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Analyses of phenomena exhibiting finite-time decay of quanentanglement have recently attracted con-
siderable attention. Such decay is often referred to asesuddnishing (or sudden death) of entanglement,
which can be followed by its sudden reappearance (or sudssrih). We analyze various finite-time decays
(for dissipative systems) and analogous periodic vanighiffior unitary systems) of nonclassical correlations
as described by violations of classical inequalities areddbrresponding nonclassicality witnesses (or quan-
tumness witnesses), which are not necessarily entangtemitresses. We show that these sudden vanishings
are universal phenomena and can be observed: (i) not onlyvfsror multi-mode but also for single-mode
nonclassical fields, (ii) not solely for dissipative sysge@nd (iii) at evolution times which are usually different
from those of sudden vanishings and reappearances of quamtianglement.

PACS numbers: 42.50.Xa,03.67.Mn

I. INTRODUCTION (02 ® 62)p* (62 ® G2) anddy is the Pauli spin matrix. On
the other hand, the negativity can be defined as [9, 21]:

Decoherence is a crucial obstacle in practical implementa-
tions of quantum information processing and quantum state N(p) = max (0, —2 minuj), (2)
engineering. Quantum entanglement is especially fragile t !
decoherence. Yu and Eberly [1] (see also earlier studies iQ/hereuj’s are the eigenvalues of the partial transppSend

Re_fs_. [2]_) obseryed that entanglement decay can occurwithis, tor 2'is chosen for proper scaling, i.e., to 9&p) = 1 for
a finite time. This effect has been referred to as entangléme@;e”,S states.

“sudden death” or entanglement sudden vanishing (SV) and it ; is worth noting that not all the SRs and SVs of entan-

can be followed by its sudden reappearance (sudden rebirthje et and its witnesses can be considered standard: A SR
SR) [2-4]. Reference [1] has triggered extensive the@btic gy, 4 appear only after some finite-evolution time after th

research on entanglement loss in variou_s systems (fovevie o.currence of the preceding SV. Specifically, let us now an-
see Ref. [5]). Entanglement sudden vanishing was also €XPeLjyze an example: Bothcos ¢| and max(0, cost) vanish at

imentally observed [6._8]' . /2, but only the vanishing of the latter function is associated
Entanglement SV is often considered to be a new form Oaith the proper SV/SR effects.

decqy of quantum entanglement_, which presumably was not goih Egs. (1) and (2) are given as the maximum of zero
previously encountered in the dissipation of other physica,,g some functions, which clearly explains the occurrefice o
correlations. Here we would like to point out tgeneral oc-  gy/q it 5 changes in time. By contrast, SVs do not appear

currence of sudden finite-time decays and periodic vangshin ¢, the modified parameter® (5) = 2max; \; — 3, \;, and
of nonclassical correlationsNamely, the SV and SR effects N'(p) = —2min; p;, if \; andy; have éor;tinuofjszéeriva-
- J ? J

can also be observed during the evolution of entanglemen} o in time.

witnesses [9-11] (for a review see Ref. [12]) and nonclassi- \ye gedquce that analogous SV and SR effects can be ob-
cality witnesses (also called quantumness witnessesLPlI3— <.ed for an arbitrary time-dependent parametét), in

corresponding to violations of classical inequalities. comparison to some threshold valfig. From a quantum-
A standard approach to study the SV/SR of quantum engachanical point of view, the most interesting parameters

tanglement is based on the analysis of the time evolution of> ;.o the ones which correspond to classical inequalities
entanglement measures, e.g., the concurrence or, equtiyale

cl . . . .
the negativity or the relative entropy of entanglement [ E2jr F > Fy thatcanbe violated for someonclassicafields, i.e.,
a two-qubit system, described by a density mafiithe con- F ‘21 F, as indicated by the symbo‘i‘<Cl . On the other hand,
currenceC'(p) is defined by [20]: the symboICZ1 emphasizes that the corresponding inequality
A o . mustbe fulfilled for all classicalstates. Thus, let us truncate
C(p) = max (0’ 2m?X Ai Z )‘Z)’ (1) such parametef as follows:

where the);’s are the square roots of the eigenvalues of F — F = max(0, Fy — F). 3)
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FIG. 1: (Color online) A simple explanation of how to observe

present a general method of constructing truncated nonclas
sicality witnesses that can exhibit both the SV and SR edffect
In Sec. lll, we discuss methods of constructing truncated
entanglement witnesses. We also give a few simple exam-
ples of truncated nonclassicality and entanglement wseges
Their evolution in some prototype physical models is stddie
in Secs. IV-VI. We conclude in Sec. VII.

