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Dicke states are an important class of states which exhibit collective behavior in many-body
systems. They are interesting because (1) the decay rates of these states can be quite different from
a set of independently evolving particles, and (2) a particular class of these states are decoherence-
free/noiseless with respect to a set of errors. These noiseless states, or more generally subsystems,
avoid certain types of errors in quantum information processing devices. Here we provide a method
for determining a set of transformations of these states which leave the states in their subsystems
but still enable them to evolve in particular ways. For subsystems of particles undergoing collective
motions, these transformations can be calculated by using essentially the same construction which
is used to determine the famous Casimir invariants for quantum systems. Such invariants can be
used to determine a complete set of commuting observables for a class of Dicke states as well as
identify possible logical operations for decoherence-free/noiseless subsystems. Our method is quite
general and provides results for cases where the constituent particles have more than two internal
states.

PACS numbers: 03.67.Pp,03.65.Yz,11.30.-j,34.80.Pa

I. INTRODUCTION

Decoherence-free/noiseless subsystems (DFSs) are now
part of an arsenal of weapons used to prevent errors in
quantum information processing and storage [1–6]. (For
reviews see [7, 8].) DFSs are subsystems which are im-
mune to certain types of errors. The most common type
found in the literature is a DFS which is immune to col-
lective errors. Quantum systems undergoing unitary col-
lective transformations were studied earlier by Dicke in a
different context [9]. Dicke described the evolution, and
decay rates, of states undergoing collective motion and
gave a description of which kinds of states behaved quite
differently from those which are effectively independent.
There are several types of states which are now called

Dicke states. One such set corresponds to a set of parti-
cles which undergo a collective motion, are distinguish-
able, and do not interact with each other. These states
are unchanged by particle interchange, or more gener-
ally, the interchange of particular constituents [10]. One
particularly clear example is a gas interacting with an
external field which has a wavelength significantly longer
than the container confining the particles. These are con-
ditions for collective motion, i.e., the external field inter-
acts in the same way with each particle. In this case, if
the size of the container ∼ R and the wavelength of the
field is λ, then the “Dicke limit” λ ≫ R is said to be
satisfied. In this limit, when the external influence gives
rise to errors in a quantum computing device, the errors
are called collective, whether they describe an evolution
of each particle which is unitary or not.
Since errors are the greatest obstacle to building a fully

functional quantum computing device, any method which
aids in the prevention of errors is quite important. How-

ever, for the practical use of a DFS/NS for quantum in-
formation processing one requires the ability to perform
universal computing on these states. This requires find-
ing evolutions which do not take the states out of the
protected subspace during gating operations [5]. We re-
fer to such operations as being compatible with the DFS
structure. In the physical systems considered by Dicke,
one could imagine evolutions of the states which do not
change the essential features of the state (energy or total
angular momentum quantum numbers), but are indeed
nontrivial evolutions. In the case of quantum informa-
tion processing, these enable quantum computing in a
DFS and for some important cases they enable universal
quantum computing on a subspace even when it is not
possible on the entire physical space. This, in fact, is
perhaps more important than the noise prevention prop-
erties for which these states were originally intended.

In both the early analysis of Dicke states and also
quantum computing applications, primarily only two in-
ternal states of the constituents were considered. How-
ever, three or more internal states of an atom could
certainly become important in various experiments and
could also arise in particle physics where more than two
degrees of freedom are associated with both flavor and
color symmetries. Recent experiments [11–13] and pro-
posed experiments [14–16] have provided explicit con-
structions for these so-called Dicke states using a variety
of physical systems.

Here we consider collections of particles undergoing
some collective motions, for example collective errors,
and ask the following question. What Hamiltonians give
rise to evolutions which are compatible with these mo-
tions? Our results are not restricted to any particular

number of internal states for each of the constituents, nor
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are they restricted to any number of particles. We then
answer the question by using a construction analogous
to Casimir’s construction of invariants for Lie algebras
and Lie groups. These are the same invariants which are
used to label a complete set of commuting observables
and thus identify the largest set of simultaneously mea-
surable quantities for a quantum system.
The paper will be outlined as follows. In Section II

we provide the motivation for this work and discuss the
collective motion of Dicke states. We then review the
standard Casimir construction for single-particle invari-
ants in Section III. Section IV extends the construction
to sets of N particles each with d internal states. Section
V discusses the physical implications of our results and
provides examples. In particular, we discuss how these
invariants can be used to manipulate decoherence-free or
noiseless subsystems in such as to preserve the integrity
of the encodings and also how they relate to the original
collective Dicke states. Section VI concludes.

