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We study the emergence of itinerant ferromagnetism in an ultra-cold atomic gas with a variable
mass ratio between the up and down spin species. Mass imbalance breaks the SU(2) spin symmetry
leading to a modified Stoner criterion. We first elucidate the phase behavior in both the grand
canonical and canonical ensembles. Secondly, we apply the formalism to a harmonic trap to demon-
strate how a mass imbalance delivers unique experimental signatures of ferromagnetism. These
could help future experiments to better identify the putative ferromagnetic state. Furthermore, we
highlight how a mass imbalance suppresses the three-body loss processes that handicap the forma-
tion of a ferromagnetic state. Finally, we study the time dependent formation of the ferromagnetic
phase following a quench in the interaction strength.
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I. INTRODUCTION

By exploiting the fine control of interactions through
a magnetically tuned Feshbach resonance [1], ultracold
atomic Fermi gases have proven to be a rich arena in
which to study many-body physics. On one side of the
Feshbach resonance the effective s-wave interaction is
attractive, which has allowed investigators to realize a
BCS state of Cooper pairs. If the interactions are tuned
across the Feshbach resonance, the fermions bind to form
molecules that can subsequently form a Bose-Einstein
condensate [2]. However, the fermions experience repul-
sive interactions if the Feshbach resonance is approached
from the other side. A recent experiment by the MIT
group [3] on the repulsive side of the resonance has pro-
vided the first tentative evidence for the formation of
an itinerant ferromagnetic phase. There was however a
significant atom loss process that could drive the forma-
tion of alternative strongly correlated states [4], which
are consistent with some of the experimental results. It is
therefore essential to develop a different realization of the
ferromagnetic state which suppresses atom loss, and in
addition delivers unique experimental signatures to help
resolve the outstanding questions over the original ex-
periment. If the experiment were confirmed [5–8], the
flexibility offered by ultracold atomic gases now presents
investigators with a unique opportunity to study aspects
of ferromagnetism that cannot be envisioned in the solid
state, including the consequences of population imbal-
ance [9], a conserved net magnetization [10], the damping
of quantum fluctuations by three-body loss [11], single
spin flips [12], spin drag [13], spin spiral formation [14],
reduced dimensionality [15], as well as ferromagnetic phe-
nomena in an optical lattice [16]. In this paper we turn to
consider the consequences of the up and down-spin par-
ticles carrying different masses, a scenario that cannot
be realized in the solid state. Furthermore the system
offers investigators a lower atom loss rate combined with
inimitable experimental signatures.

The MIT experiment prepared an ultracold atomic gas

with two different atomic species to represent the pseudo
up and down spin fermions. In the experiment, and all
theoretical studies of itinerant ferromagnetism to date,
the two species are different electronic states of the same
atom, and therefore carry the same mass. This accu-
rately reflects the situation in solid state ferromagnetism
where the up and down-spin electrons have the same
effective mass. However, the flexibility introduced by
the new experimental realization of ferromagnetism per-
mits the pseudo up and down spins to be represented by
two species of atoms of different elements with unequal
masses; alternatively an optical lattice can change the
effective mass of the atoms. Though in the solid state
interactions can change the effective mass of the ma-
jority and minority spin species [17], distinct species of
fermions in an ultracold atomic gas provide a cleaner and
more controlled realization of mass imbalance. Further-
more, introducing a mass ratio breaks the SU(2) sym-
metry of the conventional ferromagnet, and as a result
the magnetization has anisotropic susceptibility and so
offers a novel control parameter over magnetic ordering
and unique experimental signatures of the ferromagnetic
state. Moreover, introducing a mass imbalance should
suppress the three-body losses that hinder ultracold atom
experiments [18]. Further motivation to study a gener-
alized mass ratio stems from novel physics discovered on
the attractive side of the Feshbach resonance. It has been
established that imbalanced Fermi surfaces in a super-
fluid can drive the formation of the textured Fulde-Ferrel-
Larkin-Ovchinnikov phase [19], and here we explore the
opportunity that new phenomena could arise in a mass
imbalanced itinerant ferromagnet.

In this paper in Sec. II we first develop the formalism
required to study a mass imbalanced Fermi gas with re-
pulsive interactions. Subsequently in Sec. III we derive
the general phase diagram for a uniform gas with both a
generalized mass ratio and also population imbalance. To
cement the connection to the recent possible experimen-
tal observation of ferromagnetism in an ultracold atom
gas, we consider the consequences of a trapped geometry
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and study the quantities observable by experiments in
Sec. IV. In the current experimental realization of fer-
romagnetism there were significant three-body losses so
the ferromagnetic phase was formed following a quench
in the interaction strength out of equilibrium. Therefore
in Sec. V we conclude our investigation by studying the
dynamical formation of the ferromagnetic phase. Finally,
we summarize our discussion of itinerant ferromagnetism
in Sec. VI.

II. FORMALISM

To study itinerant ferromagnetism in the presence of a
mass imbalance we use the functional integral formalism
developed in Ref. [9]. The phase diagram predicted there
has recently been verified by ab initio quantum Monte
Carlo studies [20, 21] and is also in accord with recent
experimental findings [3, 6, 7]. Therefore, the approach
described in Ref. [9] provides a solid platform from which
to investigate itinerant ferromagnetism with a mass im-
balance.

The formalism centers around calculating the quantum
partition function expressed as a coherent state field in-
tegral

Z=

∫
Dψexp

[
−
∫ ∑

σ={↑,↓}
ψσ(∂̂τ+ξ̂σ)ψσ−g

∫
ψ↑ψ↓ψ↓ψ↑

]
.

