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Abstract
Using spectral joint-measurements of the qubits, we pmposcheme to test the tripartite Mermin in-
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qubit Greenberger-Horne-Zeilinger (GHZ) state by only-step quantum operation. Then, spectral joint-
measurements are introduced to directly confirm such tiipantanglement. Assisted by a series of single-
qubit operations, these measurements are further utitzeelst the Mermin inequality. The feasibility of
the proposal is robustly demonstrated by the present naatexperiments.
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I. INTRODUCTION

Entanglement [1] is at the heart of the quantum theory arathiscrucial resource of quantum
information processing [2, 3]. It is one of the most impottaryredients of various intriguing
phenomena, e.g., quantum teleportation [4, 5], secreirghf], and remote state preparation [7],
etc. Therefore, generating and verifying the existencentdrgglement are of great importance.

Since Bell inequality [8] and its CHSH version [9] was forratdd to test the correlations be-
tween two particles, numerous experiments with bipartitaeglement, e.g., photons [10], trapped
ions [11, 12], neutrons [13] and Josepson junctions [14,€i6], have been demonstrated to probe
the nonlocal nature of quantum mechanics. As all these emrpats support quantum mechan-
ics and rule out the local hidden-variable theories, Bedhmality can be served as an important
witness of quantum entanglement.

With the developments of quantum technology, entanglesteared by multiple particles plays
more and more important roles for large-scale quantum imédion processing and many-body
guantum mechanics. Multipartite entangled states have demonstrated with atoms [16, 17],
photons [18-21], trapped ions [22—24], and also Josephswrtipn circuits [25, 26], etc. Ba-
sically, multipartite entanglement can be robustly vedlifiiy the standard quantum-state tomo-
graphic technique, i.e., reconstructing their densityrives by a series of quantum measurements.
Instead, one can also verify entanglement by testing tHatiom of the multipartite Bell-type in-

equality, such as Mermin inequality [27]:
Q = |E(0},04,03) + E(61,05,05) + E(6y,0,05) — E(07,05,05)] < 2. (1)

with three-qubit systems. Indeed, the violation of thigjuality has been experimentally demon-
strated with three-photon entanglement [19, 20]. In the(Egabove{6,, 0., 05, 0}, 6, 05} are
the set of controllable local-variables of the three indhej@at particles, and the correlation func-
tion E(6,, 05, 05) is the ensemble average over the measurement outcomee flacti settings:
01,05, 0.

As a possible experimental demonstration, in this paperiseids how to perform the test of a
tripartite Mermin inequality with three qubits coupled tdraven cavity. Three-qubit Greenberger-
Horne-Zeilinger (GHZ) [28] entangled state is the starfagnt of our test. Note that an efficient
approach to prepare multipartite GHZ entanglement, &blst a quantized cavity, has been pro-

posed in Ref. [16]. In the scheme of Ref. [16], a series of atane sequentially passed through



the cavity, and their interactions with the cavity can betoated by adjusting their flying times.
As a consequence, GHZ-entanglement between the atoms gandeced, and the cavity mode
is left in its vacuum state. Differing from Ref. [16], here wiscuss how to prepare the atomic
gubits contained in a common cavity, where the atomic qubteract simultaneously with the
cavity mode. By appropriately driving the cavity, e.g.,inmthe driving time, the atomic qubits
and the cavity mode can be decoupled from each other atrrerstants of time, and consequently
the desired GHZ entanglement between the atomic qubitsiiergeed. Two main aspects in the
present proposal are: (i) an one-step approach is propoggzherate the desired GHZ state, and
(ii) a spectral measurement method is introduced to impierties joint measurements of these
three qubits to test the Mermin inequality. In principler puoposal could be further generalized
to the cases with more than three particles. The paper isiaeghas: In Sec. Il, we briefly de-
scribe how to generate the tripartite GHZ entangled statkre€ qubits coupled dispersively to a
driven cavity. Then, by introducing a spectral joint-measaent method via detecting the photon
transmission through the driven cavity, we propose a sinyatestep method to confirm such a
tripartite GHZ entanglement. In Sec. Ill, we propose a sahem how to encode various local
variables into the prepared GHZ entanglement via perfagraintable single-qubit operations, and
implement the test of the Mermin inequality by the introddig@nt-measurements. Discussions

on the feasibility of our proposal are given in Sec. IV.

