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Abstract

Off-resonant Raman interaction of a single-photon wave packet and a classical control field in

an atomic medium with controlled refractive index is investigated. It is shown that a continuous

change of refractive index during the interaction leads to the mapping of a single photon state to

a superposition of atomic collective excitations (spin waves) with different wave vectors and visa

versa. The suitability of refractive index control for developing multichannel quantum memories

is discussed and possible schemes of implementation are considered.

PACS numbers: 42.50.Fx, 42.50.Gy, 32.80.Qk
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I. INTRODUCTION

During the past decade the optical quantum memories have became one of the active

areas of research in the field of quantum optics and quantum information (see the Reviews

[1–4]). Such devices are considered as basic ingredient for scalable linear-optical quantum

computers and efficient quantum repeaters. For practical quantum information applications,

it is necessary to develop memories which could store quantum states of light with close

to 100% efficiency and fidelity, and provide long and controllable storage times or delay-

bandwidth products. In this respect significant experimental progress has been achieved in

demonstration of optical quantum storage using electromagnetically induced transparency

[5–8], photon echo induced by controlled reversible inhomogeneous broadening [9–13] or

by atomic-frequency comb [14–20], and off-resonance Raman interaction [21–23]. Optical

quantum memories are usually assumed to store and recall optical pulses, such as single-

photon wave packets, exploiting inhomogeneous broadened transitions or modulated control

fields. In the present work we suggest one more possibility. By considering quantum storage

based on off-resonant Raman interaction, we show that manipulation of refractive index

in a three-level resonant medium allows one to store and recall single-photon wave packets

without using inhomogeneous broadening of the atomic transitions or manipulating the

amplitude of the control field. A single-photon wave packet may be reversibly mapped to a

superposition of atomic collective excitations with different wave vectors, which is analogues

to that of orthogonal subradiant states created in an extended atomic ensemble [24].

As well as providing an interesting possibility for storage, the refractive index control

may also be useful for optimizing multiplexing regimes of multimode quantum memories,

development of which is important in the prospect of both quantum communication [25,

26] and computation [27]. Particularly, multimode memories can significantly increase the

quantum communication rate for short storage times. Different ways of multiplexing has

been suggested [28–31], among which time domain multiplexing is currently most demanded

from the view point of fiber optical communication. Being combined with any approach

to quantum storage mentioned above, the refractive index control provides an additional

degree of freedom for multiplexing thereby improving capacity of a multimode quantum

storage device or allowing operation in a multichannel regime. Such a multiplexing method

is closely connected with the angular [28] or holographic [31] ones since it also resorts to
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phase-matching conditions in an extended atomic ensemble, but it does not exploit different

spatial modes of the field. In effect, the additional multiplexing capacity is based on the

possibility to use frequency and wavelength of the field in a storage material as independent

parameters.

The paper is organized as follows. In Sec. II, we analyze the storage and retrieval of single-

photon wave packets via refractive index control during off-resonant Raman interaction.

In Sec. III, suitability of refractive index control for developing multichannel quantum

memories is discussed. In Sec. IV, we consider possible ways of refractive index manipulation

and some implementation issues.

II. STORAGE AND RETRIEVAL OF SINGLE-PHOTON WAVE PACKETS

As a basic model we consider cavity-assisted quantum storage, which is motivated by

the following reasons. First, enclosing an atomic ensemble in a cavity makes it possible

to achieve high efficiency of quantum storage with optically thin materials. This may be

especially useful for considered off-resonant Raman interaction since the cross-section of the

two-photon transition is usually small. Second, there is no need for backward retrieval when

optically thin materials are used, which relieves one of having to perform phase conjugation

of the atomic states used for storage.

We consider a system of N ≫ 1 identical three-level atoms which are placed in a single-

ended ring cavity and interact with a weak quantum field (single-photon wave packet) to

be stored and with a strong classical control field (Fig. 1). The atoms have a Λ-type level

structure, the fields are Raman resonant to the lowest (spin) transition, and the cavity is

resonant to the quantum field. We assume that the atoms are stationary like impurities

embedded in a solid state material or cold atoms in the magnetic trap. The interaction

volume is supposed to have a large Fresnel number, which allows us to take advantage of

one-dimensional approximation. The Hamiltonian of the three-level system in the dipole

and rotating wave approximations is

H = H0 + V, (1)

where

H0 = ~ωa†a +
N
∑

j=1

(

~ω2σ
j
22 + ~ω3σ

j
33

)

, (2)
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FIG. 1: (Color online) Schematic of a quantum memory device (above) and atomic level structure

(below). Mirrors M2 and M3 are perfectly reflecting for the single-photon field and fully trans-

mitting for the control field, M1 is a partially transmitting mirror. The difference of wave vectors

k − kc is modulated via refractive index control during off-resonant Raman interaction.