(1)

Here the field ψ describes a two component Fermi gas
with a repulsive s-wave contact interaction gδ3(r) act-
ing between the two species. We use the notation

∫
≡∫ β

0
dτ
∫

dr with inverse temperature β = 1/kBT , and

dispersion ξ̂σ = p̂2/2mσ − µσ. It will later be conve-
nient to rewrite the particle masses as mσ = m(1 + σr),
and the species chemical potentials as µσ = µ + σ∆µ.
Here σ ∈ {↑, ↓} is a label to distinguish between the two
species of atoms and does not represent a physical spin.

We now decouple the quartic interaction term, which
will allow us to integrate out the fermionic degrees of
freedom. Hertz did this by introducing a scalar Hubbard-
Stratonovich decoupling of the two-body interaction term
into the magnetization channel [22]. By expanding in the
magnetization he was able to develop an effective Lan-
dau theory. However, recent studies have shown that this
approach fails to recover the correct Hartree-Fock equa-
tions, and capture the behavior of the soft transverse
degrees of freedom [9]. Moreover, as mass imbalance
breaks the SU(2) symmetry of the system, magnetization
formed along the quantization axis is distinctly different
from perpendicular magnetization. We therefore adapt
the formalism developed in Ref. [9], and decouple the
quartic interaction term in the full vector magnetization
φ as well as the density channel ρ. This yields an ac-
tion that is quadratic in the fermion degrees of freedom,
and after integrating them out we recover the quantum

partition function Z =
∫
DφDρ exp(−S) with an action

S=

∫
g(φ2−ρ2)−Tr ln

[
(∂̂τ+ξ̂α+gρ)I− gφ · σ

]
. (2)

We now focus on the saddle point fields (or “mean-
fields”) of the action, that is φ and ρ satisfying δS/δφ = 0
and δS/δρ = 0. We show in Sec. V A that fluctuations
are gapped so we neglect the fluctuation corrections and
assume that the saddle point fields make the dominant
contribution to the partition function. We then diagonal-
ize the inverse Green function inside the trace to the new
basis set χ ∈ {+,−}, and perform the summation over
Matsubara frequencies. Finally we use Φ = −kBT ln(Z)
to yield the thermodynamic grand potential

Φ=gV (φ2−ρ2)−kBT
∑

χ∈{+,−}

∫
dε ν(ε) ln

(
1+e−βζχ

)
,

(3)

where V is the total volume, ν(ε) = m3/2
√
ε/π2~3

√
2 is

the density of states, and effective dispersion

ζ±=
ε

1− r2−µ+gρ±
√

(gφ⊥)2+

(
εr

1− r2 +∆µ+gφz

)2

.

(4)

Varying the grand potential Φ with respect to φ and
ρ yields the saddle point equations for the homogeneous
mean-fields. We have checked numerically in Sec. III and
analytically in Sec. V A that any gas with a mass and/or
chemical potential imbalance breaks the SU(2) symmetry
and does not develop perpendicular magnetization, so
φ⊥ = 0. This result considerably simplifies the mean-
field equations. As the particle densities are related to
the saddle point fields through nσ = ρ + σφz, at zero
temperature we cast the mean-field equations as

nσ =

√
2

3π2~3
m3/2
σ (µσ − gn−σ)

3/2
, (5)

which shows that the Fermi energy of the σ species is
εFσ = µσ − gn−σ. This equation forms the backbone of
our subsequent analysis. We first use it to derive a gen-
eralized Stoner criterion for the ferromagnetic instability
in a mass imbalanced gas. Such a transition is charac-
terized by the appearance of three nearby solutions; the
now unstable original state, and two with small relative
positive and negative polarization. Demanding the exis-
tence of these solutions to the self-consistent equations
(5) yields a modified Stoner criterion g

√
ν↑ν↓ = 1, where

the νσ is a density of states at the σ species Fermi sur-
face. This reduces to the familiar criterion gν = 1 in the
mass and population balanced limit [23].

In Sec. V B we show that the saddle point fields are
always uniform, even for general chemical potential and
mass imbalance. Therefore, unlike the superfluid regime
where a Fermi surface imbalance can drive the formation
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of the textured Fulde-Ferrel-Larkin-Ovchinnikov state
[19], here for a perfectly spherical Fermi surface and the
absence of nesting only uniform ferromagnetic states will
be formed. We note however that fluctuation correc-
tions drive textured phase formation in the equal mass
case [20], and have the potential to do the same with
mass imbalance.

III. PHASE DIAGRAM

Now that we have prepared the formalism we are ide-
ally placed to study the phase diagram of the mass im-
balanced Fermi gas with repulsive interactions. This will
allow us to build up an intuition for the consequences of
mass imbalance before we turn to study the gas in a har-
monic trap in Sec. IV. Firstly, in Sec. III A, we examine
the grand canonical ensemble with a gas connected to an
infinite particle reservoir, and secondly in Sec. III B we
study the gas with a constant number of particles in the
canonical ensemble. To cement the connection to exper-
iment, from now on we express the interaction strength
as kFa, the product of the Fermi wave vector kF of a
non-interacting gas with the same net number density,
and the scattering length a = g/2π~2(1/m↑ + 1/m↓) +
O(g2) [24]. Consistent with the Hartree-Fock scheme we
employed to calculate the grand thermodynamic poten-
tial Eq. (3) we have taken the lowest order term in the
scattering length and neglected higher order corrections
in g [5, 9, 25]. We concentrate on the phase behavior at
T = 0.

A. Grand canonical ensemble

In the grand canonical ensemble the gas can exchange
particles with an ideal reservoir. We can control the aver-
age number density of atoms by manipulating the chem-
ical potentials µσ of the reservoir.