. GENERATION AND CONFIRMATION OF THE GHZ STATE OF QUBITSCO UPLEDTO A
DRIVEN CAVITY-QED SYSTEM

A. Preparation of tripartite GHZ state by only one-step quantum operation

We consider a driven cavity-qubit system, wherein threatqulathout interbit interaction are
respectively coupled to a common cavity mode. Such a cayityit system can be described by
the Tavis-Cummings Hamiltonian [29} & 1 throughout the paper)

At wj
Hpe = wea'a + Z [730%, + gj(alo_, + aoy,)], 2)
7j=1,2,3
whereq!) ando, are the ladder operators for the photon field andjthegubit, respectivelyy,

is the cavity frequencyy, the jth qubit transition frequency, ang the coupling strength between



the jth qubit and the cavity. The driving of the cavity can be meddby
Hy = e(ale ™t 4 geiwat), (3)

wheres is the amplitude and, the frequency of the external drive.
Following Ref. [30], after a displacement transformatiof) = exp(aa’—a*a), the displaced

Hamiltonian of the composite system reads

Hrp = D'(a)(Hre + Hy)D(a) — iD' (o) D(«)

wj .
= wyaa+ Z [éazj +gj(alo_, +aoy,) + gi(a’o_, +aoy))]. 4)
i=1,23

Now, we letw; = w;, & = —iw,a — ic exp(—iwgt), and work in a rotating frame defined by
Uy = expl—it(w.ala + Y wgo.,/2)], the effective Hamiltonian of the cavity-qubit system

j=1,2,3
takes the form

Hr = Z (0., + gj(a'o_, exp (—idt) + aoy, exp (i6t))], (5)

j=1,2,3
with the qubit-drive detuning = w, — w, and the Rabi frequency; = ¢g;/6. Changing to the
orthogonal bases-;) = (|1,) & |0,))/+/2, and in the interaction picture, we get
9j .
Hi= Y EjaT exp(—idt) [[+;) (+;] — [=;) (=l

j=1,2,3
+exp (12600t |[+;) (=] — exp (—12€¢)|=;) (] + h.c.,

(6)

where|+;) are the eigenstates of operatqr with eigenvaluest1. In the strong driving regime:
Q> 9, g, we can eliminate the fast-oscillating terms in Eq. (6) drehthave [31, 33]
H; = Z &amj [a' exp (—idt) + aexp (idt)]. (7)

, 2
Jj=123

Note that the operator Sébxjaxj,,aTij,aaxj, 1} (4,5 = 1,2,3, andj # ;') form a closed
Lie algebra, the time evolution operator related to the alidamiltonian can be formally written
as [32]

Ui (t) = exp [iC(t)] [ [ exp [i(B;j(t)aos, + B;(t)a'o,,)] x [ exp [<idjy(H)os,04,], (8)

J J#3’



with the parameters determined by

gigj . 1 :
Ajji(t) = ZMJ [g(exp(—lét) — 1) +1],

By(t) = slexp (idt) — 1],
C() = 3 Dl (exp (~iot) — 1) +1] ©

J
andAjj/(O) = BJ(O) = C(O) =0.
Suppose that all the qubit-cavity couplings are homogesigai,g;, = ¢ (for j = 1,2, 3) and
setdét = 2nr for integern, we haveB(t) = B*(t) = 0. Then, the time evolution operator reduces

to a simple form

g2
Ur(t) = exp (—@'Ftsi)a (10)

with S, = Z?zl o.,;/2. Return to the Schroinger picture,
Us(t) = U(t)Us(2)
= exp (—iwa'at) H exp (—i€2o,,1)Ur(t)
j

2
= exp (—iwa'at) exp (—i2QS,t — i%tSﬁ). (11)