II. NONCLASSICALITY WITNESSES

In order to test (and characterize) the nonclassical behav-
ior of a given statgpy unambiguously, we use the multimode
Cabhill-Glauber s-parametrized quasiprobability distribution
(QPD) functions defined for1 < s < 1 by [22]:

M
W (a) = %’H (ﬁ R (%)) , (4)
k=1
where
T an) =+ [ exp (on€” — ajé + S1€P) Dl @€
™ 2 7

()

D(g) is the displacement operatey,is a complex multivari-
able(ay, as, ..., apr), andM is the number of modes. In spe-
cial cases (fos = 1,0,—1), the QPD reduces to the stan-
dard Glauber-Sudarshd@nfunction, Wignerl¥ function, and
Husimi @ function, respectively.

A well-known criterion of nonclassicality (or quantumngss
is based on thé function (see, e.g., Refs. [23]):

Definition 1 A state p is considered nonclassicalif its
Glauber-Sudarshar® function is not a classical probability
density (i.e., it is nonpositive). Otherwise the staie called
classical.

the SV and SR of nonclassicality witnesses using, as an examA/e use this definition of nonclassicality although we are

ple, the unitary evolution of single-mode squeezing in thbaa-
monic oscillator model given by the Hamiltonian (58): (aymally-
ordered variances,, (dashed curve) anfl, (solid curve), given
by Egs. (60) and (61), (b) truncated normally-ordered vexsS, s
(dashed curve) anfl,,: (solid curve), given by Egs. (15) and (19),
respectively. Quadrature squeezing occurS.if < 0 or, equiva-
lently, if the truncated witnesgzd) > 0. Principal squeezing occurs
if Sopt < 0 Or if the truncated witnesSp: > 0. Here,|ao|? = 1/2,
¢o = ¢ = 0, andSy = 0. By including damping, one would ob-
serve the proper finite-time SVs and SRs, analogously taamelard
sudden decays of entanglement.

A simple illustration of this concept is shown in Fig. 1. For
brevity, suchF and F will be referred to as the untruncated
and truncatedonclassicality withessesespectively. The re-

aware of its drawbacks (see, e.g., Ref. [24]). It is also kort
noting that this definition is often extended by a requiretmen
of nonsingularity. That is, a classic&l function cannot be
more singular than Dirac’d function. But, in fact, the sin-
gularity of the P function is implied by its nonpositivity (see,
e.g., Ref. [19]).

Definition 1 can be equivalently formulated via a complete
set of nonclassicality withesses corresponding to viotegiof
classical inequalities. Here we apply the method of coastru
ing nonclassicality witnesses proposed in Refs. [13, 14] an
developed in Refs. [19, 25]. Alternatively, one can apply an
approach used by Aliclat al.[15-17].

Let us analyze an arbitrafy/-mode operatof = f(a, a')
as a function of the annihilatiod, = (a1, ds,...,an ), and
creation,af, operators. The function enables a direct cal-
culation of the normally-ordered (denoted by ::) expeotati

definition of the witnesses is a key concept in observing thejajues of the Hermitian operatgt f as follows:

SV/SR effects.

In the next sections we give general arguments and present
some specific examples of phenomena and nonclassicality

Then one can apply another criterion of nonclassicality [13

withesses to support our conclusions.
In Sec. Il we recall a definition of nonclassicality and

IRy = / Lo |f(a 0P a’).  (6)

14]:
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Criterion 1 A statep is classical if(: frf ;) > 0 for all difference(n; — 7o) in two systems. This squeezing occurs if
functionsf. Conversely, if: fTf :) < 0 for somef then the  the normally-ordered variance
statep is nonclassical. ) N

g S =(: [A( — )] ) 9

These conditions can be compactly written(ag’ f :) CZI 0 is negative, wherd O = O — (O>, with O = Ay — fg. It
and (: ft7 ) "?0. By analogy with definitions of entan-
glement witness (see the following section), the normally- ol o
ordered Hermitian operatoif' f : can be referred to as (non- fields. Note thati+.5, > 0 also holds for any classical fields,
linear) nonclassicality (or quantumness) witness [14].r FoWhereso = 0 is a threshold value which can be chosen to be
convenience, we call the nonclassicality witness (andemso ~ arbitrary. Thus, one can analyze a kind of “strong” squegzin
tanglement witness) not only an observable but also its exf S + So “<Cl 0. In order to observe the SV/SR of this strong
pectation value. Note that the understanding of nonclasssqueezing we truncate the squeezing paranteser follows:
cality witnesses is not strictly limited to operators (ses.,
Refs. [17, 18]).