To develop a physical understanding and connect with
previous work [6, 7, 9] we first describe the phase diagram
for a gas without a mass imbalance shown in Fig. 1(a).
When the gas is noninteracting it is paramagnetic for all
chemical potential imbalances ∆µ = µ↑ − µ↓. Above the
line ∆µ = 0, increasing the interaction strength drives
polarization in the up-spin direction. Conversely, below
∆µ = 0 the gas becomes polarized in the down-spin di-
rection. As the interaction strength is increased across
the boundary marked on Fig. 1(a) the gas enters the fully
polarized state. For more positive ∆µ, the gas becomes
fully polarized in the ↑ direction at lower interaction
strength. We can understand the form of the boundary
line at ∆µ > 0 by examining the species Fermi energies
εFσ = µ+ σ∆µ− gn−σ. At g = 0 the Fermi energies are
simply the chemical potentials, so n↑ > n↓. The result is
that εF↓ is smaller than εF↑ at zero interaction, and de-
creases more rapidly with increasing interaction strength.
Thus the gas becomes fully polarized more quickly in the

-1

0

1

∆
µ
/
µ

φz

ρ = 1

φz

ρ = −1

|φ
z ρ
|<

1

-1

0

1

∆
µ
/
µ

φz

ρ = 1

φz

ρ = −1

|φ
z ρ
|<

1

(a) r = 0, m↑/m↓ = 1

-1

0

1

∆
µ
/
µ

-1

0

1

∆
µ
/
µ

φz

ρ = 1

φz

ρ = −1|φ
z ρ
|<

1

(b) r = 1/5, m↑/m↓ = 3/2

-1

0

1

0 1 2

∆
µ
/
µ

kFa

-1

0

1

0 1 2

∆
µ
/
µ

kFa

φz

ρ = 1

φz

ρ = −1|φ
z ρ
|<

1

(c) r = 17/23, m↑/m↓ = 20/3 (40K and 6Li)

FIG. 1: (Color online) The phase behavior in the grand canon-
ical ensemble with chemical potential imbalance ∆µ/µ and in-
teraction strength kFa for three different values of mass imbal-
ance. The solid red lines denote the onset of full polarization,
into the phases shaded light and dark gray for up (φz/ρ = 1)
and down (φz/ρ = −1) spin respectively. The dashed pur-
ple boundary separates systems that become polarized in the
up (above dashed line, light blue shading) or down-spin (be-
low dashed line, dark blue shading) directions in the strongly
interacting limit. Along the dashed purple line itself the po-
larization remains constant until reaching the black dot, past
which polarization in either direction is equally favorable.

↑ direction as we increase the chemical potential bias. An
analogous situation occurs in the bottom half of Fig. 1(a),
where ↑ and ↓ swap roles in the argument above. The
line separating these two regimes is ∆µ = 0. As the
interaction strength is increased along this line the mag-
netization remains pinned at zero until kFa ≈ 2.04, at
which point a ferromagnetic instability develops and the
gas can become polarized in any direction. The instabil-
ity to full polarization at kFa = 3π/4 coincides with the
cusped junction of the fully polarized region boundary.

When we introduce a mass imbalance, for any chemical
potential and interaction strength, the saddle point solu-
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tions have φ⊥ = 0. The phase behavior shown in Fig. 1(b
and c) is then obtained using the zero temperature mean-
field equations (5). At zero interaction strength when
there is no chemical potential imbalance, the number

density of the species is nσ = (
√

2/3π2~3)m
3/2
σ µ3/2, and

so an increase in the mass imbalance alone will bias
the system towards the heavy spin species. Then, as
we increase the interaction strength, the Fermi energy
εF↓ = µ − gn↑ of the minority lighter species will fall
more rapidly than that of the heavy species εF↑ = µ−gn↓,
and so the gas becomes fully polarized towards the heav-
ier species. With the heavier species becoming favored,
the border in Fig. 1(b and c) between the dominant
heavy and light spin polarization shifts downwards to-
wards the lighter spin particles. In order to have nei-
ther species dominant at full polarization, we need to
introduce a chemical potential imbalance that favors the
lighter species, given by the implicit equation

∆µ

µ
=

[(1−r)(µ−∆µ)]3/2−[(1+r)(µ+∆µ)]3/2

[(1−r)(µ−∆µ)]3/2+[(1+r)(µ+∆µ)]3/2
. (6)

If the chemical potentials are tuned according to
Eq. (6), then at low interaction strength the magneti-
zation is pinned to −∆µ/µ. Increasing the interaction
strength past a critical value (denoted by the black dot
in Fig. 1) induces a second order phase transition in
the magnetization; the minimum in the grand potential
at −∆µ/µ bifurcates into two equally favorable minima
which move continuously to full up and down polariza-
tion as we further increase the interaction strength. Full
polarization emerges at an interaction strength

kFa =
3π~kF

2
√

2 (1/m↑ + 1/m↓)
max
σ

(
µ−σ

(mσµσ)3/2

)
. (7)

Having understood the behavior of the gas in the grand
canonical ensemble we now disconnect the particle reser-
voirs and study a gas in the canonical ensemble.

B. Canonical ensemble

We now investigate a gas confined so that the total
number of both species is held fixed. In a cold atom
gas the number of up and down particles are separately
conserved, and so at the ferromagnetic transition the gas
splits into up and down polarized domains. On increasing
the interaction strength the gas could potentially phase
separate into majority up and majority down-spin do-
mains to reduce contact between the two species. The
formation of this ferromagnetic state is governed by the
competition between the resulting fall in interaction en-
ergy and a kinetic energy penalty due to the increased
density of each separate species.