V = −~

N
∑

j=1

(

Ω(t)σj
32 e

ikczj−iωct + gaσj
31 e

ikzj
)

+H.c. (3)

Here σj
mn = |mj〉〈nj| are the atomic operators, |nj〉 is the nth state (n = 1, 2, 3) of jth

atom with the energy ~ωn (ω1 = 0 < ω2 < ω3), zj is the position of the jth atom, a is

the photon annihilation operator in the cavity mode, kc = ωcnc/c and k = ωn/c are the

wave vectors of the classical and quantum fields, respectively, nc and n are refractive indices

at the frequencies ωc and ω, Ω(t) is the Rabi frequency of the classical field, and g is the

coupling constant between the atoms and the quantized field mode. The values of nc and n

are considered below as parameters changing in time. Since variations of them are supposed

to be much less than 1, we leave such time dependence only in phase factors and ignore it

in the factors Ω and g as functions of refractive indices.

In the Heisenberg picture, we define the following slowly varying atomic operators: Pj =

σj
13 e

iωt, Sj = σj
12 e

i(ω−ωc)t, and cavity field amplitude E = a eiωt. From the input-output
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relations for the cavity field [32, 33] we have

Eout(t) =
√
2κE(t)− Ein(t), (4)

where 2κ is the cavity decay rate and Ein (Eout) is the input (output) field (a single-photon

wave-packet). From the Heisenberg—Langevin equations, assuming that all the population

is in the ground state initially and taking into account that the quantum field is weak, we

find

Ṗj = −(γP + i∆)Pj + iΩSj e
ikczj + igE eikzj , (5)

Ṡj = −(γS + i∆S)Sj + iΩ∗Pj e
−ikczj , (6)

Ė = −κE + ig
∑

j

Pj e
−ikzj +

√
2κ Ein. (7)

Here γP and γS are the rates of dephasing, which in general case include both homogeneous

and inhomogeneous broadening of the resonant transitions, ∆ = ω3 − ω is a one-photon

detuning, and ∆S = ω2+ωc−ω is a two-photon detuning. We have not included the Langevin

noise atomic operators since they make no contribution to normally ordered expectation

values in consistence with the approximation that almost all atoms remain in the ground

state (see, e.g., [34] for discussion). Finally, in the Raman limit, when the single-photon

detuning is sufficiently large, adiabatically eliminating Pj in Eqs. (5) and (6), and going to

the collective atomic operators

Sq =
1√
N

∑

j

Sj e
−iqzj , (8)

we obtain

Ṡq = −γ′Sq + ig′
√
Nφ(k − kc − q)E , (9)

Ė = −κE +
√
2κ Ein

+ ig′∗
√
N

∑

q

φ(q + kc − k)Sq. (10)

Here φ(q) = 1/N
∑N

j=1 exp (iqzj) is the diffraction function, γ′ = γS + γP |Ω|2/∆2, g′ =

gΩ∗/∆, and the resulting frequency shift ∆′ = ∆S + |Ω|2/∆ has been compensated by

tuning the coupling field frequency. The wave vectors q are multiples of 2π/L, where L is

the length of the atomic medium.
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The phase mismatching factors φ(q), which are usually ignored on the assumption that a

single spatial mode of the spin coherence is excited and phase-matching is perfect, are now

considered. Suppose that we can manipulate the difference q + kc − k by refractive index

control without changing frequencies and propagation directions of the interacting fields.