Here(; = Q for g; = g mentioned above. Note that the effective coupliifgcan be utilized
to directly realize the multi-qubit GHZ state, when the velet parameters are appropriately cho-

sen [34]. Assume that the three-qubit register is initialiyhe state

[¥(0)) = 1000), (12)

where|0) (/1)) denotes the eigenstatef, .|0) = —1 (0.|1) = 1). Using the spin representation
of atomic states for the operatdy = Zj’.zl 0,/2, the three-qubit statgs00) and|111) can be
expressed as collective statgg2, —3/2) and|3/2, 3/2), respectively. Herd,] = 3/2, M) is the
eigenstate of the operata$s with the eigenvalué/, M = —J, ..., J. In terms of the eigenstates
of S, [34], we have

3/2
13/2,-3/2) = Y cul3/2, M), (13)
M=-3/2
and
3/2
13/2,3/2) = Y en(=1)¥*M3/2, M), (14)
M=-3/2



whereM = M’ + 1/2, andM’ is an integer. As a consequence, the evolution of the sysé@m c

be conveniently expressed as (up to a global phase factor)

(1)) = Us(t)[¢(0))

3/2 2
_ ,Z cMexp[—iQQtM—i%tM2]|3/2,M>x
M=-3/2
= %(|3/2,—3/2>+i|3/2,3/2>), (15)

with the choiceg?t/d = (4k + 1)7/2 andQt = (2m + 3/4)7 (k, m are integers). Obviously, at
t =T, the desired GHZ state [33-35]

1

[¥(T0)) = Us(Tn)[¥(0)) = —=(1000) +i[111)) (16)
V2
is obtained. In the above, the relations of the integers andn are given by
52 52 252 362
= — — n=— — 17
n 92k+4g2,n €gm+4€g (17)

B. Confirming the existence of the GHZ entanglement

The GHZ state prepared above by one-step operation can bstipbonfirmed by using the
standard quantum state tomography, i.e., reconstrudsragensity matrix. Such an approach was
usually utilized to confirm the quantum state in trappedsif86], linear optics [19—-21] and the
solid-state qubits [37—-39], etc. However, these confiromstirequire many kinds aingle-basis
projective measurements assisted by a series of quanturatioms, and thug” — 1 kinds of
projections are needed for reconstructiny a« N-matrix, in principle.

Fortunately, a significantly simple approach, i.e., s@@dint-measurements of the qubits [40,
41], can be utilized to high-effectively implement the dediconfirmation. By this means the
states of the qubits can be jointly detected by probing thadst-state transmission spectra of the
driven cavity, which is commonly coupled to the qubits. Hoe present case, the qubit-cavity
detuningA; = w; — w, is assumed to be much larger than the coupiinge., the system works
in the dispersive regime, and the qubit-cavity couplings the formH, = a'a 2?21 ['jo.,. This
indicates that the qubits cause the state-dependent fieguhift of the cavity. For example, if
the qubits is prepared at the joint eigenstat®) (or |111)) of the three qubits, then the frequency

of the cavity is shifted as- Z?Zl I'; (or Zj-’zl I';), which is dependent on theint eigenstate



of the qubits. Thus the steady-state transmission spdutbadgh the driven cavity can mark all
the possible joint eigenstates of the qubits. Generallignawn qubits should be denoted as a
superposition of all the possible joint eigenstates of thieitg. As a consequence, the measured
transmission spectra’a(w,)), of the driven cavity may appear multiple peaks versus theri
frequencyw, (see the Appendix for the detailed derivation); each peatksnane of the possible
joint eigenstates of the qubits, and its relative heightesponds to the probability of this state

superposed in the unknown three-qubit state.
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FIG. 1: (Color online) Two spectral joint-measurementsdofom the GHZ entanglement: (a) directly for
the GHZ state(|000) + |111))/+/2, and (b) for the staté000) + [011) + |101) +|110))/2 generated after
performing unitary operations on the GHZ state. Here, tharpaters are selected ds,,1'5,I's, k) =
27 x (50,230, 350, 1.69)MHz, and|0) = |000), [1) = |001),|2) = |010),|3) = |011),|4) = |100),|5) =
|101),]6) = |110), and|7) = |111), respectively.