A box of gas with fixed total particle numbers is de-
scribed by minimizing the total free energy. The free
energy density of a single domain with particle densities
n↑ and n↓ is obtained from the grand potential Eq. (3)
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FIG. 2: (Color online) The phase behavior in the canonical
ensemble with interaction strength kFa and net population
imbalance (N↑ −N↓)/(N↑ + N↓) for three different values of
mass imbalance r. The light blue regions (Single Ph.) corre-
spond to a paramagnetic gas, white (Ph. Sep) to a two-phase
coexistence between two partially polarized gases, and dark
gray (Ph. Sep, |φz

ρ
| = 1) to a two-phase coexistence between

two fully polarized up and down spin gases.

by substituting our mean-field solutions Eq. (5) into the
definition F = Φ + µ↑n↑V + µ↓n↓V , which yields

F

V
=

3

5

(
3π2~3√

2

)2/3
[
n
5/3
↑
m↑

+
n
5/3
↓
m↓

]
+ gn↑n↓ . (8)

If there is no phase separation, the total free energy of
the gas is just that of a single domain. This state com-
petes with a phase separated gas containing two domains,
labeled A and B, with a ratio of volumes γ, and parti-
cle densities nAσ and nBσ. The total energy of the state
is then F = γFA + (1 − γ)FB, and the total particle
numbers are Nσ = V (γnAσ + (1− γ)nBσ). We then
minimize the total free energy while fixing the Nσ, to
determine whether the system phase separates, and if so
the properties of the individual domains. The resulting
phase diagrams are shown in Fig. 2.



5

To explore the phase behavior in the canonical en-
semble, and to establish a connection to the literature
[9], we first focus on the mass balanced case shown in
Fig.2(a). At weak interactions the gas starts in the para-
magnetic state. On ramping the interaction strength
through the Stoner criterion at kFa = π/2, a system
with zero net population imbalance phase separates into
two weakly but oppositely polarized domains. The criti-
cal interaction strength for phase separation is higher in
the presence of a population imbalance due to the larger
kinetic energy barrier that must be overcome for further
polarization to form. A fully polarized phase forms at
kFa = 3π/27/3, which is in accordance with Ref. [6, 9].

On introducing a mass imbalance the phase diagrams
tilt so that when the population imbalance is towards the
lighter species, the onset of full phase separation takes
place at smaller kFa. To understand this, we first derive
an expression for the interaction strength at which the
system becomes fully polarized. At this point, there is
an A phase composed entirely of the heavier ↑ particles
and a B phase of the lighter ↓ particles. Just before the
transition to full polarization, there will still be a ↓ parti-
cle in the A phase. This has interaction energy gfpn↑. If
that atom transits into phase B it sits on top of the Fermi

surface, with an energy penalty Dn
2/3
↓ /m↓, where D =

35/3π4/3~2/21/35. At the transition to full polarization
the particle makes this passage without hindrance, and

therefore these two energies are equal gfpn↑ = Dn
2/3
↓ /m↓.

This implies that the interaction strength at the phase

transition is gfp = Dn
2/3
↓ /m↓n↑ = Dn

2/3
↑ /m↑n↓; to de-

duce the second equality we have repeated the argument
for down spin particles. The second equality implies that

n
5/3
↓ /m↓ = n

5/3
↑ /m↑, which confirms that the two regions

have equal pressure.
We now use the above expressions to explain the tilt

in the fully polarized phase boundary Fig. 2(b) and (c).
To go from population balance to a system imbalanced
towards the light particles, we imagine converting a re-
gion of heavy particles into light. However, for a given
density, the lighter particles exert a greater degeneracy
pressure P ∝ n5/3/m than heavier particles and so the
internal pressure within the system must increase. This
compresses both the light and heavy particle domains,

and since n
5/3
↓ /m↓ = n

5/3
↑ /m↑ the overall density of both

phases must increase by the same ratio. Therefore, upon
biasing the population towards the lighter species the

critical interaction strength gfp ∝ n2/3↓ /n↑ must decrease,
thus tilting the phase boundary.

IV. TRAPPED GEOMETRY &
EXPERIMENTAL OBSERVATION

Having understood the behavior in the canonical and
grand canonical ensembles in a uniform background po-
tential, we are well positioned to study the experimen-
tal realization of the gas in a harmonic trap potential

V (R) = ωR2. We employ the local-density approxima-
tion and so assume that the properties of the gas at radius
R are determined by substituting a local chemical poten-
tial µσ(R) = µσ − V (R) into our mean-field relations
Eq. (5). Moving outwards from the center of the trap,
the system parameters trace trajectories on the grand
canonical phase diagrams Fig. 1. An immediate corol-
lary is that the gas becomes polarized only along the
quantization axis, and so the gas separates into domains
of light and heavy particles. The chemical potentials µσ
at the center of the trap are chosen to ensure that the
cloud contains a fixed total number of atoms, and then
the properties of the gas are entirely determined by the
interaction strength and particle masses. In what follows,
we will be interested in four main trap observables: the
number density profiles of the two species, the total trap-
size, and loss rate, which can all be measured by imaging
the spatial distribution of the atoms in situ, and the to-
tal kinetic energy, measured by tracking the profile of the
atoms following a ballistic expansion. Following [18], we
model the loss rate density according to Υn↑n↓a6, where
Υ contains the residual mass and number density terms.
Υ has a non-monotonic mass ratio dependence [18], lead-
ing to a dramatic suppression of loss rate for moderately
large mass imbalances (for example a gas containing 40K
and 6Li has m↑/m↓ = 20/3, which we show reduces loss
by at least a factor of 20).

