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The particle in a Möbius wire and half-integer orbital angular momentum

Evangelos Miliordos
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA∗

Restricting one particle on the rim of a Möbius strip (Möbius wire), its wavefunctions are explicitly
calculated through the non-relativistic quantum theory. Demanding the wavefunction to be single-
valued, it is proven that in the case of a narrow strip the orbital angular momentum of the particle
takes both integer and half-integer values of h̄. In addition, the energy values of two chiral Möbius
wires are proven to be equal.

∗ miliordo@msu.edu



2

I. INTRODUCTION

The angular momentum operator in the quantum mechanics domain is defined as any vectorial operator ~̂J =
(

Ĵx, Ĵy, Ĵz

)

, whose components obey to the well known commutation relations
[

Ĵx, Ĵy

]

= ih̄Ĵz ,
[

Ĵz , Ĵx

]

= ih̄Ĵy,

and
[

Ĵy, Ĵz

]

= ih̄Ĵx. Out of these relations, someone can extract any property of these operators, or even study

the angular momentum coupling between different sources (e.g. the total spin angular momentum of a two electrons
system, or the spin and orbital angular momentum of an electron in a Coulombic field).[1] It’s noteworthy that the

explicit form of Ĵx, Ĵy, and Ĵz is not necessary.

It can be proved, for instance, that Ĵ2 and one of its components, say Ĵz, share the same eigenfunctions |j,m〉.[1]

Ĵ2 |j,m〉 = j (j + 1) h̄2 |j,m〉

Ĵz |j,m〉 = mh̄ |j,m〉
(1)

The eigenvalues of the Ĵ2 and Ĵz operators are j (j + 1) h̄2 and mh̄, respectively. In addition m is allowed to take
values from −j to j in step of one, i.e. m = −j,−j + 1, . . . , j − 1, j. Of course, this implies that j and m can only
be either integer or half-integer numbers, otherwise −j can never reach j, adding several times the unit. Ignoring
angular momenta coupling, it is well established that orbital angular momentum is related only to integer m values,
whereas spin to all possible values of m.
Usually, in the textbooks the whole story starts with the particle confined in a ring of radius R. If µ is the mass of

the particle, and φ the rotation angle, then the Hamiltonian operator of the system is

Ĥ = −
h̄2

2µR2

d2

dφ2
(2)

and the solution of the Schrödinger equation ĤΦm = EmΦm gives Em = h̄2m2/2µR2 and Φm = c1e
imφ + c2e

−imφ.
The choice of the exact values of c1, c2, and m is not straightforward. The Hamiltonian operator commutes with both
the angular momentum operator L̂z = −ih̄∂/∂φ, and the parity operator Π̂φ (φ → −φ), but the latter operators do

not commute to each other. The eigenfunctions of L̂z are N±e
±imφ, whereas those of Π̂φ are N±

(

eimφ ± e−imφ
)

. So,
someone should choose what kind of solutions they need. The former notation is appropriate for the next step, the
particle on a sphere, and the latter is suitable for drawing the wavefunctions on a sheet of paper.
To obtain the values of m, we have to apply the boundary conditions. But what are the boundary conditions?

Someone could say that the wavefunction must be single-valued at any (x, y) point, or that the density must be
single-valued. In the first case only integer m values are allowed, while in the second case both integer and half-
integer values are obtained, independently of the c1 and c2 values. Of course, the single-valuedness of a wavefunction
constitutes a sine qua non postulate of quantum mechanics, but it turns out that it can be rationalized. Merzbacher
stated that “It may even be said that the strange double-valued eigenfunctions of angular momentum have appeared
only because we have changed from Cartesian coordinates, which are adapted to the homogeneity and isotropy of
ordinary space, to polar coordinates, which are singular at the coordinate origin and distinguish a particular direction
in space”.[2] Moreover, Henneberger and Opatrný reported that “In bound states, the superposition principle by
itself guarantees single-valuedness”.[3] Nevertheless, the particle on a ring has only integer m values. Providing the

N±e
±imφ wavefunctions are selected, then L̂z has eigenvalues 0h̄,±1h̄,±2h̄, . . .

Next, moving to the particle on a sphere we introduce the angle θ, and the conclusions we can infer are similar.
The wavefunctions are the spherical harmonics Yj,m (φ, θ), and the fact that j, and thus m, takes only integer values
can be substantiated in several ways.[4] It seems that half-integer orbital angular momentum in the three-dimensional
space can not exist, and that spherical harmonics with half-integer j values do not describe an angular momentum
eigenfunction.[4]

In the present study, we present a one particle system in the three dimensional space, with the eigenvalue of L̂z

taking both integer and half-integer values towards some limit (vide infra), while the eigenfunction of the system can
be characterized as pseudo double valued. This system is the Möbius wire.