Specifically, for the GHZ state prepared above the steamty-$tansmission spectra of the
driven cavity should reveal a two-peak structure, see, Eig. 1(a) with the typical parameters:
(I'1,T9, '3, k) = 27 x (50,230,350, 1.69)MHz. To show clearly the simulated results for the
test, the parameteis; could be adjusted by adiabatically tuning the qubit-tramsifrequencies.
Desirably, the frequency-shift locations:I'y — I'y — I's, I'y + I'; + I'3 and the relative heights
of these two peakd).5, 0.5, indicate that two joint eigenstate®)0) and|111), are superposed
in the measured state with the same superposition protyabili. Of course, such a spectral
joint-measurement result is just a necessary but not sriticiondition to assure the desired GHZ

state, since a statistical mixture of these two joint eitgies may also yield the same spectral
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distributions. To confirm the stateqyz) is indeed the coherent superposition of the stated)
and|111), we need another spectral joint-measurement by using #etaon coherent effect. This
can be achieved by first applying the unitary operafiph , R, (r/4) = [[;_, exp (im0, /4) to
each qubit to yield the evolution

[onz) = [Wrz) = Ry () Rea() Ry () ltocra)
_ %(|000) 1011 — [101) — [110)), (18)

and then performing the spectral joint-measurement. kpeeted that four peaks with the same
relative height).25 should be observed (see, e.qg., Fig. 1(b)), if the prepaid & nothing but
the desired tripartite GHZ state. However, if the prepatatess a mixture of the joint eignestates

|000) and|111), then eight peaks would be observed.

lll. TESTING TRIPARTITE MERMIN INEQUALITY BY SPECTRAL JOIN T-
MEASUREMENTS

With the prepared GHZ state, we now discuss how to test thartiie Mermin inequality (1)
by jointly measuring the three qubits coupled to the drivavity. The test includes the following
two steps.

First, local parameter$;(j = 1,2, 3) are encoded into the generated GHZ state (16) by per-
forming the single-qubit Hadamard-like operations

R;(0;) = R.;(0;/2)Raoy(7/4)R-;(=0;/2)

! 1 et 19
V2 e 1 ) (19)

Here, the typical single-qubit gatés  (0) = exp (io.,0)) and R, () = exp (io,,0) can be easily
implemented, see e.g. [30, 41]. After these encoding ojpastthe generated GHZ staie;yz)

is changed as

V" anz) = Ri(61)Ra(02)R3(63)|Yanz)
1 _ . . , ,
- Z[(l + €101 F0240)y1000) + (ie~02 — ' 1702))]001) + (ie~"%2 — 4e'1702))]010)
+(—e7102F03) _ o91)1011) + (e~ — §e/®2103))|100) 4 (—e 1 01H03) — 2)]101)

(=7 1OH02) _ o3| 110) (5 — e Or+02t02))111)). (20)

8



Second, we perform the joint projective-measurementsteréne the required correlation func-
tions E(6,, 02, 03) for various combinations of these local variables.

Experimentally, the above two steps can be repeated maeg timmd thus the correlation func-
tion can be determined by

E(6,,65,05) = P11 + Pioo + Poio + Poor — Porr — Pior — Piio — Pooo- (21)

Here,zivj’k:ov1 P, = 1 with P,;;; being the probability of the state¢;,) collapsing to the joint
basis|ijk). With these projective measurements, various correldtiontions required can be
measured and then the tripartite Mermin inequality (1) catelsted. Theoretically, the correlation

function can be easily calculated as
E(61, E(01,02,03) = (" Guz| Pr|v" guz) = — cos(6y + 02 + 63), (22)

with the joint projective operataPy = 0., ® 0., ® 0., = |111)(111] + |100)(100]| +|010)(010| +
|001)(001| — [011)(011]| — [101)(101| — |110)(110| — |000)(000|. For the suitable choices of the
local observables, e.g{f:, 6, 05,6, 05,05} = {0, 7/4,7/2, /4, /4, 7}, we have the ideal
value of theQ)-parameter in Eq. (1):

Qi=V2+1>2 (23)

This indicates that the inequality (1), namély < 2, is violated. Furthermore, for the parame-
ters{0,,0-,03,0,,0,,0,} = {r/4,0,0,3w/4,7/2,7/2}, the above tripartite Mermin inequality is
maximally violated, i.e.); = 2v/2.