We are interested in how mass imbalance affects these
four experimental observables, but to contrast our re-
sults with earlier work, we first review the mass balanced
case. After that, we introduce mass imbalance and ex-
pose unique signatures of the ferromagnetic phase.

A. Mass balanced gas

We start by examining a trap with a two component
Fermi gas with mass balance, but variable population
imbalance. To understand the corresponding trends in
Fig. 4 (comparing solid red curves in the same row), it
is first useful to note how the species are redistributed in
the trap as we increase the repulsive interaction strength.

Density profiles: At zero interaction, both species have
identical smooth distributions in the trap. Upon increas-
ing kFa, the species spread themselves more thinly across
the trap to reduce repulsion. As the interaction strength
passes a critical threshold, magnetic domains are formed
in the center of the trap via a spontaneous symmetry
breaking [26]. However, because the density (and hence
effective interaction strength) decreases at larger radii,
the gas remains paramagnetic there. The width of this
outer paramagnetic region falls as ∼ 1/(kFa)2 in the large
kFa limit. On introducing a population imbalance, some
of the minority spin particles are driven to larger radii
with increasing kFa. This is because the minority species
feels an interaction energy proportional to the density
of the majority species, which overcomes the trapping
potential. For large enough kFa, domains form in the
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FIG. 3: (Color online) Trap-profiles for a gas at various interaction strengths with a mass imbalance m↑/m↓ = 3/2. Figures (a
to e) for a cloud with N↑/N↓ = 1 show the density of the heavier particles (dotted) and the density of lighter particles (solid)
against radius. The axes are normalized by ñ, the density of the heavier particles at the center of the trap when kFa = 0, and

R̃, the cloud size when kFa = 0. Figures (f to j) show the density profiles for a cloud with (N↑ −N↓)/(N↑ +N↓) = 0.9. At the
center a grand canonical phase diagram reproduced from Fig. 1 shows dotted trajectories in parameter space corresponding to
some of the trap-profiles and (k) is referenced in the text.

central regions of the trap. These become fully polar-
ized as the interaction strength continues to increase. In
this fully polarized limit there is no overlap between the
species so the interaction energy disappears and both
species can be found in domains anywhere across the
trap.

Cloud size: In the non-interacting limit, a cloud with a
population imbalance contains more of the majority spin
species so has a greater initial radius. Initially, cloud
size increases linearly at small kFa as the atoms repel
and spread themselves more sparsely through the trap.
After the atoms enter ferromagnetic domains, firstly at
the center and later across the entire trap, the cloud size
asymptotes towards its large kFa limit. At strong inter-
actions the fully polarized domains contain effectively a
non-interacting gas and so the cloud size is the same as
for the population balanced case.

Kinetic energy : At zero interaction strength the
total kinetic energy of each species is EKσ =

2−13/634/3ω1/2~N4/3
σ /m1/2. A population imbalance de-

posits particles on top of the majority spin Fermi sur-
face increasing its kinetic energy, whilst the minority spin
species kinetic energy falls. The mass-balanced curves in
Fig. 4 show an initial decrease in kinetic energy against
kFa as the atoms repel and spread themselves more thinly
across the trap. However, the onset of ferromagnetism
drives up the kinetic energy because identical fermions
are confined at higher densities within polarized domains.
At strong interactions the gas separates into independent
fully polarized domains so the kinetic energy of the cloud
plateaus out.

Loss rate: The loss rate Υn↑n↓a6 initially rises with in-

teraction strength since it is proportional to (kFa)
6
. At

the ferromagnetic transition the two species are confined
to separate domains suppressing the factor n↑n↓ and the
loss rate falls. Introducing an initial population imbal-

ance also reduces the factor n↑n↓, resulting in a lower
loss rate at all interaction strengths.

B. Mass imbalanced gas

Having understood the behavior of a trapped gas with
mass balance, we now have a firm platform from which
to study a gas with mass imbalance. The imbalance is
introduced by replacing the ↑ species with a more mas-
sive particle, while keeping the mass of the ↓ species the
same. In Fig. 4 and below we catalog and analyze the
resulting changes that could offer experimentalists both
a handle to reduce losses, and new unique signatures of
ferromagnetic ordering.

Density profiles

In Fig. 3 we examine the density profiles of the trapped
atomic gas with a mass imbalance of m↑/m↓ = 3/2. In
Fig. 3(a) at small interaction strength each species is sup-
ported within the cloud mostly by its own internal Fermi

degeneracy pressure ~2(6π2)2/3n
5/3
σ /5mσ. As the degen-

eracy pressure is lower for the heavy species they are
denser at the trap center than the light species. Increas-
ing the interaction strength through Fig. 3(b and c) ex-
pels the lighter particles to larger radii, while the heavy
particles become more concentrated at the center. Rais-
ing the interaction strength still further in Fig. 3(d) leads
to full polarization of the heavy particles in the center of
the trap, full light particle polarization at the edge of
the trap, and an intermediate density discontinuity. At
this point the trajectory (d) in Fig. 3 passes through the
point denoting the ferromagnetic instability. By Fig. 3(e)
the entire gas has become fully polarized at kFa ≈ 3.3,
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FIG. 4: (Color online) A table of graphs with rows showing the cloud size (Rtot), kinetic energy (EK) per particle of light
and heavy species, and loss rate (Γ) as a function of interaction strength. The columns refer to population imbalances of
N↑/N↓ = {1/3, 1, 3, 19}. Each graph shows three different mass imbalances m↑/m↓ = 1 by the solid red line, m↑/m↓ = 3/2
by the green dashed line, and the case of 40K and 6Li, m↑/m↓ = 20/3, is the blue dotted line. The axes are normalized by
the cloud size (R0), kinetic energy of a particle at R=0 (EK0), and peak loss rate (Γ0) for a mass and population balanced
non-interacting cloud with the same total particle number.
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whereas in the mass balanced case the gas never became
fully polarized. To understand why the heavy particles
congregate at the trap center, imagine instead that the
heavy particles come to dominate the outer regions of
the trap. This would require the chemical potential of
the heavier species to be larger than that of the lighter
species. However, looking at the phase diagram Fig. 3,
any trajectory (k) with positive chemical potential im-
balance curves upwards which implies that the heavier
particles dominate the whole of the trap in the full po-
larized limit. To give a population of light particles we
must instead choose a trajectory (such as (e)) that curves
downwards, driving the heavy particles to the trap cen-
ter. The congregation of the heavy particles at the trap
center could be monitored using density contrast imaging
so would give a clear signature of ferromagnetic ordering.