We discuss possible ways of implementation below. For now it is sufficient to consider the

case when one of the wave vectors, say kc of the control field, is changed linearly in time

during the interaction so that q + kc − k = (ωc/c)ṅc(t − tq), where tq is the moment when

q + kc − k = 0 for a given q. Then

φ[±(q + kc − k)] = e±iβ(t−tq) sinc[β(t− tq)], (11)

where sinc(x) = sin(x)/x and β = (ωc/c)(L/2)ṅc. The phase factors e±iβt may be compen-

sated by linear or sawtooth phase modulation of the control field. In such a situation, the

phase of the control field remains constant at the point z = L/2 during the refractive index

change. As a result, Eqs. (9) and (10) take the form

Ṡq = −γ′Sq + ig′
√
N eiβtq sinc(β(t− tq)) E , (12)

Ė = −κE +
√
2κ Ein

+ ig′∗
√
N

∑

q

e−iβtq sinc(β(t− tq))Sq. (13)

Now it is possible to consider storage and retrieval of a single-photon wave packet. Let

the atomic system interacts with the quantum field during the time interval [−T, 0] with the

initial condition Sq(−T ) = 0, ∀q. Then from Eqs. (12) and (13) we have

Sq(t) =ig′
√
NFq(−T, t, E) eiβtq−γ′t, (14)

Ė(t) =− κE(t) +
√
2κEin(t)

− |g′|2N
∑

q

sinc[β(t− tq)]Fq(−T, t, E) e−γ′t, (15)

where Fq(−T, t, E) =
∫ t

−T
E(τ) sinc[β(τ − tq)] e

γ′τdτ . If the cavity field E varies slowly than

δ = π/β, and γ′δ ≪ 1, then Eq. (15) takes the form

Ė = −κE +
√
2κEin − ΓE , (16)

where Γ = |g′|2Nδ/2. Then the cavity field can be adiabatically eliminated provided that

Γ+κ is much greater than the bandwidth of the input field, which gives E =
√
2κ(κ+Γ)−1Ein,
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and from Eq. (14) we find

Sq(0) =
ig′

√
N
√
2κ

κ+ Γ
Fq(−T, 0, Ein) eiβtq

=
ig′

√
N
√
2κ

κ+ Γ

π

β
Ein(tq) e(iβ+γ′)tq . (17)

Equation (17) describes the mapping of an input single-photon wave packet to a superposi-

tion of collective excitations (spin waves) with different wave vectors. The quantum storage

mechanism may be explained qualitatively in the following way. During absorption of the

input field via off-resonant Raman interaction a spin wave is created with a wave vector

q = k − kc, which is the difference between wave vectors of the input and control fields.

If we change refractive index during the interaction, the input field amplitude at different

moments of time is mapped to the amplitude of the spin waves with different wave vectors

q. This is possible due to phase matching condition which allows us to switch the collective

interaction between the input field and atoms from one spin wave to another. As a result, by

the end of the storage process a coherence grating is created on the spin transition, which

is a superposition of the spin waves. If the rate of refractive index change is sufficiently

large so that δ is smaller than the fastest time scale of the input pulse, then the temporal

shape Ein(t) is imprinted on the amplitude Sq(0) as a function of wave vector q. Retrieval

is achieved by off-resonant interaction of the atomic system with the control field when

the values of nc that used for storage are scanned again. The retrieved pulse is actually a

superposition of pulses created via Raman interaction from different spin waves satisfying

phase matching condition for different wave vectors of the control field. Suppose, e.g., that

the time dependence of refractive index during the time interval [0, T ], when Ein(t) = 0, is

reversed. In this case, instead of Eq. (15) we have

Ė(t) = −κE(t)

− |g′|2N
√
2κ

κ + Γ

∑

q

sinc[β(t+ tq)]Fq(−T, 0, Ein) e−γ′t. (18)

For slow-varying Ein this equation takes the form

Ė(t) = −κE(t)− Γ
√
2κ

κ + Γ
Ein(−t) e−2γ′t. (19)

Finally, after adiabatic elimination of the cavity field and using Eq. (4) we obtain

Eout(t) = − 2Γ

κ + Γ
Ein(−t) e−2γ′t. (20)
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The solution Eq. (20) is exactly the same as that in the cavity-assisted storage with inho-

mogeneous broadening [35, 36]. The output field becomes time-reversed replica of the input

field provided that the duration of wave packet is much smaller that the decay time 1/γ′, and

the efficiency of the storage followed by retrieval is maximum under impedance-matching

condition κ = Γ. The latter corresponds to the situation when a directly reflected field and a

transmitted field coming from the circulating one inside the cavity cancel each other, which

allows one to put all input signal into the cavity, thereby achieving the maximum efficiency

of the storage. The only difference in the solutions is the collective absorption/emission rate

Γ, which in our case takes the form

Γ =
g2N |Ω|2

∆2

π

2β
. (21)

