights may emerge by considering one rather than the
other, or by thinking about the two together.
We say there exists a perfect quantum channel from a

to b when all types of information about a are perfectly
present in b. This by itself implies that ρa = Ia/da (see
Theorem 3 in [14]), and thus E in (18) is trace-preserving.
It obviously suffices to check that the information asso-
ciated with every orthonormal basis is present in b, but
there are also weaker conditions that ensure the presence
of a perfect quantum channel; e.g. see [2, 16] and the
discussion in Sec. VD.
A more general relationship is possible between an

isometry V and a tripartite pure state, by starting with
(7), the circuit in Fig. 1, but assuming that |Φ〉, while no
longer fully entangled, has full Schmidt rank:

|Φ〉 =
∑

k

√
πk |ak〉 ⊗ |a′k〉, (19)

with πk > 0 for every k. With V an isometry of the form
(8), j replaced by k, and

ρa =
∑

k

πk|ak〉〈ak| (20)

the partial trace of |Φ〉〈Φ| down to Ha, one has

ρb = Trac(|Ω〉〈Ω|) = E(ρa), (21)

where E is the superoperator corresponding to V through
(13). A similar result holds for the complementary a to c
channel. The ket |Ω〉 determines the projector Υ = V V †

uniquely, but V itself only up to a unitary transformation

on Ha. Conversely, two isometries V and Ṽ giving rise
to the same Υ can be used to generate the same |Ω〉 by
using two different entangled states |Φ〉 and |Φ̃〉.
The partially entangled |Φ〉 (19) is useful when ad-

dressing the following question: Suppose an ensemble
{pj, ρj} of states is sent through the quantum channel
E . How can one relate the outputs E(ρj) of the channel
to corresponding outcomes of a POVM measurement Pa
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on the tripartite state |Ω〉? Suppose the density operator
ρa =

∑
j pjρj for the ensemble is of the form (20), i.e.,

choose |Φ〉 in (19) such that this is the case. Then define
Pa through

PT

aj = pjWρjW
†, (22)

where T denotes the transpose in the basis {|ak〉}, and

W =
∑

k

(1/
√
πk)|ak〉〈a′k|. (23)

It is straightforward to show that Paj is a positive oper-
ator with the same rank as ρj (since W is nonsingular),
and

∑
j Paj = Ia. The probability of outcome j for the

POVM is pj , and the corresponding conditional density
operator is

ρbcj = Tra(Pajρabc) = V ρjV
†, (24)

with ρabc = |Ω〉〈Ω|. Tracing this down to b yields E(ρj),
the outcome when ρj is sent through the channel.
The preceding discussion requires some fairly obvious

changes if some of the πk in (19) are zero. First, Υ = V V †

is not uniquely determined by |Ω〉, since the |sk〉 in (8)
corresponding to zero πk are unknown. Second, the sum
in (23) must be restricted to the k with πk > 0, whereas
(22) remains the same.

III. INFORMATION MEASURES

A. Entropies

All the information measures that we will introduce are
based on some sort of entropy. In classical information
theory [1] the usual starting point is the Shannon entropy

H(P ) = H({pj}) = −
∑

j

pj log pj, (25)

where P denotes a random variable or its correspond-
ing probability distribution. Given two random vari-
ables P and Q the entropy H(P,Q) is obtained by re-
placing pj in (25) by the joint probability distribution
pjk = Pr(Pj , Qk) and summing over both j and k. The
conditional entropy and mutual information are then de-
fined by:

H(P |Q) = H(P,Q)−H(Q),

H(P :Q) = H(P ) +H(Q)−H(P,Q). (26)

The quantum entropy most closely analogous to Shan-
non’s H is the von Neumann entropy

S(ρ) = −Tr(ρ log ρ), (27)

but we have also studied some other possibilities:

SR(ρ) =
1

1− q
logTr(ρq), 0 < q 6 1,

ST (ρ) =
1

1− q
[Tr(ρq)− 1], 0 < q 6 ∞,

SQ(ρ) = 1− Tr(ρ2). (28)

Here SR, ST , and SQ are the Renyi, Tsallis, and
quadratic (often misleadingly called linear) entropies, re-
spectively. Some of our results are valid for all these
entropies, in which case they are stated for SK , where K
denotes either no subscript (von Neumann) or else one of
the three symbols R, T,Q.
All of these entropies are strictly concave,

SK(
∑
pjρj) >

∑
pjSK(ρj) for 0 < pj < 1 and∑

pj = 1, with equality if and only if all ρj ’s are equal,
provided the parameter q in the case of SR and ST is
in range specified in (28). Both SR and ST are equal
to S in the limit q = 1, and ST interpolates between
S and SQ as q goes from 1 to 2. The entropies S, SQ,
and ST for q > 1, are subadditive [17] in the sense that
SK(ρa) + SK(ρb) > SK(ρab), but only the von Neumann
S has the property of strong subadditivity on a tripartite
system (p. 519 of [6]):

S(ρab) + S(ρbc) > S(ρabc) + S(ρb). (29)

Given a bipartite quantum system with a density op-
erator ρab, partial traces ρa and ρb, the quantum condi-

tional entropy and the quantum mutual information are
defined as (p. 514 of [6])

S(a|b) = S(ρab)− S(ρb),

S(a : b) = S(ρa) + S(ρb)− S(ρab), (30)

which are formally analogous to the quantities in (26).
Note that S(a|b) can be negative. On the other hand,
S(a : b) is nonnegative and vanishes for a product state
ρab = ρa ⊗ ρb, and thus can be regarded in some sense
as a measure of how much information about a is in b or
vice versa. Thought of in this way it has the property
that for a tripartite system abc,

S(a : bc) > S(a : b), (31)

i.e., there is less information about a in b, a subsystem
of bc, than there is in bc, which seems a reasonable re-
quirement for a measure of information. Note that (31)
is equivalent to (29), a property not shared (in general)
by the other entropies defined in (28).
We shall later prove our main result using the relative

entropy:

S(ρ||σ) = Tr(ρ log ρ)− Tr(ρ log σ), (32)

which has the useful property [18] that it is non-
increasing under the action of a quantum channel E ,

S(ρ||σ) > S(E(ρ)||E(σ)). (33)

The extension of (32) to general positive operators is
natural, and [19] for any positive operators A, B, and C,
if C > B (i.e. C −B is a positive operator),

S(A||B) > S(A||C). (34)
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B. Distinguishability measures

While S(a : b) can serve as an overall indication of how
much information about a is in b, or vice versa, it is not
a measure that depends on the type of information, so
cannot be used to compare how well different types of in-
formation about a are found in, or transmitted to b. For
this purpose one could use a fidelity measure: how closely
a state on Hb resembles its counterpart on Ha. However,
this requires making some identification between the two
Hilbert spaces, which is not easy to do if they are of dif-
ferent dimension, or else one needs an additional map or
channel to carry Hb back to Ha. For this and other rea-
sons we prefer to use a distinguishability measure. Thus
suppose Pa = {Paj} is a decomposition of the identity Ia
of Ha, (1), and {pj, ρbj} is the ensemble of conditional
states on Hb defined in (6). Two extreme cases were dis-
cussed in Sec. II A: that in which the Pa type of informa-
tion is perfectly present in b, which means ρbjρbk = 0 for
j 6= k, thus conditional density operators perfectly distin-
guishable; and the Pa type of information (completely)
absent from b, meaning the ρbj are identical for all j and
thus indistinguishable. Our goal is to assign numerical
values to situations lying between these extremes.

Ideally one might use some collection of numbers refer-
ring to the distinguishability of every pair of conditional
density operators ρbj , see [20] for an overview of distin-
guishability measures for two density operators. How-
ever, we shall employ a much coarser but still useful char-
acterization in which a single number, in some sense an
“average” distinguishability, is assigned to each informa-
tion type, thereby allowing us to focus on our primary
goal: elucidating how the amount of information depends
upon the type considered, for a given pre-probability
(density operator or channel). As is customary in infor-
mation theory we want a measure that is nonnegative,
that is (formally) invariant under local unitary opera-
tions, and, naturally, we prefer simple mathematical ex-
pressions that have a clear intuitive interpretation. This
still leaves many possibilities, but among them we have
found that measures based on the Holevo function

χK({pj, ρj}) = SK(
∑

j

pjρj)−
∑

j

pjSK(ρj) (35)

are particularly useful, where {pj, ρj} denotes an ensem-

ble associated with a particular Hilbert space H: each ρj
a density operator on this space, and the {pj} a probabil-
ity distribution. Here SK could be any of the entropies
defined in (27) or (28); S without a subscript refers to
the von Neumann entropy, and the corresponding χ has
no subscript. Because each of these entropies is a strictly
concave function (for q in the appropriate range indicated
in (28)), χK is nonnegative and equal to zero if and only
if the ρj are identical.