By writing f = S°V ¢, f;, wherec; are arbitrary complex

2

numbers, one obtains

. . 1 .
is a purely nonclassical effect SSCZ 0 holds for any classical

S = max (0, —(: [A(A — 72)]? :) — So) 0. (10)

By replacingA(f; — fi2) by (71 — fg) in Eaq. (9), one can
consider another normally-ordered witnd3sresulting from
the classical inequality

CRF = St ) )
v D' = <2 (Cl’fll + cofig + 03)2 2> + |C4|2 CZI 0 (11)

The normally-ordered moments finj :) can be grouped assuming real parameters(k = 1,2, 3,4). In the following,

into the following matrix: we apply
CAHR (Sifae) o T D = max(0,—(: (in — 72 — Do)* ) L0, (12)
]ngn)(A) _ < f2f1 > <5 f2.f2 : < foN > (8) which is a special case 0@/ for (61,62,63,64) _
! : : . : (1,—1,—Do,0).
CRLAD Crf)y o G So far we have only analyzed two-mode witnesses. Clearly,

it is also possible to observe the SV/SR during the time evo-
We call (nonlinear) nonclassicality witnesses not onlylution of multi-mode but also single-mode witnesses of non-
fff-and(: fTf:) butalso the matrices of normally-ordered classicality. We give only two examples of photon-number

momentsM}“)(ﬁ) and their functions (e.g., determinants). @nd quadrature squeezings:

. . . . . (i) Single-mode photon-number squeezing (also called sub-
The Importance O.f th.'s approach is motivated by the follgyin Poisson photon-number statistics) occurs if Mandé)'s
nonclassicality criterion [13, 19]:

parameter is negative, i.e{: (An)% :)/(: A :) ‘El 0. This
Criterion 2 A state/ is nonclassical if there existﬁ, such nonclassical effect can also be described by the truncated w
thatdet[M;“) (p)] is negative. ness

. 5)2 .
Thus, if these nonclassicality witnesses are truncateordec @ = max <07 - %) 1;1 0. (13)
ing to Eq. (3), one can predict infinitely many different kind T
of SV/SR effects. Note that a given nonclassicality witmess (i) The standard §; = 0) and strong §, > 0) M-mode
veals only some specific and limited properties of nonotadsi quadrature squeezing can be defined by
states.

It is worth stressing that nonclassicality witnesses ase{u Say = (: (AZg)? ) (=), (14)
ally) not measures of nonclassicality. A question arises . ] . .
whether SV/SR effects can also be observed for some nofY\: equivalently, via the truncated squeezing witness
classicality measures. Below we give an example of quantum - o el
dynamics leading to the SV and SR of nonclassicality wit- Sz, = max(0, —(: (Adg)” :) = So) > 0,  (15)

nesses butot of nonclassicality measures. whereg = (¢1, ds, ..., o). The multimode quadrature op-

erator is given by [23]:

A. Examples of truncated nonclassicality witnesses M
Ep =Y cm Em(dm) (16)
To find nontrivial examples of SV/SR of some nonclas- m=1

sicality witnesses, which are not necessarily entanglémens 5 sym of single-mode phase-rotated quadratures
witnesses (studied in the following section), we analyze th

squeezing (or sub-Poisson statistics) of the photon-numbe Eon(bm) = G exp(ihy) + @l exp(—igm). a7



The truncated nonclassicality witneSs, , given by Eq. (15),
can also be used in a single-mode case. @heptimized

guadrature squeezing is referred tgascipal squeezing and
is defined by the witness [19, 26]:

ncl

Sopt = In(gn Sz, < 0, (18)
or the truncated witness
gopt = max(0, Sopt — So) = mgx 5'% “>C1 0. (19)

Note that all entanglement witnesses are also nonclaggical

witnesses, but not vice versa. An example of the single-mode

evolution exhibiting the SV and SR of the nonclassicality-wi
nesses, corresponding to the quadrature and principa¢segue

ing, is shown in Fig. 1 for the anharmonic model described inyhich can

Sec. VI.

Explicit examples of many other two- and multimode non-
classicality witnesses, corresponding to violations aésical
inequalities, can be found in, e.g., Refs. [14, 19, 23, 27-30

Ill. ENTANGLEMENT WITNESSES

An effective method of constructing entanglement wit-
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witness differs slightly from the original usage, we betiev
that it can improve readability of our paper, while keepimg u
changed the main idea of entanglement witnesses.

