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The role of impurities as experimental probes in the detection of quantum material properties
is well appreciated. Here we study the effect of a single classical magnetic impurity in trapped
ultracold Fermi superfluids. Depending on its shape and strength, a magnetic impurity can induce
single or multiple mid-gap bound states in a superfluid Fermi gas. The multiple mid-gap states
could coincide with the development of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase within
the superfluid. As an analog of the Scanning Tunneling Microsope, we propose a modified RF
spectroscopic method to measure the local density of states which can be employed to detect these
states and other quantum phases of cold atoms. A key result of our self consistent Bogoliubov-de
Gennes calculations is that a magnetic impurity can controllably induce an FFLO state at currently
accessible experimental parameters.

PACS numbers: 03.75.Ss, 05.30.Fk, 71.10.Pm, 03.75.Hh

Trapped ultra-cold gases represent a many-body quan-
tum system amenable to selective experimental control,
and possess some notable advantages in comparision with
conventional quantum many-body systems such as solid
state materials. With a view to some of these proper-
ties such as the accurate control of inter-particle interac-
tion or density and the use of laser light to simulate ex-
ternal potentials, we anticipate important contributions
from these new experimental systems through the study
of impurities. Due to their unavoidable and ubiquitous
presence in real materials, the effects of impurities con-
stitute an important and sometimes frustrating issue in
condensed matter physics. However, under many circum-
stances, impurities, rather than representing a nuisance,
serve useful purposes such as the detection of quantum ef-
fects [1, 2]. Single impurities have been employed in the
detection of superconducting pairing symmetry within
unconventional superconductors [3] and to demonstrate
Friedel oscillations [4]. In strongly correlated systems,
they may be used to pin one of the competing orders [5].
Even though cold atom systems are intrinsically clean,
the effects of impurities may be simulated by employing
laser speckles or quasiperiodic lattices [6]. Controllable
manipulation of individual impurities in cold atom sys-
tems can also be realized using off-resonant laser light
or another species of atoms/ions [7–9]. Such impurities
can be either localized or extended and either static or
dynamic. The unprecedented access to accurately tune
these artificial impurities, provide an exciting possibility
to probe and manipulate the properties of cold atoms.

In this Letter, we demonstrate this possibility using
a single classical static impurity in an s-wave Fermi su-
perfluid. By ‘classical’ we refer to the treatment of the
impurity as a scattering potential which has no inter-
nal degrees of freedom. We focus on a magnetic impu-
rity which scatters each spin species differently. From
our self-consistent Bogoliubov-de Gennes calculations we

show for the first time in a trapped three-dimensional
(3D) geometry that the long sought Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) phase, which supports many mid-
gap bound states, may be induced through such an im-
purity at experimentally accessible parameters. Futher-
more, we propose that these bound states can be probed
using a modified radio-frequency (RF) spectrosocpy tech-
nique that is the analog of the widely used scanning tun-
neling microscope (STM) in solid state and that this can
serve as a powerful general tool in probing and manipu-
lating quantum gases.

For computational simplicity, we focus on a one-
dimensional (1D) system and verify the essential physics
at higher dimensions in later paragraphs. Consider the
following Hamiltonian at zero temperature,

H =
∑

σ=↑,↓

ˆ

dxψ†
σ

[

− ~
2

2m

d2

dx2
− µσ + VT

]

ψσ

+g

ˆ

dxψ†
↑ψ

†
↓ψ↓ψ↑ +

∑

σ=↑,↓

ˆ

dxψ†
σUσψσ, (1)

where ψ†
σ(x) and ψσ(x) are, respectively, the fermionic

creation and annihilation operators for spin species σ.
VT (x) is a harmonic trapping potential and g is the
strength of the inter-atomic interaction. In this work,
we take g to be small and negative so that the system is
a superfluid at low temperatures. The last term of the
Hamiltonian describes the effect of the impurity which is
represented by a scattering potential, Uσ(x). For non-
magnetic impurityU↑(x) = U↓(x); while for magnetic im-
purity, U↑(x) = −U↓(x). Note that a general impurity
potential can be decomposed into a sum of magnetic and
non-magnetic parts. Here we focus on magnetic impuri-
ties which can be either localized or extended.