II. MOTIVATION

We will begin by providing the motivation behind this
work. The main objective of this paper is to provide
a methodical procedure for identifying the Hamiltonians
which generate non-trivial, symmetry-preserving evolu-
tions for a system which is undergoing some type of col-
lective motion. Since these evolutions are important for
manipulating DFS/NS encodings, we will briefly summa-
rize an important result regarding a compatibility con-
dition placed on such Hamiltonians. As stated before,
DFS/NS states correspond to a particular class of Dicke
states. This being the case, we will begin our discussion
with an introduction to the collective motion of Dicke
states.

A. Dicke States

In Ref. [9] Dicke examined the spontaneous radiation
of photons emitted from a gas consisting of two-level
particles. Gasses of both small and large extent were
treated separately, the scale being determined relative to
the wavelength λ of an externally applied field. Taking
R to be the spatial extent of the container, the two cases
correspond to λ ≫ R or λ ≪ R. In both cases it was
assumed that there was insufficient overlap of the wave
functions of separate particles to require symmetrization
of the states. It was also assumed that each particle cou-
pled to the common radiation field via an electric dipole
interaction. In general, the interaction energy of the αth
particle with the field can be written as

H
(α)
I = −A(rα) · (e1σ(α)

x + e2σ
(α)
y ), (II.1)

for some constant real vectors e1 and e2.

In the case of a gas confined to a small region of space
the vector potential can effectively be considered an in-
dependent function of the spatial coordinates rα. In this
approximation the total interaction energy becomes

HI = c1
∑

α

σ(α)
x + c2

∑

α

σ(α)
y , (II.2)

where c1 and c2 denote constants. There are two degrees
of freedom associated with the internal energy of any
given particle. The energy eigenvalues of the jth parti-

cle, corresponding to the diagonal operator σ
(α)
z , take on

the values ±~ω/2. The sum of all internal particle ener-
gies, together with the translational energy of the gas H0

and the interaction with the field, provides a complete
description of a gaseous system consisting of mutually
non-interacting particles.
The Hamiltonian for this system can be broken up into

two parts,

H = H0 +

(

c1
∑

α

σ(α)
x + c2

∑

α

σ(α)
y + ~ω/2

∑

α

σ(α)
z

)

,

(II.3)
where the first part describes the translational energy of
the system and thus depends solely on the spatial posi-
tions rα while the second is a quantity independent of
these coordinates. As a result, these two parts commute
implying the existence of simultaneous eigenfunctions of
the two contributions. Let us denote these energy eigen-
states

ψpq = Up(r1, r2, . . . , rN ) Φq, (II.4)

where Up depends on the spatial coordinates and Φq

is a function of the internal coordinates. The oper-

ators Si =
∑

α σ
(α)
i (i = x, y, z) not only individu-

ally commute with the spatially independent quantity
S2 = S2

x + S2
y + S2

z , but also satisfy the same commu-
tation relations (up to a multiplicative scaling factor) as
the three components of angular momentum. In other
words, they form a representation of the SO(3) algebra.
Stationary states of this system can therefore be identi-
fied with those eigenstates that conserve the square of the
total angular momentum operator, i.e., Φq ≡ Φjm, with
S2Φjm = j(j+1)Φjm and |m| ≤ j ≤ N/2. Consequently,
the stationary states of a gaseous system confined to a
small region of space can be expressed as

ψpjm = Up(r1, r2, . . . , rN ) Φjm. (II.5)

Since the individual particles which form the gas all ex-
perience a common interaction with the radiation field,
the system as a whole evolves in a collective manner.
However, while this collective motion is occurring on
these states, they may still undergo other non-trivial evo-
lutions that conserve energy and angular momentum.
Furthermore, the number of internal states is not re-
stricted to two, but can be arbitrary. Many internal
states may be undergoing simultaneous transitions to



3

other internal states, collectively, while still undergo-
ing this evolution. We will now consider these higher-
dimensional Dicke states in the context of decoherence-
free/noiseless subsystem encodings which are actually in-
variant under these collective motions. We will restate
a sufficient condition placed on the Hamiltonians which
generate non-trivial evolutions of these systems yet re-
main compatible with the encoding. Although the ar-
gument follows the usual treatment regarding the com-
patibility of transformations of a collective DFS/NS, it
applies to the present case as well since DFS/NS states
suitable for quantum information processing correspond
to degenerate Dicke states.