Here we give only two examples of such entanglement
witnesses based on Criterion 3. Let us apply the following
Hillery-Zubairy classical inequalities [33]:

D%, () (ne) S [(aras) 2,

2
wheren,; = d;fdl- is the photon number operator, anddj) is
the annihilation (creation) operator for mode- 1,2. Thus,
we can define the following truncated witnesses

(Ario) S [(ara (21)

H
HI

ent

max (0, |(@1a5)[* — (R1iz)) 20, (22)

max(0, [(a1d2)|* — () (R2)) T 0. (23)

be positive only for somentangledstates, as

marked by the symbolY" . These inequalities can be de-
rived in various ways, e.g., from the Cauchy-Schwarz inkqua
ity [33] or from entanglement criteria based on partial sjaov
sition [31, 32]. ThusH andH' are entanglement witnesses,
so the SV of the concurrence implies also the S\Hgf) and
H'(t) (if they were nonzero for some evolution times). It is
worth noting that the inequalities in Eq. (21) are satisfietl n
only by separable states but also by all classical stateskéda

1 . N
nesses can be based on the Shchukin-Vogel entanglemdnt > ) since they can be derived from nonclassicality criteria

criterion [31] (or its generalizations [32]) for distingtiing
states with positive partial transposition from those witim-
positive partial transposition (NPT).

based on thé function [19].
Another simple choice of an entanglement witness can
be related, e.g., to the violation of Bell's inequality. For

In analogy to the matrices of normally-ordered momentdwo-qubit states, a degree of violation of Bell's inequalit

M](E“) (p), given by Eq. (8), one can define the following matrix
of partially-transposed moments:

LT (L f)T (FLfn)"

M () = <f2TJ;1>F <f2T{2>F ) <f2TJjN>F )
FURT LT o ()T

where f = S"V¢;f; for arbitrary complex numbers;,

(fIf;)F = te(f1f;p") andT denotes partial transposition.
The Shchukin-Vogel entanglement criterion [31, 32] can b
written as:

Criterion 3 A bipartite states is NPT if and only if there ex-
ists f, such thatlet[M ;(p")] is negative.

This criterion resembles Criterion 2 of the nonclassigalit
Thus, analogously to the nonclassicality withesses, wer ref
to such matricewf(ﬁr) of partially transposed moments
and their functions (like determinants) as (state-depende
nonlinear)entanglement witnessedt is worth noting that
according to the original definition, entanglement witesss
correspond to observables rather than expectation va@jes [
An entanglement witness is a Hermitian operaltbr such
that tr(Wpsp) > 0 for all separable stateg.,, while

tr(Wﬁcm) < 0 for some entangled statgg,.. This con-

in its version due to Clauser, Horne, Shimony, and Holt
(CHSH) [34], can be defined as [35, 36]:

B?*(p) = max |0, max (uj +uk) — 11, (24)
J

whereu; (j = 1,2,3) are the eigenvalues &f, = T T, T,

is a real matrix with elements; = Tr (5 (6; ® 6,)], andg;
are Pauli's spin matrices. For brevity, although not prlgis
B is often referred to asmonlocality(measure). Analogously
to the concurrenc€, the nonlocalityB is defined as the max-
imum of zero and another quantity, which implies that it is

eoossible to observe the SV/SR 8f(t) in a dynamical sce-

nario.

If a two-qubit statep violates Bell's inequality then it is
also entangled, but not vice versa, i.e., there are mixadssta
p (e.g., Werner’s states discussed below), for witigp) > 0
andB(p) = 0. Thus,B(p) can be considered as antan-
glement witnessThe SV of an entanglement measure implies
the SV of an nonlocality measure (if the latter was nonzero
at some evolution time). Note that for two-qubit pure states
B(p) = C(p), so in this case the nonlocality is not only an
entanglement witness but also an entanglement measure.

IV. SUDDEN DECAYS OF NONCLASSICALITY
WITNESSES FOR NONINTERACTING MODES

cept was later generalized to nonlinear entanglement wit- Let us first give a simple example of the environment-

nesses [10, 11]. Although our usage of the term entangleme

mduced sudden vanishing of the entanglement that is glosel



related to the original idea of finite-time sudden decays. Asand nonlocality decay as follows [36]:
a generalization, we also study sudden vanishings of devera

other nonclassicality witnesses, which occur at timesdfit C(t) = max {0’ l\/m(Qp
than those for the entanglement vanishing. 2

By contrast to the following sections, we analyze the entan- _Jo-a 5 (1 ) } 28
glement of two modes (qubits), which are not directly inter- VR-0+pgl2- 1 +p)e])f. @8)

acting with each other but only with independent reservoirs

Specifically, we describe the SV of the nonclassicality of in B2(t) = max (0, 20%g192 — 1) , (29)
tially entangled states, due to interaction with the resiesv

under Markov's approximation, by applying the standard-masrespectively. For comparison, we also calculate the decays

ter equation for the reduced density operaior of the two witnesses of the photon-number-difference ¢arre
tions:
9 . T e e
—p= — k(20 prar — arpayp — paray,) (25) N 1
ot k:212,2 2 S(t) = max {0, 1001 + 63+ 2p192) = So| . (30)