Cloud size

We now use the intuition developed from studying the
density profiles to explore the variation of the cloud size.
We first focus on the behavior of the atoms in a non-
interacting and also a strongly interacting cloud. Sec-
ondly, we will study two important features that appear
at intermediate interaction strengths: the emergence of a
local maximum in cloud size, and a gradient discontinuity
in the cloud size.

Throughout our study of mass imbalance we have
opted to keep the mass of the light species constant
and increase the mass of the heavy species. As we see
in Fig. 3(a) at zero and weak interactions the lighter
species is the outermost in the trap whenever the pop-
ulation is not strongly biased towards the heavy par-
ticles. Therefore in Fig. 4(a and b), as we increase
mass imbalance the cloud size of the non-interacting
gas is always the same. However, in Fig. 3(f), we see
that if there is sufficient population imbalance towards
the heavier species, they can instead be the outermost
species. The crossover can be deduced from the exact
expression for the cloud size in the non-interacting limit

31/625/12~1/2ω−1/4 maxσ(N
1/6
σ /m

1/4
σ ).

We now turn to study the opposite limit of a strongly
interacting gas. As seen in Fig. 3(e and j), all the atoms
are in fully polarized domains so the cloud size plateaus
as a function of interaction strength. The heavy particles
are found in the trap center and their degeneracy pressure
supports an outer shell of the light particles. Therefore,
if the mass of the heavier particles is increased their den-
sity must increase to retain the same degeneracy pressure
P ∝ n5/3/m, thereby shrinking the cloud. We also note
that the heavy particles have a higher density than the
light, and so biasing the population towards the heavier
species decreases the overall size of the cloud.

After summarizing the behavior of the cloud size at
weak and strong interactions we are well positioned to
highlight two non-monotonic features that arise at in-
termediate interaction strengths: firstly a gradient dis-

continuity seen in Fig. 4(c and d), and secondly a local
maximum at intermediate interaction strength in Fig. 4(a
and b).

Cloud size gradient discontinuity

The discontinuity in the gradient of the cloud size is
visible in Fig. 4(c and d) at kFa ≈ 1 and kFa ≈ 2 re-
spectively. For weakly-interacting clouds with a suffi-
cient population imbalance towards the heavier species,
Fig. 3(f) shows that the heavier species extends to greater
radii than the lighter species. However, at strong inter-
actions in Fig. 3(j) the lighter species exists exclusively
at large radii. We monitor the expulsion of the light
atoms through the series of density profiles and trajecto-
ries Fig. 3(g and h). As the outside of the light particle
cloud moves past the outside of the heavy particle cloud
it raises the rate at which the cloud size increases, thus
introducing the gradient discontinuity. The trajectories
(g) and (h) in Fig. 3 flip from downwards to upwards cur-
vature at this point. The kink is guaranteed to emerge
if at zero interaction, the heavier species persists to the
largest radius, that is µ↑ > µ↓. This is equivalent to the

condition that N↑/N↓ > m
3/2
↑ /m

3/2
↓ .

Cloud size local maximum

When the trapped gas has a mass imbalance in Fig. 4(a
and b), the cloud size has a local maximum with rising in-
teraction strength. Having earlier understood that cloud
size increases with kFa at small interactions, to study
the emergence of a local maximum in the cloud size we
focus on why the cloud size decreases on increasing the
interaction strength from the putative local maximum.
In this limit the gas is almost fully phase separated, hav-
ing a central region made up entirely of heavy particles,
followed by a density discontinuity to n↓c at some radius
Rc, outside which light particles dominate but contain a
small number, δN↑, of the heavier particles.

As kFa is increased between Fig. 3(d and e), these
outer heavy particles are forced into the trap center. This
leads to an increase in local light particle Fermi energy of
gδN↑, so a number ∼ δN↑gν↓ of lighter particles move to
the position of the shell from larger radii, where ν↓ is the
density of states at the shell. This expulsion occurs when
gν↓ = 1, which is consistent with the ferromagnetic tran-
sition, and so we deduce that δN↑ lighter particles move
in from larger radii to fill the void left by the transfer
of δN↑ heavier particles to the center of the trap. With
space cleared for light particles, the cloud size falls by
δN↑/4πR2

cn↓c.
However, a second counteracting effect occurs. As

δN↑ heavy particles are absorbed by the central
phase region its size increases, inflating the cloud by
δN↑/4πR2

cn↑c = δN↑(m↓/m↑)3/5/4πR2
cn↓c, where we

have invoked pressure conservation at the boundary so
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n↑c = n↓c(m↑/m↑)3/5. In the presence of a mass im-
balance this expansion is less than the fall in size of
the outer particles, and so overall the cloud shrinks by
δN↑(1 − (m↓/m↑)3/5)/4πR2

cn↓c, thus forming the cloud
size local maximum. Finally we notice that with mass
balance m↑/m↓ = 1 we predict that there is no fall in
the cloud size upon approaching full polarization, which
is consistent with our plots in Fig. 4(a to d).