B. DFS/NS-Compatible Gates

Let us suppose that the Dicke states corresponding to
a collective DFS/NS are spanned by the set {|λ〉 ⊗ |µ〉},
with λ = 1, . . . , d and µ = 1, . . . , n. Here the |λ〉’s distin-
guish a particular basis state of an encoded d-state sys-
tem and the |µ〉’s label the n orthogonal elements which
span each qudit dimension. When acted upon by the col-
lective errors Sj these DFS/NS states have the property
that

Sj |λ〉 ⊗ |µ〉 =
n
∑

µ′=1

Mµµ′,j |λ〉 ⊗ |µ′〉 . (II.6)

In other words, these encoded qudit states remain un-
affected by the presence of such noise since they map
every |λ〉 to itself. One can parametrize the collective
errors using a set of time-independent complex numbers
{vj},

D(v1, v2, ...) = exp





∑

j

vjSj



 . (II.7)

The DFS/NS states are not the only accessible states
inherent to a system. There are some orthogonal to these
which cannot protect against collective noise. When
information is leaked into these regions of the systems
Hilbert space it may be permanently lost. Gates which
are used to manipulate the state of an encoded qudit
should therefore operate in a manner such that they
map DFS/NS states to other DFS/NS states. It can
be shown that a sufficient condition for a transformation
U = exp(−iHt) to satisfy this compatibility requirement
is that

UD(v1, v2, . . .)U
† = D(v′1, v

′
2, . . .), (II.8)

or, equivalently

∑

j

vjUSjU
† =

∑

j

v′jSj . (II.9)

Taking the derivative of both sides of this equation with
respect to time yields a sufficient condition for a Hamil-
tonian to generate a compatible transformation

[H,Sj ] = 0, ∀Sj . (II.10)

Since the Casimir operators for the algebra A satisfy
this condition, they can be used to generate nondissap-
ative transformations of a DFS/NS encoding. We will
discuss the Casimir construction for single-particle in-
variants next. The generalization to higher-dimensional
systems will then follow.

III. CASIMIR CONSTRUCTION FOR
COLLECTIVE ERRORS

A Casimir Operator is a member of the center of the
universal enveloping algebra meaning such an operator
will commute with every element of the universal en-
veloping algebra. For matrix representations of quantum
evolutions, which we will consider here, the universal en-
veloping algebra is the algebra of all products of Lie alge-
bra basis elements. It is most important for our purposes
that the Casimir operators commute with every genera-
tor of the Lie algebra and the collective errors form a
representation of the Lie algebra (which is the algebra
of Hermitian matrices). Once we find such invariants,
we will have a set of Hamiltonians which commute with
collective errors and are therefore compatible transforma-
tions. We begin by reviewing the construction of Casimir
invariants.
Let a basis for the Lie algebra of SU(d) (hereafter de-

noted L(SU(d))) be given by a set {λi} with the normal-
ization and properties described in the Appendix. The
Casimir operators of SU(d) are known. The most famil-
iar, the quadratic Casimir, is proportional to the sum of
the squares of the elements,

C2 ∝
∑

i

λiλi. (III.1)

This along with all other Casimir operators can be ob-
tained using the formula [17, 18]

In = Tr(adλa1
◦ adλa2

◦ · · · ◦ adλan

)λa1
λa2

...λan
. (III.2)

For example,

C2 =
∑

a1,a2,b1,b2

fa1,b1,b2fa2,b2,b1λa1
λa2

, (III.3)

which reduces to Eq. (III.1) using Eq. (A.7). It turns out
that the formula given in Eq. (III.2) does not produce
independent invariants for the collective errors. However,
the independent invariants can be obtained [17] and may
be written in terms of the totally symmetric d-tensor.
For example, the cubic Casimir invariant is

C3 =
∑

ijk

dijkλiλjλk. (III.4)
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Higher order Casimir operators can be constructed using
the general formulation

Cn =
∑

i1,i2,...,in

di1,i2,i3di3,i4,i5 , . . . din−4,in−3,in−2

×din−2,in−1,inλi1λi2λi4 . . . λin−1
λin (III.5)

The sum is over all elements of the algebra.
To show independence, one may begin with Eq. (III.2)

and reduce the expressions using the identities in the ap-
pendix. Here our objective is to find a set of operators
which commute with the set of collective motions. A ba-
sis for these motions is given by the set of operators of
the form

Sj =
∑

α

λ
(α)
j , (III.6)

where the sum is taken over the particles in the system.
These types of operators also form a basis for the collec-
tive errors acting on a DFS/NS and linear combinations
give the stabilizer elements. (See Sec. II B for the defi-
nition and discussion.) An element of the algebra (with
real coefficients) which commutes with these provides the
Hamiltonians which are compatible with a DFS/NS.