II. THE PARTICLE IN A MÖBIUS WIRE

The Möbius surface was first introduced by A. F. Möbius and J. B. Listing, and practically it can be constructed
using a strip of paper, twisting one narrow edge by 180 degrees, and attaching it to the other. Alternatively, it is
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the surface created by a stick, which rotates around a circle of radius R, and at the same time around itself with
the half angular velocity (see Fig. 1 and ref. 5). Depending on the direction (clock-wise or counter-clockwise) of the
self-rotation, we get two different Möbius strips, which are mirror images to each other (chirality).[5] The Möbius
wire is defined as the rim of a Möbius surface. Beginning from any point of this curve and moving on it, someone will
arrive at the same point after a 4π rotation. The Cartesian coordinates of such a shape as a function of the rotation
angle φ are[5]

x = (R + s · cos(±φ/2)) · cosφ

y = (R + s · cos(±φ/2)) · sinφ (3)

z = s · sin(±φ/2)

where R, and s are parameters of the Möbius wire (see Fig.1), and the plus or minus sign covers both chirals. Note
that if s ≪ R then the Möbius wire tends to become a “double” circle. Observe, also, that for given x and y values,
the angle φ is fully determined. Using the first two equations, we get

φ = arctan(y/x) (4)

Consequently, the z coordinate depends on x and y, z = z(x, y). So, even if we wrote φ = φ(x, y, z), then we would
result in φ = φ(x, y, z(x, y)) = φ(x, y). The necessity of the third dimension (z coordinate) will become clear later.
Finally, the partial derivatives of φ relative to x, y, and z, are

∂φ

∂x
= −

sinφ

r
,
∂φ

∂y
=

cosφ

r
,
∂φ

∂z
= 0 (5)

with r = R+ s · cos(φ/2)

so that ∂/∂x = − sinφ/r ∂/∂φ, ∂/∂y = cosφ/r ∂/∂φ, while ∂/∂z vanishes, and the Hamiltonian operator for both
chiral systems in terms of φ is

Ĥ = −
h̄2

2µ
∇2 = −

h̄2

2µ

1

r

∂

∂φ

1

r

∂

∂φ
(6)

or Ĥ = −
h̄2

2µ

(

1

r

∂

∂φ

)2

Now, r is rewritten as r = R(1 + λ cos(φ/2))) = Rρ(φ), where λ = s/R, and the Hamiltonian reads

Ĥ = −
h̄2

2µR2

(

1

ρ

∂

∂φ

)2

(7)

Markedly, the Schrödinger equation ĤΦm = EmΦm is solved explicitly and gives Em = h̄2m2/2µR2 with Φm = c1
eimφe2imλ sin(φ/2) + c2 e−imφe−2imλ sin(φ/2). The choice of c1 and c2 is matter of our will; if we want to exploit the
commutation of Ĥ with M̂ = −ih̄/ρ ∂/∂φ the eigenfunctions become Φm = N±e

±imφe±2imλ sin(φ/2), or the commuta-

tion of Ĥ with the parity operator Π̂φ, and then Φm is either Nc cos[m(φ+ λ sin(φ/2))] or Ns sin[m(φ+ λ sin(φ/2))].
In order to find the allowed m values, we impose Φm(φ+4π) = Φm(φ), which yields m = 0,±1/2,±1,±3/2,±2, . . . If
the z-coordinate were absent, then the curve in question would have a crossing, and thus breaking down the proposed
boundary conditions.
In Fig. 2 the wavefunctions of cases m = 1/2 and 1 with λ = 0.3 are shown. For reason of comparison the

wavefunctions of the particle on a ring are also included (λ = 0). Notice that the eigenfunctions at angles φ and
φ+ 2π, in general, have completely different values, i.e. they are not related by equality or a sign inversion.
Observe, now, that the operator M̂ has eigenvalues equal to mh̄, and towards the limit s ≪ R, it transforms to

L̂z. Indeed, in this case the Möbius wire looks like two circles of radius R almost attached to each other, and the
eigenfunctions adopt the form Φm = N±e

±imφ (λ → 0). Hence, after a rotation of 2π radians the wavefunction
may have the same value (integer m value) or exactly the opposite (half-integer m value). The following question is
in order: “in the case of half-integer m value, what is the value of the eigenfunction at a specific φ, minus or plus
something?” The answer is that it depends on “which” circle the particle is. Thus the eigenfunction is characterized
as pseudo double valued.

III. SUMMARY AND CONCLUSIONS

Studying the one-particle system confined in a Möbius wire through the non-relativistic quantum mechanical princi-
ples, we prove that in the three dimensional space we may have half-integer projections (on an axis) of orbital angular
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momentum, retaining the single-valuedness property of the wavefunction. Of course, half-integer values of the total
angular momentum quantum number j have already been ruled out in the literature.[4] The reason for that may be
ascribed to the fact that we can not construct a “single-sided” 3d-volume (introducing two angles, φ and θ); we need
the fourth dimension. In addition, we prove that the two chiral conformations of the Möbius wire have the same
Hamiltonian, and thus exactly the same energy values, although it might seem obvious.
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FIG. 1. A stick of length 2s rotates around the circle of radius R (dashed line), and simultaneously around itself. The former
rotation occurs twice faster than the latter, so that the stick after φ = φ+2π rotation will have the same position, but opposite
orientation. The orbit of the two edges of the stick constitutes the Möbius wire.
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FIG. 2. Plots of the eigenfunctions of the Möbius wire (solid lines) as compared to those of the ring model (dashed lines) for
m = 1/2 and m = 1, and for both sine and cosine cases. The eigenfunctions are normalized so that their maximum is at 1.0.
The φ values are counted in π radians.