A an At o A aata [
+l;(ﬁk +1)(2arpal, — ajarp — pajar) — ;L[HS, Al
~ 1 9
wherev, are the damping rates;, are the mean thermal pho- D(t) = max [0’ 59192(1 +p) = Di (1 +pvg192)
ton numbersi, = {exp[iwy/(kgT)] — 1} 1, T is the reser-
voirs temperature at thermal equilibrium, ahg is Boltz- Do(g1 =~ g2)]- (31)
mann’s constant. We assume the reservoirs to be at zero temor simplicity, let us assume now the same reservoir damping
perature, so we set; = 7o = 0. The Hamiltoniars is just  rate~, sog; = g» = ¢. Then, the SV times for the above

the sum of free Hamiltonians for the two noninteracting sys-entanglement and nonclassicality witnesses can be differe
tem modes. We solve the master equation in the interactioffom each other as they are given by

picture by applying the Monte Carlo wave function simula-
tion with the collapse operators, = /(1 + fix)ar and +©) _ l log <21 tp ) ’ (32)
Y

éor = /yTiRaL [37]. v (1-p)
It is worth noting that from the standard physical point of

view, the quantum entanglement between two systems, and W(B) _ 1 los (/3 33
the related violation of Bell's inequalities, can be coest if sV T Og( p) ’ (33)
the systems are spatially separated and are physicallyjuunco
pled [38]. It is seen that this model (contrary to the models )
studied in the following section) satisfies the second condi tés\’/) — 1 lo /ﬂ7 (34)
tion. 250

Our example of the environment-induced sudden vanish-
ing of quantumness and nonlocality is provided for a system . \/—2 _
coupled to two independent reservoirs. It is worth mentigni té?/) = ! log ( 2 +p(D§g+ 2 DOp) . (35)
that common reservoirs in some cases can also enhance entan- v 0

glement both for two qubits and two modes. This is possibleryq egyits are shown in Fig. 2 assuming some specific values
due to a mixing mechanism rather than an induced interactiof the damping constant and the initial Werner statg (0)

among them [39]. o . with parametep.
Let us analyze the decoherence of the initial Werner-like |, ~onclusion. we have given a simple example of the de-

state defined as [36]: caying entanglement between two qubits, which are not di-
. 1—p. rectly interacting with each other, but they are only codpte
P (0) = plUm) (V| + ——1, (26)  the environment. We have observed the SVs of the two non-
classicality witnesses, which are different from the SVthef
for0 < p < 1,m = 1, and|¥;) = (|00) + [11))/v2.  entanglement and nonlocality measures.
Here, I is the identity operator. Under this initial condition,
the solution of the master equation in the interaction pectu

can be given in the standard computational basis as [36]: V. PERIODIC SUDDEN VANISHING OF
NONCLASSICALITY WITNESSES OF INTERACTING
h(H) 0 0 2pJ/q192 MODES
. 1 o nP o 0
plt) = 4 0 0 h§+) 0 , (27) A. Frequency conversion model

2p\/gi92 0 0 (1+p)gige
Here we give an illustrative example pEriodic sudden
whereh™) = (2—g1)(2—g2) +pg192, hgj) =gs_k[2—(14+  vanishing of nonclassicality witnesses during a unitarg-ev
p)gk], andg, = exp(—~xt) for k = 1,2. The concurrence lution of two interacting modes. This is in contrast to the
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1 \ \ \ \ states|(0)) = >_,,, ., Cni.nan1,12). The total number of
* photons is a constant of motiofy, (¢) + 72 (t) =const.
a ' An important property of the (undamped) parametric fre-
® 08 1 guency model is that the nonclassicality of an arbitraryesta
()] . . . . .
= is unchanged during its evolution. By applying the resuits o
2 06 i Refs. [41-43], one can find that the time evolution of the QPD
> ' for the frequency-converter model, described by Eq. (36),
E with arbitrary initial fields is simply given by
= 04 1
% W(S) (CYLCYQ, t) = W(S) [Bl (ala a9, _t)a B?(ala 2, _t)a O] )
s (39)
€ 0.2 . where 3 2(a1, ag,t) are the solutions of the corresponding
e classicalequations of motion for the frequency conversion

model:
0]
0 2 2.5 Bi(aq, e, t) = aj cos(kt) — iae sin(kt),

Ba(aq, e, t) = agcos(kt) — ia sin(kt). (40)

FIG. 2: (Color online) An example of the environment-inddaid-  Equation (39) means that the two-mode QPD for the model
den vanishing of the nonclassicality witnesses forhwninteracting  giscussed is constant along classical trajectories. Thte
U‘VOdeS' Ijl;he S?mp'n%hmo‘felo'sgdiscr.'btid in Sec. IV ‘:gf thﬂnm initial fields are nonclassical, their degree of nonclasitic
erner-like state: with p = 0.8. Key: the concurrence” (solid o gefined, e.g., in Refs. [44—46]) remains unchanged at any
curve), nonlocality3 (dotted curve), and two witnesses describ- uti - fh B b SV and
ing the photon-number-difference correlatioss(dashed curve) for evolution times of the system. But yet \{ve ca}n observe _an
So = 0.03 and D (dot-dashed curve) fab = 0.1. SR of entanglement and nonclassicality witnesses as will be

shown in the following subsections.