Localized impurity — Let us first consider a localized
impurity with Uσ(x) = uσδ(x). If we restrict ourselves to
the vicinity of the impurity, we may neglect the trapping
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potential and use the T -matrix formalism [10]. As a re-
sult of the δ-function impurity potential, the T -matrix is
momentum independent and analytical results can be ob-
tained. The full Green’s function G is related to the bare
(i.e., in the absence of the impurity) Green’s function G0

and the T -matrix in the following way:

G(k, k′, ω) = G0(k, ω)δkk′ +G0(k, ω)T (ω)G0(k
′, ω), (2)

where ω is the frequency, k and k′ represent the incoming
and outgoing momenta in the scattering event, respec-
tively. For the s-wave superfluid, we have:

G0(k, w) =
ωσ0 + (ǫk − µ̃)σ3 −∆σ1
ω2 − (ǫk − µ̃)2 −∆2

, (3)

where ǫk = ~
2k2/(2m), σi’s are the Pauli matrices (σ0

is the identity matrix) and ∆ is the s-wave pairing gap.
Here the effective chemical potential, µ̃ = µ − gn(x),
includes the contribution from the Hartree term, where
n(x) is the local density for one spin species. For mag-
netic impurity, we take u = u↑ = −u↓and the T -matrix
is given by:

T−1(ω) = u−1σ0 −
∑

k

G0(k, ω) , (4)

while for non-magnetic impurity with u = u↑ = u↓,
and the corresponding T -matrix has the same form as
in Eq. (4) with σ0 replaced by σ3. From the full Green’s
function, one can immediately obtain the local density of
states (LDOS) at the impurity site as:

ρ(ǫ) = − 1

π

∑

k,k′

Im
[

G(k, k′, ǫ+ i0+)
]

. (5)

The solid lines in Fig. 1(a),(b) display the LDOS at the
magnetic impurity site for the two spin species obtained
using the T -matrix method. Here the impurity poten-
tial is attractive (repulsive) for spin-up (down) atoms
which creates a resonant state below the Fermi sea for
spin up atoms manifested by the peak near ǫ = −2EF

in Fig. 1(a). As the strength of the impurity potential
|u| increases, the resonant state will move deeper below
the Fermi sea. Besides this resonant state, both ρ↑(ǫ)
and ρ↓(ǫ) exhibit an additional peak near ǫ = 0, which
signals the presence of a mid-gap bound state [11]. In
the limit of weak interaction, the position of the mid-gap
bound state is given by the T -matrix method as:

E0 = ±∆
1− (uπρ0/2)

2

1 + (uπρ0/2)2
, (6)

where ρ0 is the density of states at the Fermi sea, and the
+ (−) sign refers to the spin-up (-down) component. The
mid-gap bound state is thus located outside the band and
inside the pairing gap. As the strength of the impurity
|u| increases, the mid-gap moves from the upper gap edge
to the lower gap edge for spin-up component and moves
oppositely for spin-down component.
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Figure 1: (a) Density of states for spin up atoms. (b)
Density of states for spin down atoms. (c) Density pro-
files for both spin species. (d) Gap profile. In (a) and (b)
solid and dashed lines represent results obtained using the
T -matrix and BdG method, respectively. The dashed curve
in (d) is the gap profile without the impurity. For all plots,
N↑ = N↓ = 50, and u = −0.02EFxTF , where EF is the

Fermi energy and xTF =
√

Naho is the Thomas-Fermi ra-
dius of the non-interacting system. The harmonic oscillator
length and Thomas Fermi density at the origin are defined by
aho =

√

~/(mω0) and n0 = 2
√

N/(πaho). The dimensionless
interaction parameter γ = −mg/(~2n0) = 1.25. The units for
density, energy and length are n0, EF and xTF , respectively.

To confirm that these results still hold when a trapping
potential is present, as is always the case in the exper-
iment, we add a harmonic potential VT = mω2

0x
2/2 to

the system and diagonalize the Hamiltonian using the
Bogoliubov-de Gennes (BdG) method [12–14]:

[

Hs
↑ − µ↑ −∆
−∆∗ −Hs

↓ + µ↓

] [

uη
vη

]

= Eη

[

uη
vη

]

, (7)

where Hs
σ = −(~2/2m)d2/dx2 + VT + Uσ + gnσ̄,

n↑ =
∑

η |uη|2Θ(−Eη), n↓ =
∑

η |vη|2Θ(Eη) and

∆ = −g
∑

η uηv
∗
ηΘ(−Eη), with Θ(·) being the unit step

function. The BdG equations above are solved self-
consistently using a hybrid method whose details can
be found in Ref. [13]. Once the solutions are found,
we can calculate the LDOS at any points in space as
ρ↑(ǫ) =

∑

η |uη|2δ(ǫ−Eη) and ρ↓(ǫ) =
∑

η |vη|2δ(ǫ+Eη).
In practice, the δ-function in the expression of the LDOS
is replaced by a Gaussian with a small width of 0.02 EF .