IV. EXPLICIT FORMS FOR THE INVARIANTS

In this section we will find a set of independent oper-
ations for which each element of the set commutes with
all members of the algebra formed by the Sj. Denote the
algebra of the Sj by A.
Note that the Casimir operators formed from the ele-

ments Sj form a representation of L(SU(d)) if the λi do
[19]. Therefore these are invariants of the algebra A, i.e.
they commute with elements of this algebra. However,
this is not an irreducible algebra. Thus the construction
must rely on the identification of the irreducible compo-
nents.
To proceed, we first calculate the Casimir invariants

of L(SU(d)). Then, noting that linear combinations of
these invariants are also invariants, we extract reducible
components of the invariants. From a physical perspec-
tive, this means identifying n-body interactions which are
contained within the m-body interactions where n≤m.
The quadratic Casimir operator for the algebra A is

J2 =
∑

i,j,k,l

fijkfkliSjSl ∝
∑

j

SjSj . (IV.1)

Expanding this in terms of the basis elements {λi} gives

J2 ∝
∑

i

(

∑

α

λ
(α)
i

)2

=
∑

i





∑

α

(λ
(α)
i )2 + 2

∑

α<β

λ
(α)
i λ

(β)
i



 . (IV.2)

Note that the first term of the last expression is the sum
of single-particle Casimir invariants. This allows us to in-
fer that the second term in Eq. (IV.2) is also an invariant
quantity. Furthermore, the only nontrivial contributions

appearing in the commutator
[

∑

i λ
(α)
i λ

(β)
i , Sl

]

have the

form

[λ
(α)
i , λ

(α)
j ]λ

(β)
i + λ

(α)
i [λ

(β)
i , λ

(β)
j ], (IV.3)

with all other terms vanishing. Since this can be rewrit-
ten as

2ifijk(λ
(α)
k λ

(β)
i − λ

(α)
k λ

(β)
i ) = 0, (IV.4)

we find that

I
(α,β)
2 =

∑

i

λ
(α)
i λ

(β)
i (IV.5)

is also an independent invariant for each pair (α, β).
Now consider

J3=
∑

fijkfklmfmniSjSlSn

=
∑

fijkfklmfmni

(

∑

α

λ
(α)
j

)





∑

β

λ
(β)
l





(

∑

γ

λ(γ)n

)

.

(IV.6)

Expanding the sums over the particle (Greek) indices,
and reducing the results, three types of terms are ob-
tained. First, if all three superscripts are the same, for

example λ
(α)
i λ

(α)
j λ

(α)
k , the term reduces to the quadratic

Casimir invariant for particle α. Since any linear com-
bination of invariants is invariant, the sum of all terms
having this form is also invariant. Second, if two are

the same, e.g. λ
(α)
i λ

(α)
j λ

(β)
k , then the result reduces to

I
(α,β)
2 , thus terms of this form are also invariant quanti-
ties. Third, if all three are different, we obtain

I
(α,β,γ)
3 =

∑

ijk

fijkλ
(α)
i λ

(β)
j λ

(γ)
k , (IV.7)

as an independent invariant. Notice this case is different
from the ordinary Casimir construction where no such
independent invariant arises for a term of the form of J3.
Defining and expanding J4 produces one new invariant,

I
(α,β,γ)
4 =

∑

ijk

dijkλ
(α)
i λ

(β)
j λ

(γ)
k . (IV.8)

Continuing with this will iteratively produce a set of in-
dependent invariants for collective motions of particles.
For three qutrits this set, I2, I3, I4 is complete [20].

V. APPLICATIONS

After the motivation in the introduction and the
Casimir construction, we now consider more explicitly
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the implications of our findings. First, we shall connect
our findings to the familiar three-qubit DFS/NS where
the exchange interaction is well known to allow for uni-
versal computation. We will then discuss the implica-
tions of these results for the case of a three qudit encod-
ing, with a particular emphasis on the ability of these
operations to generate universal quantum computation.