In the usual tomographic reconstructions only one bagis,

ejk), is collapsed for one kind
of projective measuremerit,;;, = |ijk)(ijk|. This implies that seven kinds of projective mea-
surements are required to complete the above joint projea?fjjk. However, by the spectral
joint-measurements introduced in Refs. [40, 41], the podib@s P, (i, j, k = 0,1) can be de-
termined simultaneously by just the spectral measurenoémit® transmission through the driven
cavity; each peak of the transmission spectra marks oneedfdhigi;jk), and its relative height
refers to the relevant probabilit};;.. Specifically, for one set of classical variablgs, 6, 05,

0, 05, 05}y = {0, m/4,7/2, /4, 7 /4, 7}, Figs. 2(a-d) show how the spectra of the driven cavity
distribute (versus the qubit-driving detuning) for thetst@0). For instance, four peaks, marking
respectively the basis statg$)0), [011), |101), and|110), are shown in Fig. 2(a). Their relative

heights are equivalentlyyy = P11 = Pior = Piio = 0.25. Thus, the correlation function between

9
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FIG. 2: (Color online) Transmission spectra of the drivenityaversus the detuning for the evolved state
|v" cuz) with the classical variable$6,,62,0s,0},05, 05} = {0,7/4,7/2,7/4,7/4,7}. Here, (a)-(d)
correspond respectively to the parametéf$, 02,0}, {01,05,03}, {01,602,65}, and {6, 65,05}. With
these spectral distributions, the correlation functicetpuired for testing the Mermin inequality (1) can be

calculated. Other parameters of the system are the samesasubed in Fig. 1.

the three local variables can be easily calculated as

E(n/4,0,0) =1,
E(r/2,0,0) = 0.704,
E(n/4,7/2,0) = 0.704,
E(n/2,7/2,0) =0.

\

Consequently, the numerical experimental result of(phgarameter is
Q. =2408 ~V2+1>2, (24)

and thus the tripartite Mermin inequality is violated. Samlly, for another set of classical variables
{61,04,05,0],0,, 0} ={r/4,0,0,37/4,7/2,7/2}, Figs. 3(a-d) show all the probabilities of eight
bases in the present three-qubit system. Again, the indateerelation functions are calculated
as(E(07,05,03), E(61,05,03), E(61,04,05), E(0,,0,,05))=(0.704, 0.704, 0.704, -0.704). As a

consequence,
Q. = 2.816 ~ 2v2 > 2, (25)
and the Mermin inequality (1) is violated more strongly.

10
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FIG. 3: (Color online) Transmission spectra of the drivewityaversus the qubit-drive detuning for the set
of local variables{01, 02, 03,61, 05,05} = {r/4,0,0,3n/4,7/2,7/2}. Other parameters are the same as

those in Fig. 1.

IV. DISCUSSION

We have proposed a direct and experimentally-feasiblensehte test tripartite Mermin in-
equality with cavity-qubit system, wherein quantum stdt¢hoee qubits without direct interbit
couplings is detected by measuring the dispersively-amlipvity spectra. We have numerically
demonstrated that the local-variable-dependent prababibf various bases superposed in the
local-variable-encoded GHZ state can be directly read guhé cavity transmission. With these
probabilities, various correlation functions on the logatiables of individual qubits are easily
calculated, and consequently the violations of the thietigbe Mermin inequality are tested.
Specifically, a few examples were utilized to numericallpfaon the tests. Certainly, the present
proposal could be generalized to test other Bell-type iaéfieis with more than three qubits in a
straightforward way.

Note that in our numerical experiments little deviationsseketween our estimated results
and the ideal predictions. For example, if the local vagatdre set a§d,, 0, 0, 6,, 0,04} =
{0,7/4,7/2,7/4,7 /4, 7}, the values of)-paramter given by our numerical experimentgis=
2.408, which deviates the ideal valu€s = /2 + 1 with a quantityAQ = Q, — Q. = 0.006.
Also, for local variables{6,, 6,05, 07,05,05} = {r/4,0,0,37/4,7/2,7/2} the inequality (1)
should be maximally violated wit€); = 2+/2, but our numerical experiment yields = 2.816 =
Q; — 0.012. These deviations are due to the existence of the dissipatithe cavity, which yields

11



various finite widths of the transmission spectra throughdhven cavity. As a consequence,
the relative heights of the measured peaks are lower thae thiothe ideab-type peaks. As the
measured values are less than those for the ideal casesuyfficsent to show the violation of the

Mermin inequality.
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APPENDIX: TRANSMISSION OF A DRIVEN CAVITY

In this appendix, the transmission spectrum of a threetqgula driven cavity is calculated in
detail. The transition frequencies of the three qubits &moted asv,, w, andws, respectively.

