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Abstract: 

Collimated directional emission is essentially required for an asymmetric resonant cavity. In this 

paper, we theoretically investigate a type of peanut-shaped microcavity which can support highly 

directional emission with the beam divergence as small as 2.5o. The mechanism of the collimated 

emission of this type of peanut-shaped microcavity is explained with the short-term ray trajectory. 

Moreover, the explanations are also confirmed by the numerical wave simulation. This extremely 

narrow divergence of the emission holds a great potential in highly collimated lasing from 

on-chip microcavities. 
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I. Introduction 

 Whispering-gallery modes (WGMs) in microcavity systems with rotational symmetry are of 

current interest owing to their high quality factor (Q) values and small mode volumes at optical 

frequencies. WGMs are considered the most promising candidates for a large variety of optical 

applications, ranging from ultralow-threshold lasing, highly sensitive sensing, to cavity quantum 

electrodynamics [1]. An important drawback of WGMs is their isotropic emissions due to the 

inherently rotational symmetry. This causes a significant difficulty to efficiently excite the cavity 

modes and collect the microcavity emission for practical purposes. A natural choice is to design 

the geometrical shape of microcavities for producing a strongly directional output. These 

resonators are known as asymmetric resonant cavities (ARCs) or deformed cavities [2]. Actually, 

shortly after the first fabrication of microdisk it was demonstrated that deforming of boundary 

improves directionality of emission [3-5]. Since then, ARCs with directional emissions have 

been demonstrated in various systems: quadrupolar microdisks [5-7], full-chaos microstadiums 

[8-10], spiral-shape micropillars [11] or microdisks [12], quadrupolar liquid jet [13, 14], limaçon 

shaped microdisks [15, 16], and three-dimensional deformed microspheres [17, 18]. 

Output beam divergence is an important property for ARCs, because it determines not only a 

high-brightness laser spot but also a high coupling efficiency. The divergence can be estimated 

from the full width at half maximum (FWHM) of emission peaks in the far-field patterns (FFPs). 

In most ARCs [5, 7, 10-13, 15, 18], the divergence angle typically ranges from 10o to 30o. The 

divergence angle exceeds 30o for limaçon shaped microdisks [15, 16]. Only a special 

microstadium in Ref. [9] reported the divergence angle with several degrees. To obtain a 
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minimized divergence, Shang et al. studied a peanut-shaped cavity in which the divergence of 

directional emission approached 2o [19]. Therein, the authors explained experimental results with 

a hybrid WGM-two-bouncing orbit (a closed loop forms with a whispering gallery orbit and a 

two-bouncing orbit), and they credited the collimation mainly to the two-bouncing orbit. 

Nevertheless, this orbit cannot be considered as the only possible obit before further theoretical 

investigating. In this research, we aim to theoretically reveal the mechanism of collimated 

emission from the peanut-shaped microcavity. In Section II, a brief description of the shape 

setting and the Poincaré surface of section (SOS) of the peanut-shaped microcavity are provided. 

In Section III, we obtain the FFPs of different shapes of peanut, and then focus on ray trajectory 

of a typical peanut-shaped cavity. In Section IV, the wave method is employed to find the 

double-pentagon modes and confirm the ray result. Finally, in Section V, the refractive index of 

the microcavity material is discussed to optimize the emission property of the cavity. 

II. Geometry of the peanut-shaped microcavity 

 The geometry of the peanut-shaped microcavity (two-dimensional) is shown in Fig. 1(a) 

(shadow part). It consists of two contacted identical microdisks C1,2 with radius of r1 and a 

central region between them. The boundary of the central region is defined by the other two 

identical microdisks C3,4 with radius of r2 which are tangential to C1,2. The whole boundary of 

the cavity is continuous and smooth. It looks like a peanut, thus named as a peanut-shaped 

microcavity. 

In this design, the angle β = arccos(r1/(r1+r2)) can describe the geometry of the 
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peanut-shaped microcavity. Here, as a morphological parameter β ranges from 0 to 90 degrees. 

When β = 0o, the peanut-shaped cavity is reduced to double disks in contact, which is also called 

photonic molecule being extensively studied recently [20]. When β = 90o, the peanut-shaped 

cavity becomes a microstadium. For 0o < β < 90o, it is a general peanut shape studied in this 

paper. It should be noted that the present shaped microcavity is made of the same material with 

uniform refraction index n, which is slightly different from Ref. [19] where two silica cylinders 

are coated by a hybrid glass material. In Fig. 1(a), s stands for the curvilinear coordinate along 

the boundary, and φ denotes the far field angle measured from the main axis of the peanut. 

  

Fig. 1. (Color online) (a) Peanut-shaped microcavity (shadow). Here, s stands for the curvilinear coordinate 
along the boundary, β describes the shape setting angle, and φ denotes the far-field angle measured from the 
main axis of the peanut. (b) The SOS of the closed peanut-shaped microcavity with β = 60°. 