A. Qubits and the Exchange Interaction

We now consider the three-qubit DFS/NS. A collec-
tion of three qubits is smallest set of qubits which can
protect against an arbitrary collective error (dephasing
and rotations). In this case a basis for the Lie algebra of
SU(2) can be taken to be the set of Pauli matrices {σi}.
Collective errors span the set {Sj}, where Sj =

∑

α σ
(α)
j

for j = x, y, z. The quadratic Casimir operator for the
algebra of the Sj can be expanded using Levi-Civita co-
efficients

J2 =
∑

i,j,k,l

ǫi,j,kǫk,l,i





∑

(α)

σ
(α)
j









∑

(β)

σ
(β)
l



 , (V.1)

which reduces to -2
∑

S2
i . To show that this invariant can

be decomposed into a sum of two-body exchange interac-
tions one can follow the prescription outlined in Sec. IV.
It is easy to check that the decomposition is given by

J2 = −181l − 4
∑

i<j Eij , where Eij =
∑

σ
(i)
l σ

(j)
l is the

two-qubit exchange Hamiltonian for qubits i and j.
It is known that the exchange interaction alone can

be used to perform universal quantum computation on
a three-qubit DFS/NS. Section IV describes a method
for showing that each individual exchange Hamiltonian
Eij is an invariant quantity and thus can be used to re-
liably manipulate DFS/NS encodings. Although these
results regarding the two-qubit exchange interaction are
not new, the method for determining these invariants is
quite general and be applied to a wide variety of DFS/NS
encodings. Our next example highlights this point as we
consider a three-qudit DFS/NS encoding of arbitrary di-
mension d.

B. Three Qudits

As mentioned earlier, a basis for the collective errors
is given by the set

Si =
∑

α

λ
(α)
i , (V.2)

where the subscript indicates the type of error and the
superscript labels the particle on which the operator acts.
The invariants I2, I3, and I4 not only commute with
every element of this set, but can also be used to form
a representation of the Lie algebra of SU(2) [20]. It has
been shown that the encoded, or logical analogues of the

Pauli matrices acting on an encoded qubit can be given
in terms of these invariants by the relations

X̄ =
1

2
√
3

[

I
(2,3)
2 − I

(1,3)
2

]

, Ȳ =
I3

2
√
3
, (V.3)

and

Z̄ =
[

I
(2,3)
2 + I

(1,3)
2 − 2I

(1,2)
2

]

/6. (V.4)

All three of these generators can be expressed in terms of
two body interactions since I3 can be decomposed into
products of I2. In fact, the invariant I2 alone suffices
to perform universal computation using encoded qubits
that are comprised of three physical qudits since they are
able to generate any single qubit rotation, and can also be
combined in such a way as to implement an entangling
CNOT gate as well. This is due to the fact that the
states which were used in Ref. [21] for the CNOT are also
present in the expansions of the logical states encoded
into qudits having d ≥ 3.

In addition, the invariant I
(α,β)
2 can also be used to

perform the generalized exchange interaction between the

states |p〉(α) |q〉(β) associated with particles α and β since
it has been shown in Ref. [20] that

exp



−i(π/4)
∑

j

λj ⊗ λj



 |pq〉 = −i exp(πi/2d) |qp〉 ,

(V.5)
for p, q = 1, 2, . . . , d.
Clearly these are linear combinations of the two-body

interactions which are comprised of the invariants I
(α,β)
2 .

Three-body and higher order interactions are less often
experimentally controllable, but are also, in principle, vi-
able candidates for quantum gates. For example the log-
ical Y interaction for qudits is proportional to I3.

C. Quantum Dots

Consider a spin quantum dot in an effective spin bath.
The magnetic moment of the trapped electron can in-
teract with the environmental spin moments, magnetic
moments of nuclei, in such a way as to cause fluctuations
in the electron’s state, thus resulting in decoherence. If
the environment is somehow driven to a zero-collective
spin state (a collection of many-body singlet states), the
spin will interact less strongly with its environment and
this decoherence mechanism can be suppressed. There
have been numerous theoretical approaches to the gen-
eration of large scale many-body singlet states (see, for
example Ref. [24]) although a physical implementation
remains technically challenging. These singlet states will
almost certainly span a DFS/NS due to the fact that de-
generacies in the singlets will almost certainly occur in
a large collection of spins. In this case a discussion re-
garding the collective motion of such states is warranted.
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FIG. 1: Example of a spin singlet state (within the dotted
ellipse) which has a non-zero spin coupling with a quantum
dot (labeled Q). The environmental spins may be evolving
under the DFS-compatible evolutions while remaining in a
singlet state. Although the total spin is zero, the spins do
interact due to the difference in distance between the spins
comprising the singlet.