When (35) is applied to the ensemble {pj, ρbj} of (6),
states in Hb conditional on the decomposition Pa =

{Paj} in (1), the result is

χK(Pa, b) := SK(ρb)−
∑

j

pjSK(ρbj), (36)

a measure of the amount of information of type Pa in b.
This is also a numerical measure of what is sometimes
called quantum side information [8, 10].
While Pa can refer to a general projective decompo-

sition of Ia or a POVM, we will often be interested in
an orthonormal basis {|wj〉}, projectors |wj〉〈wj |, of Ha,
in which case we will write χK(w, b), omitting the a sub-
script when it is obvious from the context. One can easily
show using the concavity of SK that

χK(Pa, b) > χK(P̃a, b), (37)

where Pa and P̃a are POVMs, and P̃a is a coarse-graining
of Pa formed by summing some of the Paj elements. Also,
as a consequence of (29), see [21],

χ(Pa, bc) > χ(Pa, b), (38)

so a subsystem b of bc cannot contain more information
than bc itself. (This does not hold for χK with K = R,
T or Q.)
In the case of a quantum channel E (13) from a to b

associated with isometry V from a to bc, we define

χK(Pa, E) := SK [E(
∑

pjρaj)]−
∑

pjSK [E(ρaj)], (39)

where Pa is a POVM, Ia =
∑
Paj = da

∑
pjρaj , with

ρaj = Paj/Tr(Paj), pj = Tr(Paj)/da. (40)

Note that E(∑ pjρaj) = Trc(V V
†)/da = Υb/da [see (12)]

in the first term of (39) is independent of the POVM
Pa. Equation (39) is some measure for how well E pre-
serves the distinguishability of the Pa ensemble; e.g.
if E perfectly preserves the orthogonality of an input
orthonormal basis w then χ(w, E) = log da, otherwise
χ(w, E) < log da (see Lemma 1 below).
In contrast to χ(Pa, b), the quantity [10]

H(Pa|b) := H(Pa)− χ(Pa, b) (41)

is a measure of absence of the Pa type of information from
b, where H(Pa) is the Shannon entropy (25) associated
with the probabilities defined in (6).3 One can also think
ofH(Pa|b) as themissing information about Pa given the
quantum system b, and it is a natural quantum analog
of H(Pa|Qb) = H(Pa)−H(Pa :Qb) [see (26)], where one

3 Following [6], we use H for classical entropy and S for quantum
entropy. For conditional entropy, we use H if the first argument
is classical as in (41), and S if the first argument is more general
(quantum) as in (30).
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identifies χ(Pa, b) as a quantum analog of H(Pa :Qb).
4

In contrast to S(a|b) defined in (30), H(Pa|b) is non-
negative (see Lemma 1); it equals the Shannon missing
information H(Pa) in the case when b provides no infor-
mation about Pa, and it equals zero only when b perfectly
contains the Pa information.
We remark that an alternative way of definingH(Pa|b),

similar to that employed in [7–9], is to introduce the
quantum channel EP from ab→ eb defined by

EP (ρab) =
∑

j

|ej〉〈ej | ⊗ Tra(Pajρab), (42)

where {|ej〉} is an orthonormal basis for an auxiliary sys-
tem e. Then H(Pa|b) is the von Neumann conditional
entropy S(e|b) of the state EP (ρab).
Lemma 1. This lemma summarizes some useful proper-
ties of the χ(Pa, b) and H(Pa|b) measures.
(i) For any ensemble {pj , ρj}

χ({pj, ρj}) = S(
∑

j

pjρj)−
∑

j

pjS(ρj) 6 H({pj}),

(43)
with equality if and only if the ρj are mutually orthogo-
nal.
(ii) Let Pa and Qb be any two POVMs on a and b

respectively, and ρab any state on Hab. Then

H(Pa :Qb) 6 χ(Pa, b) 6

min{S(ρa), S(ρb), S(a : b)}, (44)

and hence by (41), (43), and (44),

0 6 H(Pa|b) 6 H(Pa|Qb). (45)

Part (i) is from [6] (Theorem 11.10, p. 518). The left-
hand-side of (44) is Holevo’s bound (p. 531 of [6]), and
the right-hand-side of (44) is similar to Proposition 1 of
[22] though we prove it in Appendix A since we have
explicitly inserted the bound on χ.

C. Entropy biases and coherent information

In addition to quantitative measures of information
about one system present in another it is useful to have
measures of information differences. In what follows we
shall make use of two quantities of this type. When con-
sidering two systems b and c,

∆SK(b, c) := SK(ρb)− SK(ρc), (46)

4 It is straightforward to show that χ(Pa, b) becomes H(Pa :Qb)
if one replaces the conditional density operators ρbj in (36) with
conditional probability distributions Pr(Qb|Pa = Paj), and also
replaces S() with H().

is the entropy bias, while for information type Pa,

∆χK(Pa; b, c) := χK(Pa, b)− χK(Pa, c) (47)

is the information bias. Analogous quantities for the
complementary channels E and F (to b and c respec-
tively) arising from isometry V are:

∆SK(E ,F) := SK(Υb/da)− SK(Υc/da),

∆χK(Pa; E ,F) := χK(Pa, E)− χK(Pa,F). (48)

Unlike our information measures these quantities can
(obviously) be negative. When using the von Neumann
entropy we omit the subscript K and denote these quan-
tities, e.g., by ∆S(b, c) and ∆χ(Pa; b, c).
The coherent information Icoh (Sec. 12.4.2 of [6]) is a

particular instance of the entropy bias for the tripartite
pure state |Ω〉:

Icoh(ρa′ , E) = ∆S(b, c) (49)

where, see the discussion in Sec. II B associated with (19),
the quantum channel E corresponds to an isometry V
which yields |Ω〉 when applied to an entangled state |Φ〉
chosen so that the partial trace of |Φ〉〈Φ| down to a′

yields the density operator ρa′ . The density operators ρb
and ρc needed to define the entropy bias, (46), on the
right side of (49) are the partial traces of |Ω〉〈Ω| down
to systems b and c, respectively. It can also be seen
more directly, for the maximally-mixed input state, that
Icoh(Ia′/da′ , E) = ∆S(E ,F).
Despite the connection in (49), the entropy bias in (46)

seems more natural in the state or static point of view,
which lacks the notion of inputs and outputs, than Icoh.
The latter has always been thought of as a function of
a trace-preserving superoperator E and an input state
ρa′ to a channel, whereas the biases in (46) and (47)
are simply functions of the tripartite state |Ω〉, without
making reference to how it may have been generated by
the combination of an isometry and a partially-entangled
state.

IV. BASIS INVARIANCE

We begin our discussion of how the amount of informa-
tion about system a in some other system(s) depends on
the type of information with two cases in which certain
quantities are actually independent of type. In both of
them, a pure-state pre-probability is assumed.
Theorem 2. Consider a bipartite system with a pure-
state pre-probability ρab = |Ψ〉〈Ψ|. Let N be a rank-1
POVM on a, let w be an orthonormal basis (thus also a
rank-1 POVM) on a, then

χK(w, b) = χK(N, b) = SK(ρa) (50)

is independent of the basis w or rank-1 POVM N .
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Proof. Apply (36) to w, setting SK(ρb) = SK(ρa) and
the second term in (36) to zero because each ρbj is a
pure state, proving χK(w, b) = SK(ρa). From Sec. II A,
N is equivalent to an orthonormal basis vae on Ha ⊗He

assuming the state on ae is ρae = ρa⊗|e0〉〈e0|, where |e0〉
is some pure state on e. Thus, χK(N, b) = χK(vae, b) =
SK(ρae), but SK(ρae) = SK(ρa) for all entropy functions
under consideration.

This implies that if the w information about a is absent
from b, χK(w, b) = 0, all types are absent and |Ψ〉 is a
product state, which is one form of the Absence theorem
of [2]. And it generalizes in that if the w information is
almost absent from b, then by (37) χ(w, b) > χ(P, b), any
other type P is almost absent from b. On the other hand,
one can read (50) as a statement that all (rank-1) types
of information are equally present; the only problem is
interpreting the common value of χK(w, b) = SK(ρa). In
the case of the von Neumann entropy, χ(w, b) = S(ρa) is
the usual entanglement measure of |Ψ〉, and is an upper
bound on the Shannon mutual information (Lemma 1)
that can be achieved by performing measurements in the
Schmidt bases on a and b. Note that reading (50) in
reverse provides a natural interpretation for SK(ρa); it
is the amount of information about any rank-1 type N
contained in a system b that purifies ρa, as measured by
χK(N, b).
The following useful result for tripartite pure states

and complementary channels (see Sec. VIA) is proved in
Appendix B.
Theorem 3. Let M and N be rank-1 POVMs on a,
and let v and w be orthonormal bases (thus also rank-1
POVMs) on a.
(i) Consider a tripartite system with a pure-state pre-

probability ρabc = |Ω〉〈Ω|. Then the information bias
defined in (47),

∆χK(w; b, c) = ∆χK(N ; b, c) = ∆SK(b, c), (51)

where K denotes any of the entropies defined in (27) or
(28), is equal to the corresponding entropy bias, and thus
independent of the choice of orthonormal basis or rank-1
POVM. It follows that the difference:

χK(M, b)− χK(N, b) = χK(M, c)− χK(N, c), (52)

is the same for b and c, which obviously holds if M and
N are replaced by v and w.
(ii) Likewise, for complementary quantum channels E

and F , the information bias defined in (48),

∆χK(w; E ,F) = ∆χK(N ; E ,F) = ∆SK(E ,F) (53)

is invariant to the choice of orthonormal basis w or rank-1
POVM N , and

χK(M, E)− χK(N, E) = χK(M,F)− χK(N,F). (54)

This theorem provides a natural interpretation for the
entropy bias of a tripartite pure state: this is the amount
by which more (or less if the bias is negative) w informa-
tion about a is present in b than it is in c. The theorem
tells us that this excess, which we call the information
bias, does not depend upon the orthonormal basis w,
allowing us to drop the w from ∆χK(b, c) under these
conditions. This theorem is used in proving several of
the results that follow, including Theorems 8, 10, and 11.