III. Ray dynamics in the peanut-shaped microcavity 
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 Ray dynamics provides an intuitive and efficient tool to understand the emission properties 

of a deformed microcavity [7]. Thus, we first calculate the SOS of the closed peanut-shaped 

microcavity (the billiard) with β = 60o as plotted in Fig. 1(b). To obtain the SOS, forty rays with 

different initial conditions successively reflect on the microcavity boundary, where the ray 

tracing is recorded by the coordinate of reflection point (s, |sinχ|). Here χ represents the angle of 

incidence. It can be found that the ray dynamics in the SOS is fully chaotic, indicating no stable 

trajectory for light existed in the peanut cavity. 

 In the ray optics model, the ray dynamics depends on the incident angle χ. When χ is larger 

than the critical refraction angle χc = arcsin(1/n), the ray undergoes total internal reflection. 

Otherwise, the ray splits into a reflective and a refractive rays and the intensity of each part is 

decided by Fresnel’s law [21]. For simplicity but without loss of the generality, we concentrate 

on the transverse magnetic (TM) polarized modes, whose electric field and the corresponding 

normal derivative are continuous crossing the boundary. Assuming the microcavity is surrounded 

by air, the refraction intensity coefficient T can be calculated by 1 − [sin(χ − χt)/sin(χ + χt)]2 , 

where χt stands for the angle of refraction given by Snell’s law nsinχ = sinχt. In the case of the 

closed cavity, the ray trajectory can visit the entire phase space after an enough time because of 

the full chaos property of SOS. However, all rays in this dielectric microcavity will refract out in 

a limited time, arising from a finite refractive index of microcavity. Thus, we can collect the 

refraction rays and obtain the far-field intensity (namely, emission) distribution as a function of 

the far-field angle ϕ. 
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Fig. 2. (Color online) (a) Normalized far-field emission patterns in the cases of different shape setting angle β. 
(b)-(c) FWHM, i.e., divergence angle, and maximum far-field intensity of one emission peak vs. β. 

The initial ensemble of rays is chosen to be uniformly spread in the top area of the phase 

space (0.93 < |sinχ| < 1), as we are interested in the relatively high-Q modes of peanut-shaped 

microcavities. To be consistent with Ref. [19], the refraction index of the present microcavity n is 

given as 1.52. For different n, it will be discussed in Section V. The similar FFPs with different 

shape setting angle β are shown in Fig. 2(a). Clearly, in spite of the full chaos in SOS, the 

peanut-shaped microcavity supports four highly directional emission angles around ϕ = 29o, 151o, 

209o, and 331o. It is of importance that the divergence angle, defined as the FWHM of the peak 

in FFP, ranges from 2.5o to 15o (see Fig. 2(b)) approximately. Evidently, Figs. 2(b) and 2(c) 

indicate that there exist an optimized β ~ 60o (r1 ~ r2) to achieve both the minimized divergence 

and the maximum far-field intensity. This case is named as the regular peanut-shaped 

microcavity. It should be noted that, for our simplified peanut cavity model, the main features of 
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FFP obtained from ray dynamics agrees well with the experiment [19]. 

 
Fig. 3. (Color online) Black dots: Simulations of short-term ray dynamics below the critical refraction line 
(sinχc = 1/n), for random initial rays with sinχc > 0.95 reflect on the boundary for 60 iterations. Rainbow color: 
Husimi distribution for a double-pentagons mode (shown in Fig. 4(a)) projected onto the SOS of the deformed 
microcavity. Here, β = 60o. 

 In the following, we focus on the regular peanut-shaped microcavity. Figure 3 plots unstable 

manifolds (black dots) of the SOS below the critical refraction line (χ = χc), to explain this 

directional emission that occurs at certain angles. In these manifolds, four noticeable “V”-type 

lines comprised of dense black dots are present, which indicates rays tend to refract out of the 

microcavity along them. It is important that the positions of them match well with the four main 

peaks in the FFP shown in Fig. 2(a). 

    A lens model [9] is helpful to understand the highly collimated emission of the 

peanut-shaped microcavity. As shown in the inset of Fig. 4(b), rays tend to emit from an 

equivalent point light source before they reflect to the fourth quadrant and finally refract out of 

the microcavity. As the approximate point source is on the focal plane of the spherical lens which 
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is played by the lower-right boundary, the refracted light behaves collimated. This result is 

similar to the scatter-induced directional emission [22]. 

IV. Wave correspondence 

Using the boundary element method [23], we obtain all resonances in the range 119 < nkr1 < 

121, where k = 2π/λ and λ is the resonance wavelength. Therein, high-Q resonances will be 

excited as lasing modes with low threshold in practice. The highest Q approaches one thousand, 

and the corresponding field distribution is shown in Fig. 4 (a). Not like the preliminary 

interpretation in the experimental literature [19], here we find the resonance is a double-pentagon 

mode (black line is guided to eyes in Fig. 4(a)). The FFP of this double-pentagon mode is also 

shown in Fig. 4(b). It agrees well with both the ray trajectory simulation in Fig. 2(a) and the 

experiment in Ref. [19]. 
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Fig. 4. (Color online) (a) Near-field pattern of double-pentagon mode in real space. The black line marks the 
eye-guided periodic orbit. (b) The far-field emission pattern for the peanut-shaped cavity with n = 1.52 and β = 
60

o. Inset: Brief illustration of lens model. 