The DFS/NS compatible evolutions we have focused on
here can occur in these spin baths in such a way as to
preserve the singlet state structure yet can influence the
state of the quantum dot due to the fluctuations in the
states. For example, in the case of the four-qubit DFS,
there are four spins which can be in one of two different
singlet states [5]. One of these can represent the logical
zero of an encoded qubit and the other a logical one. The
DFS-compatible Hamiltonians can take the logical zero
state and produce a logical one state thus changing the
state of particular spins while leaving the set in a singlet
state or superposition of singlet states. Since the nuclear
spins are in a fixed location, some will be nearer to the
electron in the quantum dot and some will be farther
away. When they change states the dipole-dipole inter-
action will also change as a result of the variation in dis-
tance from neighboring spins. The dipole-dipole coupling
drops off like ∼ 1/r3, so the spins which are nearer will
have a greater influence even if the collection as a whole
is in a singlet state. (See Fig. 1.) Even for the ideal case
where the total collective spin of the environment is zero,
the fact that there exists these collective motions which
preserve the angular momentum of the system can have
a detrimental effect on the state. An analysis of these
effects will therefore be necessary in order to fully char-
acterize the benefit of putting environmental spins into a
set of singlet states.

VI. CONCLUSIONS

For quantum systems containing many particles, each
having a number of internal states, the system could be
in a vast array of possible states corresponding to a large
Hilbert space dimension. The evolution of such states
can be fairly simple however, as in the case of a system
undergoing collective motion. Such motions occur, for
example, when λ ≫ R so that each particle feels the
same field. If states, or subsystems, of a collection of

particles are invariant under collective motions, they are
decoherence-free, or noiseless with respect to any collec-
tive operation, unitary or not. This leads to the promis-
ing method for error prevention–encoding in one of these
subspaces to avoid collective errors. To take advantage
of such an encoding for the purposes of quantum infor-
mation processing, one requires a complete set of logical
operations to be performed on these subsystems which is
compatible with the encoding. We have provided a way
in which to find the set of Hamiltonians for this purpose.
However, we also note that since collective motions

commute with the operators we have presented here, the
Casimir invariants may be measured while the system
undergoes these collective errors. This allows one to de-
scribe the system by the values of these operators. Indeed
one of the original motivations for studying these invari-
ants was to find a complete set of commuting observ-
ables to completely specify a quantum system. (See for
example Ref. [22] and references therein.) Not all of the
invariants presented here will commute with each other,
but they each commute with the collective motions. A
subset of these invariant operators which also mutually
commute will help provide a complete set of commuting
operators along with the energy and total angular mo-
mentum.
Our work is quite general and can be applied to any set

of d-state systems undergoing collective motions. There-
fore, we have extended the Dicke-state description explic-
itly to the general case leading the way to the descrip-
tion of sets of particles undergoing collective motions and
their manipulation when the particles have more than
two internal states.
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Appendix A: The algebra of SU(d)

We have chosen the following convention for the nor-
malization of the algebra of Hermitian matrices which
are generators of SU(d).

Tr(λiλj) = 2δij . (A.1)

The commutation and anti-commutation relations of
the matrices representing the basis for the Lie algebra
can be summarized using the following equation:

λiλj =
2

d
δij + ifijkλk + dijkλk, (A.2)

where here, and throughout this appendix, a sum over
repeated indices is understood. The sums are written
explicitly for clarity only in a few cases.
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As with any Lie algebra we have the Jacobi identity:

filmfjkl + fjlmfkil + fklmfijl = 0. (A.3)

There is also a Jacobi-like identity,

filmdjkl + fjlmdkil + fklmdijl = 0, (A.4)

which was given by Macfarlane, et al. [23].
The following identities, also provided in [23], are use-

ful

diik = 0, (A.5)

dijkfljk = 0, (A.6)

fijkfljk = dδil, (A.7)

dijkdljk =
d2 − 4

d
δil, (A.8)

and

fijmfklm =
2

d
(δikδjl − δilδjk) + (dikmdjlm − djkmdilm)

(A.9)
and finally

dpiqdqjrfrkp =
d2 − 4

2d
fijk, (A.10)

dpiqdqjrdrkp =
d2 − 12

2d
dijk. (A.11)

The proofs of these are fairly straight-forward, but we
omit them here.
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