standard analysis of sudden decays applied solely to dissip

tive systems. Note that one can easily include the dissipati B. Evolution of a pure state

(as studied, e.qg., in the former section) to observe thegurop

finite-time sudden decays and SRs analogous to the standardLet us first analyze the parametric frequency conversion for

ones. the initial statey)(0)) = |01). The system evolves, according
As a simple model to study SV and SR, let us study theto Eg. (38), into

parametric frequency conversion described by the intieract o
Hamiltonian [1(t)) = cos(kt)|01) — isin(kt)[10). (41)

Y — helata CiAwt) + dral Awt 36 Itis a norjclassical state described by the followamgular

H = hr[aa; exp(—iAwt) + arag expEAwt)],  (36) (so negative)P function

which is a prototype Hamiltonian describing two linearly-

coupled harmonic oscillators. It can be applied to a variety P(aq,as,t) = §[f1 (a1, az, t)] <1 t3

of physical phenomena including the process of exchanging Ba(

photons between two optical fields of different frequencies « 0

signal mode with frequency; and an idler mode with fre- B3 (a1, aa, t)
e . 2 ) 9

guencyws. Thena; andas are the annihilation operators S ) . ) ) o

for the signal and idler modes, respectively, anis the real which is given in terms of Dlrgcﬁ functl_on, its derl\_/atlve2

coupling constant. For simplicity, we assume a resonar caénd the solutions of the classical _equatlons of m0t|0n,rg!ve

Aw = w + wsy — w. by Eqg. (40). Elementary calculations lead to the following

The well-known solutions of the Heisenberg equations ofeXPressions for the concurrence and nonlocality

0

a17a21t)

) 6[ﬁ2(0¢1,a2,t)], (42)

motion for the signall, (), and idler,b,(¢), modes are given C(t) = B(t) = | sin(2kt)| (43)
by [40]: ’
. the entanglement witness describing the violation of thst fir
b1(t) = ajcos(kt) — iassin(kt), Hillery-Zubairy inequality
bo(t) = agcos(kt) — iy sin(rkt). (37) .
2(f) =z cos( 1sin{st) H(t) = isin2(2f<at), (44)

The corresponding solution of the Schrodinger equation is
- - and the nonclassicality witnesses for the photon-number-
by (—t)]™ [by(—1)]"2 difference correlations

90) = 3 cnn D 00 @) i
n1,m2 v * S(t) = max [0, cos®(2kt) — So], (45)

assuming that the system is initially in a superpositionaxfd D(t) = max {0, Do[2cos(2xt) — Dol} . (46)




(a) rameters, which can be clearly understood by recalling the
1= ‘ classical-like interpretation of two linearly coupled tistors
" D C=B when one of them is initially excited, > 0) and the other
Q 0.8l is unexcited Q1 = 0). During the evolution, the excitation is
S transferred periodically between the oscillators.
= One can raise an objection concerning the above example
2 06 ~ 1 that a SV of the concurrence is instantly followed by a SR, so
2 | ’S ) they are not the proper SV/SR effects. The same behavior is
§ ' K ~\ S found for the other witnesses includirg for Dy = 0, and
5 047 - ) . S for Sy = 0. From the more standard, or more orthodox,
2 ' H :' \‘ ! point of view, a SV (of some witness) should not be instantly
E ool b ! ' I\ followed by a SR. By contrast, the SV times differ from the
o ' ‘.‘ N Y . SR times forD with Dy > 0 and forS with Sy > 0 [as shown
' h g A in Fig. 3(a)] that is required in the orthodox approach.
0 e e s S Other, even more convincing, examples of the SV/SR ef-
0 0.5 1 1.5t 2 2.5 3 fects can be found by analyzing the evolution of initially
K (b) mixed states as will be shown below.
1
g C. Evolution of a mixed state
?
2 Let us choose the initial state to be a Werner-like state
§ p0(0), given by Eq. (26) forn = 0 and|¥y) = (]01) —
> i|10))/+/2. This state evolves as follows
S A 1—p-
@ po(t) = p[Wo(t))(Yo(t)| + Tlv (47)
‘—3 where
5 1
< [Wo(t)) = —= [f-(1)|01) — i f1.(t)[10)] (48)
V2
with f1(t) = cos(kt) + sin(xt). We find the following evo-
lutions of the entanglement witnesses and the correspgndin
times of the first SV:
FIG. 3: (Color online) Simple examples of the sudden vangland ©) 1—p
reappearance of the concurrence and other truncated seiueltity C(t) = max|[0,plc| = (1 —p)/2] = tgy = f (2—) )
witnesses for two interacting modes. The unitary evolutibihe fre- p (49)
quency model is shown assuming: (&) the initial pure dtate dis-
cussed in Sec. V.B and (b) the initial mixed state, given by (26) 1—p2
with p = 0.8, analyzed in Sec. V.C. Keyc' (thick solid curve) is ~ B?(t) = max[0,p* (1 + ¢)—1] = té?,) =f|X—=1,
the concurrenceB (thin solid curve) is the nonlocalityd (dotted p
curve) is the entanglement witness, given by Eq. (22), deiagrthe (50)
violation of the first Hillery-Zubairy inequalitys (dashed curve) for 1 ~ =5
So = 1/2 and D (dot-dashed curve) fab, = 1 are nonclassical- g(t) = ~max|0, (pc)?—(1-p)] = té}\q,) =f < p> ,
ity witnesses describing the photon-number-differenaeetations, 4