It means that the time interval δ = π/β, which is actually the time interval between two

adjacent orthogonal spin states created upon refractive index control, is analogous to in-

homogeneous life-time, i.e., reversal inhomogeneous linewidth. We see that a single-photon

wave packet can be effectively stored and reproduced via refractive index control in a three-

level system without inhomogeneous broadening and without modulating the Rabi frequency

of the control field during the interaction. It is also important that the time dependence

of the refractive index need not be reversed during the retrieval. If the values of nc during

retrieval are ordered like those during storage, Eq. (20) is replaced by

Eout(t) = − 2Γ

κ+ Γ
Ein(t− T ) e−γ′T . (22)

Thus a single-photon wave packet may be reconstructed without time reversal so that its

temporal shape be not deformed by the dephasing process.

The total change of refractive index during storage or retrieval is

∆n = ṅcT =

(

T

δ

)

λ

L
, (23)

where λ = 2πc/ωc. Numerics show that a Gaussian pulse with the duration (FWHM) as

short as 2δ can be stored and recalled with the efficiency 0.99 provided that γ′ is small

enough (Fig. 2). Therefore, taking T/δ ∼ 1 and λ/L ∼ 10−5 we have ∆n ∼ 10−5, which

may be considered as the minimum refractive index increment needed for storage of a single

pulse under typical experimental conditions. The ratio between the total accessible range

of refractive index change and this minimum value determines the number of pulses can be

stored in a series, i.e., the mode capacity of quantum memory.
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FIG. 2: (Color online) Storage and retrieval of a Gaussian pulse for different values of δ = π/β.

The black solid curve is the input pulse of duration τp. Other curves represent the output field for

the cases δ = 2τp (blue circles), δ = τp (green dashed line), δ = τp/2 (red solid line). These curves

were obtained by numerically solving Eqs. (12) and (13), treated as complex number equations,

with the condition κ = Γ and γ′τp ≪ 1. The sign of dkc/dt is changed at the moment t = 0.

The impedance matching condition Γ = κ may be written in the following form:

Cγ′δ/2 = 1, (24)

where C = g2N/κγ = |g′|2N/κγ′ is the cooperativity parameter, which could also

be expressed in terms of the cavity finesse F and resonant absorption coefficient α as

C = αLF/2π, provided that the resonant medium fills the cavity. Thus to store and recall

pulses broader than the Raman linewidth γ′, we need to increase C above 1 appropriately. In

general case, γ′ consists of homogeneous and inhomogeneous contributions. If we do nothing

with the latter, the delay-bandwidth product of quantum storage (or multimode capacity)

proves to be of the order of C. It may be increased by choosing materials with a narrower

line-width or shorter pulses with appropriate increasing the cooperative parameter. But if

we are able to reverse the inhomogeneous broadening, the delay-bandwidth product may

be increased significantly depending on a residual noncontrollable broadening, say γ′
hom, of

the Raman transition. As a result, the mode capacity of quantum storage may be C times

larger than that achievable without refractive index control, which is determined by the

ratio γ′/γ′
hom.
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III. MULTICHANNEL QUANTUM STORAGE

In the previous Section, we were interested in the situation when the bandwidth of the

photon is larger than the inhomogeneous linewidth of the Raman transition. Now we con-

sider the opposite case, when the storage and retrieval are implemented, for example, by

manipulating the inhomogeneous broadening, which should be larger than the photon band-

width, and refractive index control is used for realizing multichannel regime of quantum

storage. The idea is that different wave vectors of the spin waves correspond to different

channels of storage and retrieval just as in the case of angular multiplexing. For example,

consider the Raman echo memory scheme with controlled reversible inhomogeneous broad-

ening that is switched in time periodically [11]. The multichannel regime can be achieved by

assigning different wave vectors kc to the control field (in our case — by refractive index con-

trol) during different dephasing/rephasing circles. In a similar way, we can consider memory

schemes based on resonant interaction. Let the storage and retrieval be implemented using

atomic frequency comb [30], which dephases and then rephases after a time T , and π-pulses

transferring the optical coherence to/from the spin coherence are used [15]. Then we can

make different n for different π-pulses thereby creating orthogonal spin waves on different

storage/retrieval cycles or we can change refractive index for the weak field to be stored so

that δ = T , which leads to the same result. In any case, such multichannel regimes enable

one to process new quantum states while preserving those stored before and provides access

to all states kept in store in any order. It is also important that the phase modulation of the

control field, which is required to store and recall pulses without resort to inhomogeneous

broadening, becomes needless in the case of such channel division. Regarding the impedance

matching condition, it takes the form C = 1 since δ/2 is replaced by inhomogeneous life-time

T ∗
2 = 1/γ′.