Example 1. As an illustration, suppose that in the case
of a qubit, da = 2, the z information associated with the
standard |0〉, |1〉 basis is perfectly transmitted from a to
b, while no information in the conjugate x basis is trans-
mitted; i.e., we have a perfect “classical” channel from
a to b. Setting M = z and N = x in (52) and using
Lemma 1, H(z) = χ(z, c) − χ(x, c), which can only be
true if χ(x, c) = 0 and H(z) = χ(z, c). The z informa-
tion is thus perfectly transmitted from a to c, saying the
“classical” information (in this sense) is always copied
to another party, and further by the basis-invariance of
∆χ(b, c) = 0, that the ab and the ac channels are equally
effective in terms of the χ measure.5 This conclusion
can be reached by alternative lines of argument, but it
illustrates the nontrivial content of Theorem 3.

V. GENERALIZING ALL-OR-NOTHING

THEOREMS

In this section we consider various quantitative gen-
eralizations, using the information measures introduced
in Sec. III, of some “all-or-nothing” theorems [2], which
have the general form that in a multipartite system if a
particular type or types of information about a particular
subsystem a is perfectly present or absent in some other
subsystem, then some other types of information about
a will also be perfectly present or absent in other loca-
tions. In each subsection below we provide a quantitative
generalization of such a theorem to situations of partial
presence or absence, indicating the connection with the
all-or-nothing theorem if it is not already clear.

A. Truncation

The Truncation theorem of [2] states that if Π = {Πj}
is a projective decomposition of Ia, and if the Π type of
information about a is perfectly present in c, then for any
third system b, the density operator ρab is truncated or
block-diagonal (or “pinched”, p. 50 of [23]) in the sense
that ρab =

∑
j ΠjρabΠj . The following result is a gen-

eralization of this theorem to the case of partial infor-
mation presence in c, and also allows for more general

5 An explicit example of this is the GHZ state (|000〉+ |111〉)/
√
2.
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POVMs P in Part (ii). The all-or-nothing result comes
out by setting H(Π|c) = 0 (perfect information presence)
in (55) below, which implies that ρab =

∑
j ΠjρabΠj since

S(ρ||σ) = 0 only if ρ = σ. More generally, ρab will be
“close” (in the relative entropy sense) to the truncated
form if H(Π|c) is small.
Lemma 4. Let Π = {Πj} be a projective decomposition
of Ia and let P = {Pj} be any POVM on a.
(i) Let ρabc be a pure state, then

H(Π|c) = S(ρab||
∑

j

ΠjρabΠj). (55)

(ii) Let ρabc be any state, then

H(P |c) > S(ρab||
∑

j

PjρabPj). (56)

The proof can be found in Appendix C. This lemma is
also used in proving the uncertainty relation in the next
section.

B. Information exclusion relations

An exclusion relation refers to incompatible types of
information such that the presence of one type in one
subsystem “hinders” or to some extent “excludes” the
incompatible type from being present in a different sub-
system. Thus the Exclusion theorem of [2] asserts that
if v and w are mutually unbiased bases on a, and the v
information about a is perfectly present in b, then the
w information about a is (completely) absent from c. A
quantitative extension of this to partial presence and ab-
sence can be based on the following theorem, where the
incompatibility of two POVMs P = {Pj} and Q = {Qk}
is quantified using:

r(P,Q) := max
j,k

∥∥∥
√
Pj

√
Qk

∥∥∥
2

∞
. (57)

Here ‖ · ‖∞ denotes the supremum norm: the maximum
singular value of the operator.
Our main result, with proof in Appendix D, is:

Theorem 5. Let ρabc be any state on Habc.
(i) Let P = {Pj} and Q = {Qk} be any two POVMs

on Ha, with H(·|·) defined in (41) and r in (57). Then

H(P |b) +H(Q|c) > log[1/r(P,Q)], (58)

where each H(·|·) term is bounded by, e.g.:

H(P |b) > log[1/
√
r(P, P )]. (59)

(ii) Specializing (58) to the case of orthonormal bases
v = {|vj〉〈vj |} and w = {|wk〉〈wk|}, we obtain:

H(v|b) +H(w|c) > log[1/r(v, w)], (60)

where in this case (57) reads

r(v, w) = max
j,k

|〈vj |wk〉|2. (61)

(iii) The right-hand-side of (60) is largest when v and
w are MUBs, r(v, w) = 1/da:

H(v|b) +H(w|c) > log da. (62)

We remark that (60) is equivalent to the main inequal-
ity conjectured in [8] and proven in [7], see Sec. VIB,
and (58) was also recently proven in [9] using smooth
entropies, an approach different from ours. Our proof
approach is based on the relative entropy; we will go into
more detail about this approach in a subsequent article
[24].
It is useful to view the inequalities in Theorem 5 in two

different ways, as information exclusion relations and as
entropic uncertainty relations. The fact that they contain
both principles can be seen, for example, in the MUB case
by rewriting (62) as:

H(v) +H(w) > χ(v, b) + χ(w, c) + log da. (63)

Viewed from the left-hand-side it looks like an entropic
uncertainty relation: a lower bound on an entropic sum.
Viewed from the right-hand-side it looks like an informa-
tion exclusion relation: an upper bound on an informa-
tion sum. We note here that setting H(v|b) = 0 in (62)
implies H(w|c) = log da, the maximum value, and thus
c contains no information about w, demonstrating that
our result implies (and thus generalizes) the Exclusion
theorem from [2].
As (60) was proven in [7], consider the following exam-

ple illustrating how (58) goes beyond (60).
Example 2. Set Q to the w basis, and let P be a POVM
composed of n pure states or rank-1 operators each with
trace da/n and each of which is unbiased with respect to
the w basis. Applying (58) gives

H(P |b) +H(w|c) > log n. (64)

Now suppose c contains all the w information, H(w|c) =
0. This implies that H(P |b) = log n, which in turn im-
plies two conditions, the probabilities of the Pj are equal,
so there is maximal missing information about which Pj

state system a is in, and the P information must be per-
fectly absent from b: χ(P, b) = 0. The latter means that
all states in P get mapped by (6) to the same output
density operator ρbj on b. For example, for da = 2 con-
sider setting w to the z basis (standard basis); then P
could be the four states making up the x and y bases
or three states forming an equilateral triangle in the xy
plane of the Bloch sphere or any symmetric set of states
in the xy plane. Imagining P to be composed of a very
large number of states in the xy plane, by continuity all

states in the xy plane must get mapped to the same out-
put density operator ρbj on b when H(z|c) = 0; a result
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that does not come out of pairing z with a particular
MUB, say x, and using (60). This all-or-nothing result is
implied by the Truncation theorem of [2], but (64) also
describes the partial information case, saying that the
ρbj associated with P must be fairly indistinguishable if
H(w|c) is small.
Inspired by (and strengthening) a result in [25], Eq.

(59) is, in some sense, an uncertainty relation for a single

POVM. Rewriting it as

H(P ) > χ(P, b) + log[1/
√
r(P, P )], (65)

it strengthens the bound H(P ) > χ(P, b) from Lemma 1;
stating that if the P measurement outcome is fairly cer-
tain [H(P ) small], this can partially exclude the P infor-
mation from another system b [χ(P, b) small]. The idea is
that a POVM is generally not a set of mutually-exclusive
properties (Sec. II A) so it has some intrinsic incompat-

ibility, as measured by log[1/
√
r(P, P )]. For example,

if P is composed of n rank-1 operators each with trace
da/n, then log[1/

√
r(P, P )] = log(n/da).

Some information exclusion relations below for quan-
tum channels are proven in Appendix E. Although they
follow from Theorem 5, they bring to mind a slightly
different picture [16], as one imagines Alice sending “in-
compatible ensembles” P and Q respectively through E
and F , and if the F channel transmits the Q ensemble
well to Carol, then the E channel must be constructed
in such a way that at its output Bob will have difficultly
discerning which member of the P ensemble Alice sends.
Corollary 6. For complementary quantum channels E
and F , χ given by (39),
(i) Let P and Q be any two POVMs, with H(P ) =

H({pj}) where pj is given by (40) and likewise for H(Q),

χ(P, E) 6 H(P )− log[1/
√
r(P, P )], (66)

χ(P, E) + χ(Q,F) 6 H(P ) +H(Q)− log[1/r(P,Q)].
(67)

(ii) For orthonormal bases v and w,

χ(v, E) + χ(w,F) 6 log[d2ar(v, w)]. (68)

(iii) For MUBs v and w,

χ(v, E) + χ(w,F) 6 log da. (69)

As another corollary to Theorem 5, some uncertainty
relations for a single system [25, 26] (see Sec. VI B) can
be strengthened for mixed states, with the proof in Ap-
pendix F.
Corollary 7.