which are given by Egs. (10) and (12), respectively. Fromsthe- (51)
dard point of view, a SR should appear only after some finite ev wheref(z) = arccosz/(2k) ande = cos(2«t). The first SR
lution time after the occurrence of the preceding SV. It isrsthat  occurs at the time

this condition is satisfied for all the witnesses of the mistate evo- (i) (i)

lution (b), but only for some witnesses of the pure-statdigian Ktgg = 7/2 — Ktgy (52)

@: fori = C, B, H. Itis seen in Fig. 3(b) fop = 0.8 that the
first SVs and SRs occur in the following order:

(B) (H) (H)

Analogously, one also finds the photon-number sub-Poisson 1B < ¢ < téff) N t(S%) >t 5 té%). (53)

statistics of the fields as described by the modified Mandel
parameters); = sin®(xt) and@> = cos?(xt). All these  On the other hand, the nonclassicality witnestesind S,
nonclassical witnesses exhibit periodic SV and SR effexts agiven by Egs. (10) and (12), respectively, evolve as
shown in Fig. 3(a). For example, the SV/SR of the concur- - 9 . 9

rence corresponds to the maximum valueSofAnalogously, . S(t) = max[0, (1 —p)/2+p~sin”(2xt) — So],  (54)
we could observe the out-of-phase SV/SRs of Mandgism- D(t) = max[0, (1 — p)/2 + 2Dgpsin(2xt) — DZ]. (55)
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For Sy = 0 andp < 1, we do not observe a complete van- defined by Eq. (15) with Eq. (60) angl = ¢. For simplic-
ishing of S(¢). For Sy = 0 andp = 1 (which corresponds to ity, we set a threshold valug, to be zero in this section and
the initial Bell state),S(¢) periodically vanishes to zero and in Fig. 1. By applying the results of Refs. [26, 50], we can
instantly increases, so it is not a good example of the SV/SRompactly write the)-optimized variance,,; describing the
effects. However, fof < p < 1 we can observe the proper principal squeezing as follows

SV and SR effects as shown in Fig. 3(b). The first SVs occur

at the times Sopt(t) = 2|a0|2(1 — fo1 — V/faz + fa1 — 2f12fa1 cos T’),
ty = i +f (%) ) (56)  wherer’ = 715 — 71 + 7. Analogously to the f(g(rsri)er
5 - 9D2 + pp_ 1 squeezing criteria, the prin~cipal squeezing occufs it '21 0
ty = yra (OALDT) , (57)  orif the truncated witnesS,,; "< 0, as given by Egs. (19)
and (61). Our results are presented in Fig. 1 for some specific
and the first SRs occur aﬁ{) — k- tés\’,) and té?{) . amplitude of the initial coherent state.

(D) ] _Note that the periodic vanishing of the entanglement and
37/(2r) — tgy/ - Note that the first appearances of these wit-nonclassicality witnesses, analyzed here and in Sec. Wlgho
nesses occur at earlier times, i.e.= n/(2x) — tg\), for  notbe confused with the oscillations of the entanglememime

i = S,D. Itis seen that we can always choose thresholdfures in systems interacting with non-Markovian resesvoir
valuesS, and D, for any0 < p < 1in such a way to observe (see, e.g., Ref. [51]). The SV and SR effects in such systems
the SVs and SRs of these witnesses for the photon-numbépave different character than studied here. Mazeo#. [51]

difference correlations at arbitrary evolution times algen ~ observed the oscillations in short times, which disapptter a
the system is disentangled. some finite time and are related to the non-Markovian char-

acter of the reservoirs. In contrast, in the examples pteden
here, the periodic behavior of the nonclassicality witeess
VI. PERIODIC SUDDEN VANISHING OF persists as being related to the unitary evolution of thiesta
NONCLASSICALITY WITNESSES FOR A SINGLE MODE It is worth stressing again that the aperiodic SV and SR ef-
fects, which are analogous to the typical sudden decay®of th