The dashed line in Fig. 1(a),(b) represents the LDOS
at the magnetic impurity site (x = 0) calculated using
the BdG method. The agreement with the T -matrix
method is satisfactory. The remaining discrepancies such
as in the position of the resonant state below Fermi
sea can be understood by considering that the T -matrix
method neglects the trapping potential and is not fully
self-consistent: the values of the chemical potentials, den-
sities and pairing gap used in the T -matrix calculation
are taken to be those from the BdG result in the ab-
sence of the impurity. The density and gap profiles of the
trapped system are illustrated in Fig. 1(c),(d). Friedel
oscillations with a spatial frequency close to 2kF can be
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seen in the density profiles near the impurity. The mag-
netic impurity tends to break Cooper pairs, leading to a
reduced gap size near the impurity as can be seen from
Fig. 1(d).

Detection of the mid-gap state — As we have seen
above, the mid-gap bound state induced by a magnetic
impurity manifests itself in the LDOS. In general the
LDOS provides valuable information on the quantum
system and it is highly desirable to measure it directly.
Great dividends have been reaped in the study of high
Tc superconductors where the scanning tunneling micro-
scope (STM), which measures the differential current
proportional to the LDOS, provides this function[15].
In ultra-cold Fermi gases, radio-frequency (RF) spec-
troscopy [16–18] could serve as an analogous tool. The
RF field induces single-particle excitations by coupling
one of the spin species (say | ↑〉 atoms) out of the pair-
ing state to a third state |3〉 which is initially unoccu-
pied. In the experiment, the RF signal is defined as the
average rate change of the population in state | ↑〉 (or
state |3〉) during the RF pulse. The first generation RF
had low resolution and provided averaged currents over
the whole atomic cloud, which complicated interpreta-
tion of the signal due to the inhomogeneity of the sample
[19]. More recently spatially resolved RF spectroscopy
which provides local information has been demonstrated
[20]. Here we show that a modified implementation of the
spatially resolved RF spectroscopy can yield direct infor-
mation of the LDOS and hence can serve as a powerful
tool in the study of quantum gases.

To study the effect of the RF field, we make two addi-
tions to the total Hamiltonian (1):

H3 =

ˆ

dxψ†
3(x)

[

− ~
2

2m

d2

dx2
+ V3(x)− ν − µ3

]

ψ3(x),

HT =

ˆ

dx [Tψ†
3
(x)ψ↑(x) + Tψ†

↑(x)ψ3(x)],

where H3 represents the single-particle Hamiltonian of
the state 3 (we assume that atoms in state 3 do not in-
teract with other atoms), with V3 being the trapping po-
tential of the state and ν the detuning of the RF field
from the atomic transition, HT represents the coupling
between state 3 and spin-up atoms. Since RF photon
wavelength is much larger than typical size of the atomic
cloud, the coupling strength T can be regarded as a spa-
tially invariant constant. For weak RF coupling, one may
use the linear response theory [21–23] to obtain the RF

signal which is proportional to I(x) = d
dt 〈ψ

†
3(x)ψ3(x)〉.

Under the linear response theory, we have

I(x) ∝
ˆ

dx′dωA↑(x, x
′;ω)A3(x

′, x, ω + µ↑ − µ3)f(ω) ,

where f(ω) is the Fermi distribution function which re-
duces to the step function at zero temperature, Aα is
the spectral function for state α. As state 3 is non-
interacting, we have A3 =

∑

nφn(x)φ
∗
n(x

′)δ(ω + µ↑ +
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Figure 2: (Color online) Density (left panel) and gap (right
panel) profiles of a trapped system under an extended Gaus-
sian magnetic impurity potential. The width of the impu-
rity potential is a = 0.2xTF , while the strength is u =
−0.12EFxTF for (a) and (b); u = −0.4EFxTF for (c) and
(d), and u = −1.0EFxTF for (e) and (f). Other parameters
and units are the same as in Fig. 1.