(i) For any state ρ, let N be a rank-1 POVM and let
P be any POVM, then

H(N) > log[1/
√
r(N,N)] + S(ρ), (70)

H(N) +H(P ) > log[1/r(N,P )] + S(ρ). (71)

(ii) For any state ρ of a qubit (dimension d = 2) and
any complete set of three MUBs x, y, and z:

H(x) +H(y) +H(z) > 2 log 2 + S(ρ). (72)

While one might conjecture that (70) or (71) gener-
alizes to the case where N is an arbitrary POVM, it is
easy to see that this is false. Imagine a highly mixed state
such that S(ρ) is very large, yetN and P are composed of
coarse-grained projectors with very high rank, so H(N)
and H(P ) would be small, violating the inequality.
Note that (72) is a tight bound, achieved for example

when the state is along the z-axis of the Bloch sphere,
such that H(x) = H(y) = log 2 and H(z) = S(ρa).

C. Suppression of differences

The following is a bipartite result, proved in Ap-
pendix G, saying that the presence of some type of in-
formation P about a in b suppresses the difference in the
presence of two other types of information, M and N ,
about a in b. Note that a similar result holds for quan-
tum channels.
Theorem 8. Let ρab be any state,
(i) For any POVM P on a; rank-1 POVMs M and N

on a,

|χ(M, b)− χ(N, b)| 6 H(P |b)+
max{H(M)− log[1/r(P,M)], H(N)− log[1/r(P,N)]},
|H(M |b)−H(N |b)| 6 H(P |b)+
max{H(M)− log[1/r(P,N)], H(N)− log[1/r(P,M)]}.

(73)

(ii) For orthonormal bases u, v, w on a, with u and v
each MU with respect to w:

|χ(u, b)− χ(v, b)| 6 H(w|b),
|H(u|b)−H(v|b)| 6 H(w|b). (74)

(iii) Let u, v, w be as in (ii), but in addition assume
that the w type is perfectly present in b, then

χK(u, b) = χK(v, b) = SK(ρb)− SK(ρab),

H(u|b) = H(v|b) = log da + S(a|b), (75)

meaning that all types MU to w are present to the same

degree in b, in this sense.
The difference suppression effect is most apparent in

part (ii) of this theorem, where (74) says that the pres-
ence in b of the w information forces types MU to the
w type to be equally present in b, in the sense of having
the same χ and H quantities. As an illustration, consider
da = 2, let the z information about a be perfectly present
in b, then all types in the xy plane of the Bloch sphere
are present in b to the same degree, bringing to mind the
image of a prolate spheroid (American football), with z
being the major axis, for the information about a present
in b.
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D. Decoupling theorems

The preceding results can be used to generalize of
some all-or-nothing decoupling theorems, which provide
sufficient conditions about the information content of b
and/or c to ensure that c is completely uncorrelated to
or decoupled from a. For example, the No Splitting the-
orem of [2] states that if all types of information about
a are perfectly present in b, then all types of information
about a are perfectly absent from c. (The name is moti-
vated by the idea that a perfect quantum channel from
a to b allows no diversion or split off of information to
a third location c.) In our notation this corresponds to
the assertion that when H(w|b) = 0 for every orthonor-
mal basis w of Ha, then χ(w, c) = 0 for every such basis.
What follows is a quantitative generalization, a corollary
of Theorem 5, with the No Splitting theorem the special
case when α = 0.
Corollary 9. Let α be some positive constant.
(i) For any state ρabc, ifH(w|b) 6 α for every orthonor-

mal basis w of Ha, then χ(w, c) 6 α for every such basis.
(ii) For complementary quantum channels E and F , if

χ(w, E) > log da−α for every orthonormal basis w of the
channel input, then χ(w,F) 6 α for every such basis.

Proof. For any orthonormal basis w there is a MU basis v,
and thus (62) implies thatH(w|c) > log da−α and hence,
because H(w) cannot exceed log da, χ(w, c) cannot be
greater than α. The channel version follows by the same
argument using (69).

The Presence theorem of [2] states that if two strongly

incompatible types of information about a are perfectly
present in b, then all information about a is perfectly
present in b, which is to say there is a perfect quantum
channel from a to b. Unfortunately, “strongly incom-
patible” is a complicated concept, and it is not obvious
how to extend it to a quantitative measure in the general
case. Instead, we consider two POVMs N and P , and
the case where they are MUBs implies they are strongly
incompatible types of information. The following the-
orem, proved in Appendix H, combines the notions of
“presence” and “no splitting”, and gradually specializes
from POVMs to orthonormal bases to MUBs. Note that
part (ii) of this theorem is stated for channels to remind
the reader that each of our results for states has some
analogous formulation for channels.6

Theorem 10. For any POVM P on a; rank-1 POVMs
M and N on a; orthonormal bases u, v, w on a;
(i) For any bipartite state ρab

H(N |b) +H(P |b) > log[1/r(N,P )] + S(a|b), (76)

6 When one obtains an upper bound on a χ quantity for a channel
F , as in Theorems 6, 9, 10, and 11, this bound also holds if one
composes any channel G with F , i.e. χ(w,G ◦ F) 6 χ(w,F) by
(38), which is useful if one is interested in bounding information
in a subsystem of the output of F .

where, for any tripartite state ρabc,

χ(M, b) > [−S(a|b)], and H(M |c) > [−S(a|b)]. (77)

(ii) For complementary quantum channels E and F ,

χ(u, E) > ∆χ(E ,F) > χ(v, E) + χ(w, E) − log[d2ar(v, w)],
(78)

χ(u,F) 6 log[d3ar(v, w)] − [χ(v, E) + χ(w, E)]. (79)

(iii) For MUBs v and w,

S(a : b) > 2 log da − 2[H(v|b) +H(w|b)], (80)

S(a : c) 6 H(v|b) +H(w|b). (81)

Corollary 9 gave a condition to guarantee that no in-
formation is present in c, and it is that all information is
present in b. But what part (iii) of Theorem 10 shows is
that one need not check that every single type of informa-
tion is present in b; rather, simply check that b contains
two types that are MUBs and this will completely decou-
ple c from a [8]. Part (ii) emphasizes that the information
in c (transmitted by F) can be upper bounded and that
in b (transmitted by E) lower bounded even when the two
bases are not MUBs. Part (i) generalizes this notion fur-
ther to POVMs. By (76) one can lower-bound [−S(a|b)],
some measure of the entanglement between a and b, just
by knowing that b contains information about a rank-
1 POVM on a and an arbitrary POVM on a. By (77)
this serves to lower-bound both the M information in b
and the M information missing from c, for any rank-
1 POVM M . The application of such a relation, spe-
cialized to orthonormal bases, to quantum cryptography
was discussed previously in [7], and the generalization to
POVMs might turn out to be useful.
There is a seemingly odd restriction in (76) that either

N or P must be composed of rank-1 elements. One might
conjecture that (76) holds for arbitrary POVMs, but this
is false. One can see this by choosing ρab = ρa ⊗ ρb in
which case (76) reduces to (71). As discussed following
Corollary 7, (71) could be violated dramatically if S(ρa)
was large but both N and P were composed of high-rank
projectors.
The following decoupling theorem considers the situa-

tion where some type of information w is both perfectly
present in b and absent from c. It shows that this sim-
ple condition strikingly is enough to completely decouple

c from a, and furthermore, for pure states, it leads to
the suppression of differences between all types of infor-
mation in b. The theorem gradually specializes from all
states to pure states to channels, with the proof in Ap-
pendix I.
Theorem 11. Let L, M , N be rank-1 POVMs and P be
any POVM on a; let v and w be orthonormal bases on a,
(i) Let ρabc be any state, then

S(a : c) 6 χ(N, c) +H(N |b)− log[1/
√
r(N,N)]. (82)
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If the N type of information is perfectly present in b, then

χK(P, c) 6 χK(N, c). (83)

If, in addition, the N type of information is absent from
c, then all types of information about a are absent from
c, i.e. a and c are completely uncorrelated: ρac = ρa⊗ρc.
(ii) In the special case of pure states ρabc = |Ω〉〈Ω|,

|χ(L, b)−χ(M, b)| 6 χ(N, c)+H(N |b)−log[1/
√
r(N,N)]

(84)
and thus, in the extreme case where the N type of infor-
mation is perfectly present in b and absent from c,

χ(L, b) = χ(M, b) = S(ρa) (85)

is independent of rank-1 POVM (or orthonormal basis).
(iii) For complementary channels E and F ,

χ(v,F) 6 χ(w,F) + [log da − χ(w, E)],
χ(v, E) > χ(w, E) − χ(w,F). (86)

Thus, if the w type of information is perfectly present in
the E channel and absent from the F channel, the same
is true for all types of information. This is a necessary
and sufficient condition for E being a perfect quantum
channel and F being a completely noisy channel.