Apart from the finite storage time due to irreversible relaxation, the maximum number

of channels is also limited by the signal-to-noise ratio. The latter can be estimated in

the following simple way. Consider two channels corresponding to wave vectors with the

difference ∆km = 2πm/L, where m is an integer. During retrieval from one of them the

probability of retrieval from another is determined by phase mismatching and proportional

to Pm = [sinc(∆kmL/2)]
2, which may be equal to zero only for monochromatic field. Now

it is necessary to take into account the bandwidth δk = δωn/c of the retrieved signals (here
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n is the average value of refractive index during storage or retrieval). If δk ≪ k, then

Pm ≈ 1

δk

∫ δk/2

−δk/2

[

Lx

2πm

]2

dx =
1

12

[

δω

ω

L

λ

n

m

]2

. (25)

We see that the noise from another channel is quadratically proportional to the bandwidth of

the photons δω and length of the sample L. As an example, let L/λ = 105, ω/2π = 2·1014 Hz,
and n = 2. If δω/2π ∼ 50 MHz, then Pm . 10−4 for m ≥ 1 so that 100 channels provide

total signal-to-noise ratio of the order of 100. In order to maintain this ratio for broader

signals, the value of m should be increased proportionally to the bandwidth, which means

increasing refractive index difference between adjacent channels.

IV. REFRACTIVE INDEX CONTROL

Let us discuss possible ways of refractive index manipulation that are suited to quantum

storage devices. First, if a doped nonlinear crystal is used as a storage medium, we can

take advantage of the linear electro-optic effect. For example, the maximum value of the

index change in LiNbO3, which is limited by the breakdown electric field, is of the order

of 10−3. Although attaining this value by applying a moderate voltage is possible only for

a waveguide configuration, the doped nonlinear materials, particularly LiNbO3:Er
3+, hold

promise in quantum storage applications, and therefore traditional electro-optic techniques

of refractive index manipulation might be of helpful. Second, the resonant enhancement

of the refractive index with vanishing absorption can be realized via quantum interference

effects [37–42]. Although the maximum enhancement demonstrated experimentally in a

gaseous medium is 10−4 [43, 44], there is good reason to expect much larger values, such

as 10−2, for solid state materials [45, 46]. It should be noted that manipulating refractive

index either on the frequency of the quantum field to be stored or on the frequency of the

strong control field should not only guarantee small losses but also no amplification. One

way of avoiding the gain is to use excited state absorption [47]. Finally, we would like

to note that some possibilities of refractive index control are provided even by a frequency

shift of an absorption structure relative to the Λ-type one. At cryogenic temperatures optical

transitions of impurity crystals and especially of rare-earth ion-doped ones have very narrow

homogeneous lines so that in the neighborhood of an inhomogeneous profile there might be

rather strong frequency dependence of refractive index and yet very small absorption. In this
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respect, spectral hole-burning techniques can be very useful for preparing inhomogeneous

profiles with sharp edges as well as for creating Λ-systems on a nonabsorbing background.

A more detailed analysis of such an approach, which invokes specific information about

resonant materials, will be presented elsewhere.

V. CONCLUSION

It is shown that single-photon wave packets can be stored and recalled in a resonant

three-level medium by means of refractive index control without recourse to inhomogeneous

broadening and modulating the amplitude of control fields. Such a scheme for quantum

storage can be combined with other techniques to increase the mode capacity of quantum

memories or to develop multichannel storage devices. In particular, quantum storage via

refractive index control may be considered as a kind of a more general three-dimensional

approach, wherein an input pulse is mapped to a superposition of collective atomic states

corresponding to orthogonal macroscopic polarization modes of a finite interaction volume.

By continuous changing refractive index we project the input pulse shape on a subsystem

of the modes which differ in length of their wave vector. In a similar manner, by changing

direction of propagation of the control field we can project the input pulse on the modes

with different direction of the wave vector. It is the combination of both methods that allows

one to exploit all three dimensions of the wave vector space for quantum storage. Although

implementation of refractive index control is still a challenging experimental problem, we

hope that significant progress can be made in this field by taking advantage of solid-state

materials, which are also promising for quantum storage applications.
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