Finally, let us analyze a single-mode anharmonic oscillato€ntanglement, can be observed by inclusion of the dissipati

described by the interaction Hamiltonian Assuming Markov'’s approximation, one can apply the master
equation, given by Eq. (25) in a special case for a single mode

1 — lhn(d’f)2d2. (58) (k = 1). Then the SVs and SRs become aperiodic and the

2 final SV occurs after some evolution time, which depends on

H1e dissipation. However, the dissipation is not a necgssar
condition for the SV occurrence in this model.

The SV and SR of the entanglement in two-mode dissi-
pative coupled Kerr models was studied in Ref. [52]. Here
we showed that the periodic SV and SR of squeezing can be

0 0 an i observed even in the single-mode nondissipative Kerr model
[ (t)) = e~laol”/2 Z —0' exp [5n(n - 1)7} In), (59)  This example confirms our conclusion of the general occur-
n=0 vnl rence of the SV and SR of nonclassicality witnesses even for

single-mode undamped systems.

This is a prototype model of various fundamental phenomen
including the optical Kerr effect. For simplicity, here wefer

to this effect only. Under this interaction, the initial @knt
state|«p) evolves periodically into a nonclassical state

wherer is a rescaled timet. It is worth noting that the Kerr
state, given by Eq. (59), becomes at some evolution times
a superposition of macroscopically distinguishable twd] [4

or more [48] coherent states, which are often referred to as
the Schrodinger cat and kitten states, respectively. Amon
many nonclassical intriguing properties of the model (see, We have applied the concepts of the SV and SR of quantum
e.g., Ref. [49] and references therein), the Kerr statebétehi entanglement measures to study the SV and SR of entangle-
high-degree quadrature squeezing [26, 50]. We find that thenent and nonclassicality witnesses.

single-mode normally-ordered variangg, of the quadrature Our main observations can be summarized as follows:

VIl. CONCLUSIONS

operatoriy, = #1(¢) = aexp(—ip) + af exp(ip) can be (i) SVs can be encountered not only in the dissipation of en-
compactly written as tanglement but also of other nonclassical correlationrpara
ters, related to violations of classical inequalities [23].

Sz, = 2]ag|*[1+ frz2 cos(ti2 +7) — far(cos a1 +1)] (60) (i) SVs occur not only in the dissipation of bipartite or mul
_ - ) ] tipartite (multimode) interacting or noninteracting sysis but
in terms of the auxiliary functions defined by, = 3is0 in a single-qubit or single-mode systems. Our examples
klow|? sin(i7)+2(6—¢o) andfi = exp{kl|ao[*[cos(i)—1]}  include single-mode squeezing of photon number, squeezing
with ag = |ag|exp(igp). Quadrature squeezing occurs if of quadrature operators [23], and violations of other otass
S, "0 or, equivalently, if the truncated witness "o, inequalities [19].



(i) Non-dissipative systems, which are initially even in cific models and also in experimental scenarios.
pure states, can also exhibit periodic SVs of nonclasshuad p
nomena and the related nonclassicality withesses. For in-
stance, the quadrature squeezing of light in a Kerr medium
exhibits periodic SVs for some finite periods of time. In arde
to observe the proper finite-time sudden decays analogous to
the standard sudden decays of entanglement [1], one should
add dissipation by coupling such systems to the environment We thank Prof. Ryszard Tana$ for discussions. AM ac-
The damping causes irregularity and loss of periodicityheft knowledges support from the Polish Ministry of Science
evolution of the nonclassicality withesses. We can corelud and Higher Education under Grant No. 2619/B/H03/2010/38.
that the damping accelerates the occurrence of the first SV¥W is supported by National Natural Science Foundation of
but it is not a necessary condition for their occurrence. China (NSFC) with Grants No. 11025527, No. 10874151, and

With the help of the nonclassicality criteria [19, 25] and No. 10935010. YXL was supported by the National Natural
entanglement criteria [31, 32], based on moments of the arscience Foundation of China under Grant No. 10975080. FN
nihilation and creation operators, as discussed in Seesd| acknowledges partial support from the Laboratory of Physi-
[ll, it is possible to construct infinitely many nonclasdiga  cal Sciences, National Security Agency, Army Research Of-
and entanglement witnesses. These witnesses, after frundace, DARPA, AFOSR, National Science Foundation grant
tion according to Eq. (3), can exhibit the SV/SR effects wherNo. 0726909, JSPS-RFBR contract No. 09-02-92114, Grant-
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