VI. CONNECTION WITH OTHER WORK

A. Difference of Holevo quantities

Schumacher and Westmoreland [27] remarked that a
difference in χ quantities associated with sending an en-
semble of pure states through complementary quantum
channels depends only on the average density operator
of the input ensemble. This situation is equivalent to
the one considered in (51) of Theorem 3, where a rank-1
POVM N acts on system a of a tripartite pure state |Ω〉.
The equivalence follows from the discussion in Sec. II B;
decompose |Ω〉 into an isometry V acting on half of a
bipartite pure state |Φ〉, as in (7) and Fig. 1, then by
the construction in (22), any pure-state ensemble at the
input of V can be produced by an appropriate choice of
N and |Φ〉. Despite this equivalence, the notion of basis
invariance or invariance to the rank-1 POVM N emerges
naturally out of the state view, since the average den-
sity operator of the input ensemble to V is unaffected
by choice of N . If one is willing to restrict to inputting
the maximally-mixed average density operator, then the
basis-invariance emerges in the channel view as well, as
in (53).

B. Entropic uncertainty relations

Our inequalities are related to several entropic uncer-
tainty relations in the literature (see [28] for a recent

review), which are translated below into our notation.
Maassen and Uffink [29] proved an entropic uncertainty
relation for measurements in orthonormal bases v and w
on system a for any state ρa:

H(v) +H(w) > log[1/r(v, w)]. (87)

Krishna and Parthasarathy [25] generalized this to
POVMs P and Q,

H(P ) +H(Q) > log[1/r(P,Q)], (88)

and also stated an uncertainty relation for a single POVM

H(P ) > log[1/
√
r(P, P )]. (89)

Hall [30] incorporated into (87) the idea of “classical”
side information, i.e. information about the outcome of a
POVM Xe acting on a system e that may be correlated
to a:

H(v) +H(w) > log[1/r(v, w)] +H(v :Xe) +H(w :Xe).
(90)

Considering e to be a composite system bc and Xe =
Qb ⊗Rc a composite POVM, it follows from (90) that:

H(v|Qb) +H(w|Rc) > log[1/r(v, w)], (91)

see the discussion in [8] where (91) was termed the weak
complementary information tradeoff and was ascribed to
Cerf et al. [31].
The inequalities in Theorem 5: (58), (59), and (60)

respectively strengthen (88), (89), and (87) by allowing
for quantum side information, for example, information
about property P contained in another quantum sys-
tem b, as measured by χ(P, b). The presence of such
χ quantities, reducing the left-hand-sides of the Theo-
rem 5 inequalities, is precisely what strengthens these
bounds. Equation (90) follows from (87) [and thus (60)]
by an argument that can be found in [8, 30]. Equa-
tion (91) follows from (60) using the Holevo bound (45),
H(v|Qb) > H(v|b) and H(w|Rc) > H(w|c).
Equation (60) is precisely the “strong complementary

information tradeoff” conjectured by Renes and Boileau
[8] and later proven by Berta et al. [7]. It is straight-
forward to show that our definition of H(v|b) in (41) is
equivalent the definition employed in [8] and [7], see (42).
The main inequality in Berta et al. [7],

H(v|b) +H(w|b) > log[1/r(v, w)] + S(a|b) (92)

was formulated for orthonormal bases v and w, and we
generalized it to POVMs (with at least one POVM be-
ing rank-1) in (76). Also, (92) is equivalent to (60)
as follows. Apply (60) to a pure state ρabc and use
H(w|b) = H(w|c) − ∆χ(b, c) with S(a|b) = −∆χ(b, c)
to get (92). Conversely, starting from (92), follow the re-
verse process to prove (60) for pure states ρabc, and then
(60) for mixed states follows from (38). Thus, since (60)
is generalized to two arbitrary POVMs by (58), (58) and
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(76) provide two alternative generalizations of (92). To
prove (92), Berta et al. first proved an uncertainty rela-
tion involving smooth minimum and maximum entropies,
and then invoked a lemma that these entropies approach
the desired von Neumann entropic quantities under an
appropriate asymptotic limit. In contrast, our proof does
not use smooth entropies, but invokes the monotonicity
of the relative entropy under quantum operations, so the
approaches are conceptually different.
Christandl and Winter [16] derived an information ex-

clusion relation for quantum channels, which can be re-
arranged and expressed in our notation to read:

χ(x, E) + χ(z,F) 6 log da, (93)

where x and z are orthonormal bases related to each other
by the d-dimensional quantum Fourier transform, and
E and F are complementary quantum channels. Equa-
tion (69) of Corollary 6 generalizes this to arbitrary
MUBs, and (67) further generalizes to input ensembles
associated with POVMs.
Our results strengthen some uncertainty relations in

the case of mixed states. In the special case where N is a
rank-1 POVM, (70) and (71) respectively strengthen (89)
and (88) with the addition of the S(ρa) term. Sánchez-
Ruiz [26] proved an entropic uncertainty relation for sets
of da + 1 MUBs, which when applied to qubits (da = 2)
gives:

H(x) +H(y) +H(z) > 2 log 2. (94)

Likewise this is strengthened for mixed states by (72).
Bounds depending on the purity of ρa were also given in
[26]; in the qubit case these bounds are implied by (72).

C. No Splitting and Decoupling

Kretschmann et al. [32] have studied the degree to
which a channel is error-correctable using a diamond-
norm measure, and showed that when a channel is nearly
perfect (in this sense) its complementary channel trans-
mits very little information, and vice versa. Bény and
Oreshkov [33] formulated a similar theorem for com-
plementary channels, but in a general, symmetric fash-
ion, using a fidelity measure. Hayden and Winter [34]
have studied the degree to which a channel preserves
the distinguishability of input states, and formulated the
tradeoff in geometry-preservation between complemen-
tary channels using a trace-distance measure. Each of
these formulations generalize the No Splitting principle
(see Sec. VD), although their information measures are
of a different nature from the one we employ, and the
connection between our approach and theirs remains to
be determined. Intuitively, the No Splitting theorem
should also be related to the notion that entanglement is
monogamous. Quantitative expressions of entanglement
monogamy have been found in terms of the concurrence
and the squashed entanglement [5]; as these are “global”

measures of correlation, their relation to our information-
type-specific measure is not obvious.
Renes and Boileau [8] formulated a decoupling theo-

rem as a corollary to their conjectured uncertainty rela-
tion [Eq. (60)], stating that if b contains the information
about two sufficiently incompatible orthonormal bases of
a, then the coupling of c to a can be upper-bounded.
This is quite similar to our Theorem 10, which extends
this notion to two sufficiently incompatible POVMs.

VII. CONCLUSIONS

A. Summary

Since our technical results in Secs. IV and V involve
a large number of theorems, the following comments are
intended to assist the reader in seeing how they are re-
lated to one another and to the definitions given earlier
in Secs. II and III.
In Sec. II A we generalize an earlier [2] notion of types

of quantum information to include general POVMs on
a Hilbert space Ha for system a, by noting that the as-
sociated probabilities are the same as those for a pro-
jective decomposition of the identity on a larger Hilbert
space HA, the Naimark extension, and a rank-1 POVM
corresponds to an orthonormal basis of the extension.
Various measures for different types of information are
introduced and discussed in Sec. III. For uniformity of
notation, Shannon entropies and related quantities are
denoted by H(); e.g., H(Pa) is the missing information
about type Pa, as determined by its probability distri-
bution, when the quantum state is assumed known. For
quantum entropies we use S() for the von Neumann en-
tropy, and SK(), where K can be R or T or Q for Renyi,
Tsallis, and quadratic entropies, respectively.
We use the Holevo function χ(Pa, b), or χK(Pa, b) for

SK , (36), as a measure of the amount of information of
type Pa about system a which is present in system b,
along with the complementary quantity H(Pa|b), (41),
as a corresponding measure of the amount of informa-
tion about Pa that is still missing given system b. While
the analogy is not exact, χ(Pa, b) is similar to Shannon’s
mutual information H(Pa :Qb), whereas H(Pa|b) resem-
bles Shannon’s conditional entropy H(Pa|Qb). In par-
ticular, H(Pa|b), like H(Pa|Qb), is nonnegative, so re-
tains some of the intuition of the latter quantity, in con-
trast to the quantum conditional entropy S(a|b), (30),
which can be of either sign. We use the term infor-
mation bias for the difference between the amount of
type Pa information about a in b and the amount in c,
χ(Pa, b)− χ(Pa, c) = ∆χ(Pa; b, c), which can have either
sign. Similarly, we refer to ∆S(b, c) = S(ρb) − S(ρc)
as the entropy bias, and add a subscript K when us-
ing an alternative to the von Neumann entropy. Our
most extensive results are for the von Neumann entropy
and its associated information measures. However, in
some cases, see Theorems 2, 3, 8, and 11, these results
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also hold for a more general χK , and stating them in
this form seems worthwhile, as for certain purposes these
other measures could be useful.