Kinetic energy

The variation of kinetic energy with interaction
strength in Fig. 4(e to l) shows strong trends with chang-
ing mass imbalance. When a heavier species is intro-
duced, the kinetic energy of that species at zero interac-

tion strength falls as EK↑ = 2−13/634/3ω1/2~N4/3
↑ /m

1/2
↑ .

Fig. 4 (i to l) shows that, for any given population
imbalance, a greater heavy particle mass leads to a
lower kinetic energy at large kFa. This occurs because
for nonzero mass imbalance, the central heavy parti-
cle domain of the gas has a kinetic energy per particle

∼ n2/3↑ /m↑. However, increasing the mass of the heavier
species increases the central density to maintain pressure
support. Pressure balance at the interface of heavy and
light phase regions demands (n↑/n↓)2/3 = (m↑/m↓)2/5,
which suggests that the kinetic energy per particle is

∼ n
2/3
↓ m

−2/5
↓ m

−3/5
↑ . Since the density distribution n↓

of the light particles varies slowly with m↑, the heavy

kinetic energy per particle falls with mass like ∝ m−3/5↑ .

Loss rate

In a study of three-body losses Ref. [18] in the presence
of mass imbalance it was found that the loss process is
greatly suppressed for large mass imbalance. We see in
Fig. 4(m to p) that clouds with the largest mass imbal-
ance (m↑/m↓ = 20/3) have significantly reduced three-
body losses. Experiments on clouds with a lower loss
rate will have longer to reach equilibrium and so could
potentially better reflect theoretical predictions. More-
over, mass imbalance also drives a double maximum in
loss rate against kFa, for example, when m↑/m↓ = 3/2 in
Fig. 4(p). We now explore this feature using our trap pro-
files in Fig. 3. Increasing the interaction strength from
zero intuitively leads to an initial increase in loss rate
Υn↑n↓a6. At the interaction strength for Fig. 3(g), the
light particles are expelled to larger radii where heav-
ier particles are less dense, so the three-body loss rate
falls. However, following this as the interaction strength
is increased still further the loss rate ∝ (kFa)6 rises again
until the interaction strength is sufficient in Fig. 3(j) to fi-
nally completely expel the light particles out of the heavy
particle region. At this point the loss rate falls completely
to zero. This system therefore offers a fully polarized
cloud, that is also stable to three-body losses, which is

not seen with mass balance since even at high interac-
tion strength the gas is always paramagnetic in the outer
regions thus giving a finite loss rate.

There is also a two-body loss process [4] that of-
fers a competing many-body instability to the Feshbach
molecules seen on the BEC-BCS crossover. Though the
instability appears to be important in the equal mass
case, in the presence of population or mass imbalance it
is known that the superfluid gap is reduced [27]. There-
fore, we expect that the two-body loss rate should also
fall.

V. TEXTURED PHASES & PERPENDICULAR
MAGNETIZATION

We now study the stability of our uniform mean-field
states to two kinds of perturbation. Firstly, we ad-
dress the possibility for spontaneous in-plane polariza-
tion. Secondly, we study the opportunity for a spin spiral
state to emerge as a ground state instability of the im-
balanced Fermi seas. Thirdly, in the recent experimental
study one tactic to minimize three-body losses was to
rapidly ramp the interaction strength, so we search for
the most unstable collective modes following a quench.
All three of these instabilities can be studied through
the magnetic susceptibility, which we first derive below.

Starting with Eq. (2), we expand the magnetization
fields in small perturbations δφω,q around a station-
ary and homogeneous saddle-point solution φ. From
Sec. III A the mean-field φ is aligned along the z-axis.
There are no linear terms in δφω,q, so to second order
we get a change in the action of

δS = g
∑

ω,q

|δφω,q⊥ |
2
[
1 +

g

2

(
Πω,q
↑↓ + Πω,q

↓↑

)]

+ g
∑

ω,q

|δφω,qz |2



1− g2
(

Πω,q
↑↑ Πω,q

↓↓

)

1− g
2

(
Πω,q
↑↑ + Πω,q

↓↓

)


 , (9)

where Πω,q
αγ = 1

βV

∑
ω′,q′ [iω′−ξα(q′)]−1[iω′+iω−ξγ(q′+

q)]−1, and ξσ(p) = p2/2mσ − µσ + gn−σ. To recover
the Stoner criterion we examine the ω = 0 and q = 0
z-channel where Π0,0

σσ = −νσ, and the density of states
νσ is evaluated at the σ species Fermi surface. This then
gives δS = g|δφ0,0z |2(1−g2ν↑ν↓)/[1+g(ν↑+ν↓)/2], which
has a ferromagnetic instability at g

√
ν↑ν↓ = 1.

A. Perpendicular polarization

An SU(2) spin symmetric system can become polarized
in any direction. However, if SU(2) symmetry is broken
through mass and/or chemical potential imbalance then
numerics show that φ⊥ = 0. Here we verify this result
analytically by showing that a system strongly polarized
along the quantization axis is always stable against the
formation of perpendicular polarization φ⊥.
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Starting from Eq. (9), the system is stable against in-

plane polarization only if η ≡ 1 + gΠ0,0
↑↓ > 0. At zero

temperature, we find that

Π0,0
↑↓ = − m3/2

√
2π2~3

1− r2
r

[√
εF↑(1 + r)−

√
εF↓(1− r)

+ Γ arctan

(√
εF↓(1− r)−

√
εF↑(1 + r)

Γ + Γ−1
√
εF↓εF↑(1− r2)

)]
, (10)

with Γ = [∆µ + gφz)(1 − r2)/r]1/2, and εFσ =
max (0, µσ − gn−σ). In the presence of population and
mass balance we find that η = 0 in the polarized regime
(g > 1/ν). Therefore SU(2) symmetric systems are sus-
ceptible to transverse polarization.