ν − ǫn), where φn and ǫn are the single-particle eigen-
functions and eigen-energies of state 3, respectively. The
key step in our proposal is that in the case where V3 rep-
resents an optical lattice potential in the tight-binding
limit, the dispersion of state 3 is proportional to the
hopping constant t which decreases exponentially as the
lattice strength is increased. For sufficiently large lattice
strength, we may therefore neglect the dispersion of state
3 since the lowest band is nearly flat. In other words, un-
der such conditions, ǫn = ǫ becomes an n-independent
constant. Consequently A3(x, x

′) ∼ δ(x − x′). In this
limit and at zero temperature, the RF signal is then is
directly related to the LDOS as:

I(x) ∝ ρ↑(x,−µ↑ − ν + ǫ)Θ(µ↑ + ν − ǫ) . (8)

and the spatially resolved RF spectroscopy becomes a
direct analog of the STM. A crucial point here is that only

state 3 experiences the lattice potential. We note here
that a spin-dependent optical lattice selectively affecting
only one spin state has recently been realized in the lab
of de Marco [24]. The same technique can also be used
to create magnetic impurity potentials by external light
field.

Extended impurity — Now we turn to Gaus-
sian impurity potentials with finite width Uσ(x) =

uσe
−x2/a2

/(a
√
π). Since we obtain all of the previous

(delta function) physics for narrow widths, we focus
on relatively wide potentials. Examples of the density
and gap profiles obtained from our BdG calculations are
shown in Fig. 2. For an extended impurity potential of
sufficient width, the Friedel oscillations are suppressed.
Under appropriate conditions, the gap profiles exhibit
FFLO-like oscillations [25], which has recently received
considerable attention in studies of ultra-cold atoms [26–
28]. In previous experiments, polarized Fermi gas have
been realized by preparing the gas with an overall popu-
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Figure 3: (Color online) Density (upper panel, in units of

(2EF )
3/2/(6π2)) and gap (lower panel, in units of EF ) pro-

files along the x-axis of a 3D trapped system under an ex-
tended magnetic impurity potential. The impurity potential
is uniform along the radial direction and has a Gaussian form
with width a = 0.3xTF along the x-axis. The strength of the
impurity is u = −0.07EF xTF . The atom-atom interaction is
characterized by the 3D scattering length as. Here we have
used 1/(kF as) = −0.69.

lation imbalance. Here the magnetic impurity breaks the
local population balance and by tailoring the strength
and/or the width of the magnetic impurity, one is able
to control the magnitude of the population imbalance as
shown in Fig. 2 which in turn controls the nature of the
induced FFLO state. The impurity therefore provides us
with a controlled way to create FFLO state.

For simplicity, we have thus far focused on 1D sys-
tems. However, we have verified that the essential physics
is also valid in higher dimensions. As an example, we
illustrate in Fig. 3 the effect of an extended magnetic
impurity in a 3D trapped system obtained by solving
the BdG equations [14]. Here a total of 1100 atoms
are trapped in an elongated cylindrical trapping poten-
tial V (r, x) = m

2
(ω2

⊥r
2 + ω2

xx
2) with trap aspect ratio

ω⊥/ωx = 50. The magnetic impurity centered at the ori-
gin, is radially uniform and has a Gaussian profile along
the axial direction (x-axis). From the density and gap

profiles shown in Fig. 3, one can easily identify the in-
duced FFLO regions both near the center and the edge
of the trap. In particular, the density oscillations in the
spin-down component near trap center may be used as a
signature of the FFLO state.

In conclusion, we have investigated the effects of a sin-
gle classical magnetic impurity on a neutral fermionic
superfluid. We show that a magnetic impurity can be
used to manipulate novel quantum states in a Fermi gas.
For example, it will induce a mid-gap bound state inside
the pairing gap for both spin species. We have proposed
an STM-like scheme based on the modified spatially re-
solved RF spectroscopy to measure the local density of
states, from which the mid-gap bound states can be un-
ambiguously detected. As different quantum phases of
cold atoms will manifest thems‘elves in their distinct
LDOS, we expect this method will find important ap-
plications beyond what is proposed here and become an
invaluable tool in the study of quantum gases. Finally,
by considering an extended impurity potential in both
1D and 3D systems, we demonstrate the realization of
the still unobserved FFLO phase in a controlled manner.

Interesting future directions could involve the study of
periodic or random arrays of localized impurities which
may be exploited to induce novel quantum states in Fermi
superfluids and the consideration of a quantum impurity
with its own internal degrees of freedom. Such a system
may allow us to explore Kondo physics in cold atoms.
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