While the most natural and symmetrical, in terms of
treating the different parts on the same footing, formu-
lation of our results is in terms of a tripartite system,
some of the more interesting and significant applications
are to quantum channels and complementary channels.
The relationship between the tripartite and the channel
perspectives is worked out in some detail in Sec. II B,
and in Sec. III C we relate the coherent information for
a quantum channel to a corresponding tripartite entropy
bias. In several theorems the channel counterparts of tri-
partite results are stated separately, because while the
formal results are in some sense the same, one’s intuition
about their significance can be different.

Our first set of results are the equalities in Theorems 2
and 3 of Sec. IV, which apply for pure quantum states of
bipartite and tripartite systems, respectively. The first
says that the amount of information about a in b is inde-
pendent of the type of information, provided the latter is
a rank-1 POVM; this includes an orthonormal basis. The
second says that the difference between the amount of in-
formation concerning such a rank-1 POVM in b and in c is
independent of the type considered, and equal to the cor-
responding entropy bias. Equivalently, given two rank-1
POVMsM and N , the difference between the amount of
M and N information about a found in b is the same as
the corresponding difference in c. While these results are
limited to pure states, they are important for the proofs
of many of the later results. They also extend from von
Neumann to other quantum entropies, so they are stated
in this more general form.

Perhaps the simplest way of viewing the collection of
inequalities that make up Sec. V is that the main the-
orems are quantitative generalizations of all-or-nothing
theorems which can be stated quite concisely for types
of information associated with orthonormal bases v and
w of system a. A central result of this paper is Theo-
rem 5, and part (iii) of this theorem tells us that if the
v information about a is perfectly present in b, which
is to say H(v|b) = 0, then the mutually unbiased (MU)
w type of information must be perfectly absent from c:
H(w|c) = log da means that χ(w, c) = 0. Part (ii) allows
for bases that are not MU at the cost of a weaker bound
on the H measures, while part (i) is not restricted to
bases but applies to quite general types of information P
and Q. The generalization to POVMs is, in turn, based
on Lemma 4, which itself generalizes the Truncation the-
orem [2]: if the v = {vj} information is perfectly present
in c then ρab commutes with the vj projectors.

The connections of Theorem 5 to literature entropic
uncertainty relations are given in Sec. VIB. Broadly
speaking we think that the addition of quantum side
information to uncertainty relations [7, 8] not only
strengthens certain bounds but also gives further concep-
tual insight into the nature of complementarity, in that
side information about complementary observables in dif-

ferent locations (Sec. VB) must be constrained as well.
We also note a recent experimental study [35]. Further
remarks on the significance of Theorem 5 can be found
in the discussion that follows it in Sec. VB.

Corollary 6 of Theorem 5 gives the corresponding re-
sult for quantum channels, generalizing to partial infor-
mation and to arbitrary POVMs or orthonormal bases
the all-or-nothing theorem: if the v information is per-
fectly present in (or transmitted by) the E channel, any
MU type of information w must be absent from (or de-
stroyed by) the complementary channel F . In addition,
Corollary 7 of Theorem 5 provides strengthened informa-
tion inequalities for a single system described by a mixed
state.

The idea behind Theorem 8 is encapsulated in the ob-
servation that if the information about an orthonormal
basis w of a is perfectly present in b, so H(w|b) = 0, and
u and v are bases of a that are MU with respect to w (but
not necessarily with respect to each other) then the u and
v types are present in b in equal amounts. If, on the other
hand the w information is less than perfectly present in
b, this theorem provides quantitative bounds on the dif-
ference between the u and v types of information in b.
Similarly, the requirement that u and v be MU relative
to w can be relaxed, and they can even be replaced with
rank-1 POVMs, and w with a general POVM, see part (i)
of the theorem, at the price of appropriately weakening
the bounds that confine the differences.

The results in Sec. VD provide quantitative generaliza-
tions of conditions that ensure system c is completely un-
correlated to (or decoupled from) system a, ρac = ρa⊗ρc.
Corollary 9 of Theorem 5 says that the correlations be-
tween a and c are tightly upper-bounded if system b al-
most perfectly contains all types of information about a,
and gives the analogous result for complementary chan-
nels E and F . But Theorem 10 stresses the importance of
the presence of just two (sufficiently incompatible) types
of information. That is, if b perfectly contains the infor-
mation about two MUBs of a, then b contains all types
of information about a, and c is completely uncorrelated
to a; a generalization of this statement for the partial in-
formation case is given in part (iii) of Theorem 10. Parts
(ii) and (i) of this theorem respectively illustrate that this
idea can be extended, at the price of weakened bounds,
to any two orthonormal bases or to two POVMs in which
at least one of the POVMs is rank-1. The relevance of
inequalities like (76) of Theorem 10, where the presence
of two types of information about a in b can be used to
upper bound the information about a in c, to quantum
cryptography was discussed in [7].

The same sort of decoupling occurs when a single type
of information about a associated with an orthonormal
basis w is perfectly present in b and completely absent
from c. Theorem 11 contains this interesting result to-
gether with certain quantitative generalizations, both
when the type of information in question is only par-
tially absent from c, and when it is not perfectly present
in b.
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B. Future outlook

There are various ways in which the results summa-
rized above suggest problems which deserve further at-
tention and research. One has to do with the difference
between rank-1 and higher-rank POVMs, or orthonormal
bases as against coarser projective decompositions of the
identity. In a number of cases the results we have ob-
tained for the former are distinctly stronger than for the
latter, but the reason for this is not always clear. Since
applications of quantum information theory to macro-
scopic systems, in particular to problems of decoher-
ence, lead rather naturally to coarse decompositions or
POVMs, a good intuitive understanding in addition to
formal expressions would be of value. A second item con-
cerns the use of the r(P,Q) overlap measure for POVMs,
or its r(v, w) counterpart for orthonormal bases, see (57)
and (61). While this provides the basis of significant in-
equalities in Theorem 5 and later, the fact that r(P,Q)
requires one to maximize over all pairs of elements from
the two POVMs hints that stronger results might well be
possible were one to use a more refined perspective on
how the POVMs are related to each other, or the sorts
of information that they provide.
While qualitative inequalities are certainly an advance

over simple all-or-nothing results, it would be even bet-
ter if one could express information tradeoffs in terms
of equalities of the sort which could conceivably allow
one to completely characterize how a quantum channel
is related to its complementary channel using a (hope-
fully small) number of parameters with a clear intuitive
significance. The equalities in Theorem 3, as applied ei-
ther to channels or, more generally, pure-state tripartite
systems, hint that something like this might be possible,
but thus far we have not found it.
Any advance in understanding tripartite systems raises

an obvious question: what about systems with four (or
more) parts? It is, of course, possible to study them
by thinking of two of the parts as constituting a single
object, and then applying results for tripartite systems.
But there is probably some “residual” aspect of a system
of four parts which cannot be captured in this way, just
as there are residual aspects of tripartite systems which
cannot be understood simply in terms of combining two
of them so as to yield a bipartite system. We think that
our results in this paper have helped to clarify some of
this tripartite residual, and we hope they provide hints
on ways to deal with more complicated cases.
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Appendix A: Proof of Lemma 1

Proof. (ii) The inequality χ(Pa, b) 6 S(ρb) obviously fol-
lows from (36). Now let c be a system that purifies
ρab. Then by (38), χ(Pa, b) 6 χ(Pa, bc) = S(ρa) −∑

j pjS(ρbcj) 6 S(ρa).

To prove S(a : b) > χ(Pa, b), as in Sec. II A think of Pa

as a projective measurement w̃ae on system ae, where w̃ae

is a coarse graining of some orthonormal basis (rank-1
projectors) wae. Let c purify ρab such that ρabce = ρabc⊗
|e0〉〈e0| is a pure state. Then, S(a : b) = S(ρae)+S(ρb)−
S(ρc) = χ(wae, bc) + χ(wae, b) − χ(wae, c) > χ(wae, b) >
χ(w̃ae, b) = χ(Pa, b), by the Theorems in Sec. IV, by (38),
and by (37).

Appendix B: Proof of Theorem 3

Proof. (i) For orthonormal basis w = {|wj〉}, insert (36)
into (47) to obtain

χK(w, b)− χK(w, c)

= SK(ρb)− SK(ρc)−
∑

j

pj[SK(ρbj)− SK(ρcj)]. (B1)

The final term vanishes, for the following reason. Write
|Ω〉 = ∑

j |wj〉⊗ |sj〉 in the form (10) with |wj〉 replacing
|aj〉, so from (6) the conditional density operators in (B1)
are given by

pjρbj = Trc

(
|sj〉〈sj |

)
, pjρcj = Trb

(
|sj〉〈sj |

)
. (B2)

Since |sj〉 is a pure state the partial traces ρbj and ρcj
have the same eigenvalues (determined by the Schmidt
expansion coefficients of |sj〉), except one may have more
zeros than the other if db 6= dc. Since SK(ρ) is a func-
tion only of the nonzero (positive) eigenvalues of ρ, each
term in the final sum in (B1) vanishes, and we are left
with (51). The generalization to rank-1 POVMs fol-
lows by the equivalence of N to an orthonormal basis
vA on HA, the Naimark extension of Ha as in Sec. II A.
Since ρAbc is a tripartite pure state, then ∆χK(N ; b, c) =
∆χK(vA; b, c) = SK(ρb)− SK(ρc).
(ii) Equation (53) follows from (51) by applying it to a

channel ket |Ω〉 constructed from V by (7). Alternatively,
it can be proven directly from (39) and (48), obtaining
an equation similar to (B1),

∆χK(P ; E ,F) =SK(Υb/da)− SK(Υc/da)

+
∑

j

pj [SK(ρbj)− SK(ρcj)], (B3)

where the final term vanishes again since ρbj =
Trc[V ρajV

†] and ρcj = Trb[V ρajV
†] have the same (non-

zero) spectrum, as the ρaj in (40) are rank-1 operators.
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Equations (52) and (54) follow immediately from (51)
and (53), respectively.