We now show that perpendicular magnetization cannot
spontaneously develop when a mass or population imbal-
anced system is strongly polarized along the z axis. An
instability only emerges if η turns negative, so our strat-
egy is to bound η from below. Without loss of generality
we focus on the ↑ spin polarized system. η decreases with
g right up to the fully polarized boundary so we substi-
tute in the value of g at full polarization given by Eq. (7).
This transforms η into an increasing function of ∆µ/µ, so
we use the smallest value of ∆µ/µ consistent with ↑ spin
polarization given by Eq. (6). This allows us to bound η
from below by

η ≥ 36r2

175
− 8r3

2625
> 0 for 0 < |r| ≤ 1 . (11)

The increasing powers of r come from solving Eq. (6) for
∆µ/µ using series. As η > 0 the system is stable against
perpendicular polarization if the SU(2) symmetry is bro-
ken by mass or population imbalance. Furthermore the
perpendicular magnetization fluctuations have a gapped
spectrum, whereas in the mass balanced case they are
soft [9].

B. Textured phases at mean-field level

To verify that the system is not unstable to the for-
mation of a textured phase we first study a spin spi-
ral with polarization along the quantization axis. We
focus on long wavelength spirals so expand in small
q � pF to find that the longitudinal susceptibility is
Π0,q
σσ = mσ

2π2 (−pFσ + q2/12pFσ). Substituting this into

Eq. (9) one finds the resulting coefficient of q2 is always
positive, and so a textured phase only serves to increase
the coefficient of |δφ0,qz |2. Therefore a spin spiral state
is less energetically favorable than a uniform ferromag-
netic state. We have also verified that a similar argument
holds for spin spiral phases with in-plane polarization.
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FIG. 5: (Color online) (a) shows the growth rate ωq as
a function of wave vector q for collective modes at val-
ues of the dimensionless interaction strength kFa/kFac −
1 = {0.02, 0.06, 0.10}. Here kFac is the critical interaction
strength of the Stoner transition, given in the general mass
and population imbalanced case by the boundary in Fig. 1.
The solid red curves correspond to the mass balanced gas,
and the dashed blue lines to a gas of 6Li and 40K, where
the chemical potentials have been tuned to give population
balance at kFa = 0. (b) Summarizes the behavior of mode
wave vector (primary y-axis) and maximum growth rate (sec-
ondary y-axis) in (a). The axes are normalized by the Fermi
wave vector and chemical potential of the 6Li atoms.

C. Dynamical phase formation

One tactic to reduce three-body losses in the ferromag-
netic gas is to study the dynamics immediately following
an interaction strength quench. The mass balanced ultra-
cold atomic gas is predicted to form unstable collective
modes [26], and here we explore the mass imbalanced
case. To obtain the wave vector q and growth rate ωq

of the unstable modes, we search for the poles in the
magnetization propagator, which are the solutions to

(z) : 1− g2Πω,q
↑↑ Πω,q

↓↓ = 0

(⊥) : 1 +
g

2

(
Πω,q
↑↓ + Πω,q

↓↑

)
= 0 . (12)

The growth rate relation for modes along the quantiza-
tion axis is given by solving (z), whereas the relation for
perpendicular modes is given by solving (⊥). The po-
larization Πω,q

αβ is as defined immediately below Eq. (9),
except with g = 0.
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We calculate these susceptibilities computationally. In
Fig. 5(a) we plot the frequency against wave vector rela-
tions for the z direction, and compare those with the mass
balanced case. The curves in Fig. 5(a) reveal the most
unstable mode with largest growth rate ωq has a well de-
fined maximum at wave vector q = qmax. In the context
of experiment, we expect the domains to be roughly of
size ∼ 1/qmax, and have growth rates ∼ ωqmax .

We see in Fig. 5(b) that, for a particular normalized
value of the interaction strength, using the 6Li-40K mass
imbalanced system does not affect the size of z domains
but does reduce the rate of domain growth by a factor
of ∼ 5 relative to a mass balanced gas. However, in
Fig. 4(n) we see that 6Li-40K three-body losses were sup-
pressed by a factor of ∼ 20 compared to a mass balanced
gas. Therefore, for the same net loss the domains in
a mass imbalanced gas can undergo ∼ 4 = 20/5 times
the growth. For the perpendicular direction, the intro-
duction of mass imbalance decreases domain size, while
increasing formation time.

VI. DISCUSSION

An ultracold atomic gas of fermions with repulsive in-
teractions offers investigators a new flexible system in
which to realize itinerant ferromagnetism. Introducing
a mass imbalance between the two spin species drives
new distinctive features in the experimental observables

of the cloud size, release energy, and loss rate that should
help better characterize the formation of a ferromagnetic
phase. Furthermore a mass imbalance can strongly sup-
press the three-body loss rate that plagues the formation
of the ferromagnetic phase.

The presence of a mass imbalance also opens up
new opportunities to study collective phenomena beyond
those that can be realized in the standard Stoner model.
Though we showed that a spin textured phase analogous
to the Fulde-Ferrell-Larkin-Ovchinnikov state in super-
conductors is not formed at mean-field level, it has al-
ready been established that fluctuations corrections drive
its formation even in a mass balanced gas. The presence
of a mass imbalance will alter the Fermi surface nest-
ing and could pose an interesting direction for future re-
search.
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