To further study the properties of this double-pentagon mode, we perform the Husimi 

projection [24], which represents the wave analog of the SOS. The logarithm intensity 

distribution of the Husimi projection is shown in Fig. 3(a) (rainbow color). In the region above 

the critical refraction line (χ = χc, red line), eight scars at appropriate positions do exist. It 

demonstrates the double-pentagon mode even in the fully chaotic peanut-shaped microcavity. In 

the leaky region, the Husimi projection is also in good agreement with the unstable manifold in 

detail, and confirms the lens model for high collimated emission. 

Evidently, the double-pentagon orbit in our simulation is significantly different from the 

hybrid WGM-two-bouncing orbit in Ref. [19]. In order to identify the mechanism of the 

collimated directional emission, we calculate the corresponding free space range Δλ (FSR), using 

parameters from the experiment: n = 1.46, λ = 588 nm, r1 = 64.5 μm. The FSRs are ~ 0.31 nm 

and ~ 0.32 nm for the double-pentagon orbit and the hybrid WGM-two-bouncing orbit, 

respectively. Both of them are consist with the experiment Δλ ∼ 0.3 nm. 

Though the FSR is similar, the double-pentagon mode can be distinguished from the hybrid 

WGM-two-bouncing orbit by observing the near-field and far-field intensity patterns 

simultaneously [25] in future experiments. The secondary peaks in the FFP are emitted from the 

both ends of the cavity in double-pentagon mode (see Fig. 4(a)), which is very different from the 

joint emission point of the main and the secondary peaks claimed by the hybrid 
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WGM-two-bouncing orbit. 

V. Discussions 

 As demonstrated above, the peanut-shaped microcavity owns the merit of high collimation. 

Here some brief discussions are provided to improve its performances for extensive use. In 

general, the output performance of deformed microcavity strongly depends on both the cavity 

geometry and the refraction index of material. In Section II we have defined one morphology 

parameter β. Actually, if the two circles C1,2 are not contacted, the gap between them becomes 

another morphology parameter. The gap also plays a significant role in the directional emission 

of the peanut-shaped cavity, determining the directions and divergence, similar to the case that in 

a stadium-shaped microcavity [9]. In addition, if the two circles are not identical, the radii ratio is 

another morphology parameter. In this case, the four-fold symmetry of the regular peanut-shaped 

microcavity is destroyed and the optical vernier effect [26] will appear for the mode which 

travels both kernels of the peanut. 

 In the discussion above, the refraction index n of the cavity material is assumed as 1.52. 

Now we turn to study the emission property with the changing of n. On one hand, Fig. 5(a) 

depicts the divergence angle with β = 45o, 60o and 75o. It is found that in the peanut-shaped 

microcavities, the highly collimated emission appears at the range of low n. The minimized 

divergence angle is produced at n ~ 1.5. When n is larger than 2.2, the divergence angle even 

exceeds 60o in the case of β = 45°, because the two central peaks may overlap each other (see Fig. 

5(a) the inset). On the other hand, a bright far-field point is of the essence. To evaluate the 
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brightness, we obtain the highest intensities in FFPs at the different n, as shown in Fig. 5(b). It 

can be found that there has an ideal n that lies in low index region for each β. Note that for the 

regular peanut-shaped microcavity, the ideal refraction index is about 1.52. The peak intensity 

approaches 633 units with the total initial intensity of 8000 units in ray trajectory. In other words, 

about 8% energy is concentrated in the angle of one degree. This is 28 times of isotropy emitting 

energy. If the receptor has ~ 3° flare angle, the received energy exceeds 20%. 

 

 

Fig. 5. (Color online) FWHM of main peaks (a) and maximum far-field intensities (b) depending on the 
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refraction index n with β = 45o, 60o and 75o. The inset indicates that the two central peaks may overlap when n 
is higher than 2.2 in the case of β = 45o. 

VI. Conclusion 

  In summary, we have theoretically studied the properties of directional emission of a type of 

peanut-shaped microcavity. The short-term dynamics in ray simulations points out that the 

deformed microcavity support four evident emission directions. The performed wave simulation 

also shows the resonance pattern and Husimi projection, and double-pentagon orbit is appeared 

though the peanut-shaped microcavity is fully chaotic. The FFP obtaining from the wave 

simulation agrees well with the result given by ray and experiment. Remarkably, this orbit is 

different from the explanation in Ref. [19], which could be identified by further experiments. The 

extremely narrow divergence of the emission holds a great potential in highly collimated lasing 

from on-chip microcavities. 
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