Appendix C: Proof of Lemma 4

Proof. (i)

S(ρab||
∑

j

ΠjρabΠj)

= −S(ρab)− Tr[ρab log(
∑

j

ΠjρabΠj)] (C1)

= −S(ρc)− Tr[ρab
∑

k

Πk log(
∑

j

ΠjρabΠj)
∑

l

Πl]

(C2)

= −S(ρc)− Tr[
∑

k

ΠkρabΠk log(
∑

j

ΠjρabΠj)]

−
∑

k,l 6=k

Tr[ρabΠk log(
∑

j

ΠjρabΠj)Πl] (C3)

= −S(ρc) + S(
∑

j

ΠjρabΠj) (C4)

= −S(ρc) +H(Π) +
∑

j

pjS(ρabj) (C5)

= H(Π)− χ(Π, c) = H(Π|c), (C6)

where pj = Tr(Πjρab) and pjρabj = ΠjρabΠj . The
last term in (C3) disappears because log(

∑
j ΠjρabΠj)

is block diagonal with respect to the Πj projectors, and
then one takes an off-diagonal element of it. Step (C5)
follows from Lemma 1, part (i).

(ii) For clarity, we include the subscript a on the
POVM Pa. Think of Pa = {Paj} as a projective mea-
surement ΠA = {ΠAj} on an extended Hilbert space HA

(Naimark extension), with Ha a subspace and Ea the
projector onto this subspace, and Paj = EaΠAjEa. The
state ρAb is the same as ρab but now just embedded in
a larger space, that is: ρAb = EaρAbEa = ρab. Let E⊥

a

be the projector onto the orthogonal complement of Ha,
note E⊥

a ρAbE
⊥
a = 0, and let the channel F be defined

by F(ρ) = EaρEa + E⊥
a ρE

⊥
a . Then if d is a system that

purifies ρabc, we have:

H(Pa|c) = H(ΠA|c) (C7)

> H(ΠA|cd) = S(ρAb||
∑

j

ΠAjρAbΠAj) (C8)

> S(F(ρAb)||F(
∑

j

ΠAjρAbΠAj)) (C9)

= S(EaρAbEa||Ea(
∑

j

ΠAjρAbΠAj)Ea+

E⊥
a (

∑

j

ΠAjρAbΠAj)E
⊥
a ) (C10)

= S(EaρAbEa||
∑

j

EaΠAjEaρAbEaΠAjEa) (C11)

= S(ρab||
∑

j

PajρabPaj). (C12)

Note that the term with E⊥
a in (C10) disappeared be-

cause it lies outside of the support of EaρAbEa.

Appendix D: Proof of Theorem 5

Proof. First let us prove the single-POVM uncertainty
relation as follows, defining λmax(·) to be the maximum
eigenvalue. From Lemma 4,

H(P |b) > S(ρac||
∑

j

PjρacPj) (D1)

> S(ρc||
∑

j

Tra[PjρacPj ]) (D2)

> S(ρc||
∑

j

λmax(Pj)Tra[Pjρac]) (D3)

> S(ρc||max
j
λmax(Pj)

∑

j

Tra[Pjρac]) (D4)

= S(ρc||max
j
λmax(Pj)ρc) (D5)

= − logmax
j
λmax(Pj) = − logmax

j
‖Pj‖∞ (D6)

> − logmax
j,k

‖
√
Pj

√
Pk‖∞. (D7)

We invoked (33) for step (D2). We used (34)
for step (D3), λmax(Pj)Ia > Pj which implies
Tra[λmax(Pj)IaTac] > Tra[PjTac], where Tac =√
Pjρac

√
Pj is a positive operator. We also used (34)

for step (D4), maxj λmax(Pj)
∑

j Aj >
∑

j λmax(Pj)Aj

where the Aj are positive operators.
Now for the two-POVM uncertainty relation, consider

the quantum channel [as in (42)] EQ(ρab) =
∑

k |ek〉〈ek|⊗
Tra(Qkρab) associated with the Q measurement, where
{|ek〉} is an orthonormal basis of an auxiliary system
e. One can verify that EQ is trace-preserving, and its
complete positivity follows from the fact that (EQ ⊗
Ic)(ρabc) =

∑
k |ek〉〈ek| ⊗ Tra(Qkρabc) is a positive op-

erator for any system c, where Ic is the identity chan-
nel for c. Also, define Gjk =

√
PjQk

√
Pj , and note
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Gjk 6 λmax(Gjk)Ia, and r(P,Q) = maxj,k λmax(Gjk). Then from Lemma 4,

H(P |c) > S(ρab||
∑

j

PjρabPj) > S(EQ(ρab)||
∑

j

EQ(PjρabPj)) (D8)

= S(
∑

l

|el〉〈el| ⊗ Tra{Qlρab}||
∑

j,k

|ek〉〈ek| ⊗ Tra{Gjk

√
Pjρab

√
Pj}) (D9)

> S(
∑

l

|el〉〈el| ⊗ Tra{Qlρab}||
∑

j,k

λmax(Gjk)|ek〉〈ek| ⊗ Tra{Pjρab}) (D10)

> S(
∑

l

|el〉〈el| ⊗ Tra{Qlρab}||r(P,Q)Ie ⊗ ρb) (D11)

= − log r(P,Q) − S(
∑

l

|el〉〈el| ⊗ Tra{Qlρab})− Tr[(
∑

l

|el〉〈el| ⊗ Tra{Qlρab}) log(Ie ⊗ ρb)] (D12)

= − log r(P,Q) −H(Q)−
∑

l

qlS(ρ
Q
bl) + S(ρb) = − log r(P,Q)−H(Q|b), (D13)

where ql = Tr(Qlρab) and qlρ
Q
bl = Tra(Qlρab). We in-

voked (33) for step (D8), and we invoked (34) for steps
(D10) and (D11). [For (D11), λmax(Gjk) 6 r(P,Q)
for each j, k, so replacing each λmax(Gjk) with r(P,Q)
makes the overall operator larger.] Step (D13) involves
Lemma 1, part (i).

Appendix E: Proof of Corollary 6

Proof. (i) Consider a channel ket |Ω〉 on Habc with P =
{Pj} and Q = {Qk} two POVMs on a, and apply (58)
and (59) to |Ω〉:

χ(P, b) 6 H(P )− log[1/
√
r(P, P )]

χ(P, b) + χ(Q, c) 6 H(P ) +H(Q)− log[1/r(P,Q)].
(E1)

Now decompose |Ω〉 = (Ia ⊗ V )|Φ〉 as in Sec. II B and
Fig. 1, where system a′ (of the same dimension as a) is
introduced and fed into isometry V , and the state |Φ〉 =
(1/

√
da)

∑
j |j〉a⊗|j〉a′ is maximally entangled, expanded

here in the computational bases on a and a′. By map-
state duality [14], think of |Φ〉 as an isometry V̂ from Ha

to Ha′ , with V̂ †V̂ = Ia and V̂ V̂ † = Ia′ since da = da′ .

This means that P̃ = {P̃j} = {V̂ Pj V̂
†} and Q̃ = {Q̃k} =

{V̂ QkV̂
†} are POVMs on a′. If outcome Pj of P occurs

on a, then element P̃j will get fed into the isometry V ,

so χ(P, b) = χ(P̃ , E) and likewise χ(Q, c) = χ(Q̃,F),
where E and F are the (complementary) channels to b
and c, respectively, associated with isometry V . Also,
since ρa = Ia/da for a channel ket, the probability for
Pj in (6) given by pj = Tr(Pjρa) = Tr(Pj)/da reduces to

the corresponding formula in (40), so H(P ) = H(P̃ ) and

likewise H(Q) = H(Q̃). Finally, show that r(P̃ , Q̃) =

r(P,Q) as follows:

‖(P̃j)
1/2(Q̃k)

1/2‖2∞ = λmax[V̂ (Qk)
1/2Pj(Qk)

1/2V̂ †]

= λmax[(Qk)
1/2Pj(Qk)

1/2] = ‖(Pj)
1/2(Qk)

1/2‖2∞, (E2)

where λmax[·] denotes the maximum eigenvalue and we

used the fact that (Q̃k)
1/2 = V̂ (Qk)

1/2V̂ †, which fol-

lows from [V̂ (Qk)
1/2V̂ †]2 = V̂ QkV̂

† since (Qk)
1/2 and

V̂ (Qk)
1/2V̂ † are positive operators. Thus from (E1),

χ(P̃ , E) 6 H(P̃ )− log[1/

√
r(P̃ , P̃ )]

χ(P̃ , E) + χ(Q̃,F) 6 H(P̃ ) +H(Q̃)− log[1/r(P̃ , Q̃)].
(E3)

Since V̂ is a one-to-one mapping of the set of POVMs on
a to the set of POVMs on a′, then (E3) must be true for

all POVMs on a′, and one can replace P̃ and Q̃ with P
and Q in (E3) for simplicity.
(ii) Equation (68) follows from (67) since H(v) =

H(w) = log da from (40).