We assume that the dispersive condition

g; 9;9; 49i9; . -/
0< -, : <1, j#7 =123, (Al)
A NN DA

is satisfied for ensuring the effective dispersive coupl'rg]gﬂd between thejth qubit and the
cavity. These conditions also ensure that the interbitaatons are negligible. Alsd); = w,—w,
denotes the detuning between tie qubit and the cavity, and;;; = w;—w; the detuning between
the jth and;’th qubits.
In a framework rotating at,, the effective Hamiltonian of the qubit-cavity system is
H = (=6 + 10, + 0., +T50.,)a'a
w1 Wy W3

+ - + 5 0= + 5 0% +e(a’ +a), (A2)

wherel'; = ¢2/A;, &; = w; + T, (j = 1,2,3), andd = wy — w, is the detuning of the cavity

from the driving. The master equation for the complete syseads

o = —i[H, o] + r(aoa’ — atao/2 — oafa/2), (A3)
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whereyp is the density matrix of the qubit-cavity system.

From the above master equation, the equations of motioté&mean values of various oper-

ators are
d{ata
<§t“> — —rk(afa) — 2eIm(a), (Ada)
d{a) N NN
= (16 — 5)(@) — i€
— ’LFl <d021> — ZFQ <€LUZQ> — ’iF3<CALO'ZS>, (A4b)
with
d(ao, ) K., . ) A
<dt ) = (i6 — §)<aozl> —i€{0,,) —il'9{ao,,0.,,)
— al'y(a) —il'3(ao.,0.,), (A4c)
d{ac.,) . K. , —
o = (i0 — §)<a022> —ie{o,,) —il'1(ao,,0.,,)
- iFZ <d> - Z-F?’<d0-220-z3>7 (A4d)
d{ao,, _ . .
a0s) = (16 — E)(dcfzg> — i€(0,,) — i11(a0.,0,,)
dt 2
- ZF3<d> - ZF2 <d023022>7 (A4e)
and
d(ao,,0.,) . K. ,
T - (7'5 2)<a021022> Z€<O'Zl(722>
— il {ao.,) —il'y(ao,,)
— il'3(a0,,0,,0.,), (A4f)
d(a0.,0.) o K. ,
T - (7'5 2)<a022023> ZE<O-Zz(723>
— il'y(ao.,) — il'3(ao.,)
— il'{a0,,0,,0.,), (Adq)
d(ao,,0.) . K. ,
T - (7'5 2)<a021023> Z€<021023>

— iF1<d0z:;> - iF3<d021>

— il'y(a0,,0,,0.,), (A4h)
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d(ao,,0,,0.,)

. R\ A
dt = (26 - 5)(0'02102202:5)

— 1€(0,,0,,0.,) —il'1{a0,,0.,)

] ) <&Uz1023> —il'3 <&UZ1022>7

(A4)

d(;f;J _ d<§;2> _ d<§;3> 0, (A4j)
d<0§t0Z2> _ d<02t%> _ d<0;2t0za> 0, (A4K)
ngﬁ _o, (A4l)

The steady-state distribution of the intracavity photomber can be obtained by solving the
Egs. (A4 a-i) under the steady-state condition, i.e., @l derivatives in the left sides of above
equations equaté Then, by numerical method, the steady-state average photamber inside
the cavity can be obtained. Similar to the single-qubit anal-¢ubit cases in Ref. [40, 41], infor-
mation of these eight basis states in arbitrary three-cptiéie can be extracted from the spectra of
the cavity transmission, since each peak marks one of tin leéges, and its relative height refers

to its probability superposed in the measured three-qtdui s
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