Appendix F: Proof of Corollary 7

Proof. (i) For (70), let b be a system that purifies ρa,
apply (59), and by Theorem 2, χ(N, b) = S(ρa). For
(71), again let b purify ρa, and apply (58). System c is
completely uncorrelated to a, so H(P |c) = H(P ), and by
Theorem 2, χ(N, b) = S(ρa).
(ii) Equation (72) follows from (71) applied to MUBs

x and y:

H(x) +H(y) > log 2 + S(ρa). (F1)

Denote X , Y , and Z as the Pauli operators whose eigen-
vectors are the x, y, and z bases. Consider a (possibly
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mixed) state in the xy plane of the Bloch sphere:

ρa = (Ia + αX + βY )/2, (F2)

for which H(z) = log 2, so (72) clearly holds for states of
this form using (F1). Now consider varying ρa along a
vertical path within the Bloch sphere, from the state ρa
(in the xy plane) to a state ρ′a with some z component
but with the same x and y components:

ρ′a = (Ia + αX + βY + γZ)/2, (F3)

Denoting the relevant state with a subscript, note that
H(x)ρa

= H(x)ρ′

a

and H(y)ρa
= H(y)ρ′

a

remain con-
stant, so to prove (72) for general states ρ′a, we just
need to show thatH(z) decreases more slowly than S(ρa)
along this path. This would be true if:

H(z)ρ′

a

−S(ρ′a) > H(z)ρa
−S(ρa) = log 2−S(ρa). (F4)

Due to the isotropic nature of the Bloch sphere, it is suffi-
cient to check that (F4) holds for an initial state along the
x-axis: ρa = (Ia + αX)/2 and ρ′a = (Ia + αX + γZ)/2,
since H(z) and S(ρa) will vary in the same way along
a vertical path regardless of an initial unitary rotation
about z. But for such a state, S(ρa) = H(x)ρa

= H(x)ρ′

a

,
and (F4) reduces to H(z)ρ′

a

+ H(x)ρ′

a

> log 2 + S(ρ′a),
which is (F1) applied to MUBs z and x. Thus, vary-
ing along a vertical path from a state in the xy plane
to a state with some z-component keeps the values of
H(x) and H(y) constant, while not decreasing the value
of H(z)− S(ρa), proving the result in general.

Appendix G: Proof of Theorem 8

Proof. Let c be a system that purifies ρab. Re-write (58)
as

χ(M, c) 6 H(P |b) +H(M) + log r(P,M),

χ(N, c) 6 H(P |b) +H(N) + log r(P,N). (G1)

Taken together, these two inequalities give an upper
bound on the difference |χ(M, c) − χ(N, c)|. The dif-
ference is at most the one computed by allowing the χ
quantity with the highest upper bound in (G1) to reach
its bound, and allowing the other χ quantity to be zero.
Thus,

|χ(M, c)− χ(N, c)| 6 H(P |b)+
max{H(M) + log r(P,M), H(N) + log r(P,N)}. (G2)

By (52), substitute b for c on the left-hand-side.
Rearranging (G1) to lower boundH(M |c) andH(N |c),

and upper-bounding each respectively by H(M) and
H(N), we can upper-bound their difference by the (max-
imum) difference between the upper bound of one and
the lower bound of the other:

|H(M |c)−H(N |c)| 6 H(P |b)+
max{H(M) + log r(P,N), H(N) + log r(P,M)}. (G3)

Again invoke (52) to switch from c to b and obtain (73).
Now assuming u and v are MU with respect to w, (74)

follows from (73) by setting r(u,w) = r(v, w) = 1/da,
and by noting that H(u) 6 log(da) and likewise for H(v),
so that the max{} term in (73) is non-positive.
Further specializing to the case of H(w|b) = 0 and

v MU to w, then (62) implies H(v|c) = log da and
χ(v, c) = 0, and in turn that χK(v, c) = 0, because all χK

measures are zero under the same conditions. Then by
Theorem 3, H(v|b) = H(v|c)−∆χ(b, c) = log da+S(a|b),
and χK(v, b) = ∆χK(b, c) = SK(ρb)− SK(ρab).

Appendix H: Proof of Theorem 10

Proof. (i) First let c purify ρab, and by Theorem 3,
add the basis-invariant quantity ∆χ(c, b) = H(N |b) −
H(N |c) = S(ρc) − S(ρb) = S(a|b) to both sides of
(58), setting Q = N , to obtain (76). Now to prove
(77), let cd purify ρab so that ρabc = Trd(ρabcd) is
a general (possibly mixed) state. Again by Theo-
rem 3, [−S(a|b)] = χ(M, b) − χ(M, cd) 6 χ(M, b) and
[−S(a|b)] = H(M |cd) −H(M |b) 6 H(M |cd) 6 H(M |c)
by (38).
(ii) The argument for complementary quantum chan-

nels is the same. Add the basis-invariant quantity
∆χ(E ,F) to (68) to obtain (78), and obtain (79) using
χ(u,F) 6 log da −∆χ(E ,F).
(iii) Equation (80) follows from S(a : b)/2 > −S(a|b) >

log da−[H(v|b)+H(w|b)]. For (81), let cd purify ρab, then
H(v|b) + H(w|b) > log da + S(a|b) > S(ρa) + S(a|b) =
S(a : cd) > S(a : c).

Appendix I: Proof of Theorem 11

Proof. (i) First let us prove (82) for pure ρabc = |Ω〉〈Ω|.

S(a : c) = S(ρa)−∆χ(b, c)

6 H(N)− log[1/
√
r(N,N)]−∆χ(b, c)

= H(N |b) + χ(N, c)− log[1/
√
r(N,N)], (I1)

where the first line follows from Theorem 3, and the sec-
ond line is from (70). Now consider any ρabc. Apply the
just-proven result (I1) to ρabcd:

S(a : c) 6 H(N |bd) + χ(N, c)− log[1/
√
r(N,N)]. (I2)

where ρabcd is a purification of ρabc. Then, (82) is ob-
tained by noting that H(N |bd) 6 H(N |b) from (38).
If information about a rank-1 POVM N is perfectly

present in b, this implies that the elements of N must
be orthogonal and hence normalized, i.e. N is some or-
thonormal basis w = {|wj〉}. (The outputs ρbj cannot
all be orthogonal if the inputs are not orthogonal.) By
the Truncation theorem of [2], ρac =

∑
j pj |wj〉〈wj |⊗ρcj,

i.e. c is at-most classically correlated to the w basis on
a. Then the conditional density operators on c (σck
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occurring with probability qk) associated with POVM
P = {Pk} are related to those associated with the w
basis by qkσck = Tra(Pkρac) =

∑
j Mkjpjρcj, where

Mkj = 〈wj |Pk|wj〉. Now use the concavity of the entropy
SK (all of our entropy functions have this property, see
Sec. III A) and

∑
kMkj = 1 to show that:

χK(P, c) = SK(ρc)−
∑

k

qkSK(σck)

6 SK(ρc)−
∑

k,j

MkjpjSK(ρcj)

= SK(ρc)−
∑

j

pjSK(ρcj) = χK(w, c). (I3)

The remark that ρac = ρa ⊗ ρc when all types are absent
from c seems obvious, although it is rigorously proven in
Theorem 1 of [14].
(ii) To prove (84) for pure states, note that the right-

hand-side of (82) is an upper bound on χ(L, c) and

χ(M, c) by (44), so it must also upper-bound their dif-
ference:

|χ(L, c)−χ(M, c)| 6 χ(N, c)+H(N |b)−log[1/
√
r(N,N)].

(I4)
By (52), b can replace c on the left-hand-side.
In the case where information about N is perfectly

present in b and absent from c, ρac = ρa⊗ρc by part (i) of
this theorem, and S(ρb) = S(ρac) = S(ρa)+S(ρc) by the
additivity of S for product states. Thus by Theorem 3,
for any rank-1 POVM L, χ(L, b) = χ(L, b) − χ(L, c) =
S(ρb)− S(ρc) = S(ρa).
(iii) Equation (86) follows immediately from χ(v,F) 6

log da − ∆χ(E ,F) and χ(v, E) > ∆χ(E ,F), where
∆χ(E ,F) = χ(w, E)− χ(w,F) is basis-invariant by The-
orem 3. In the extreme case where the w type of in-
formation is perfectly present in E and absent from F ,
∆χ(E ,F) = log da, hence χ(v,F) = 0 and χ(v, E) =
log da for all v.
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