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We study the low-energy effective theory of spinor condensate ferromagnets for the superfluid
velocity and magnetization degrees of freedom. This effective theory describes the competition
between spin stiffness and a long-ranged interaction between skyrmions, topological objects familiar
from the theory of ordinary ferromagnets. We find exact solutions to the non-linear equations
of motion describing neutral configurations of skyrmions and anti-skyrmions. These analytical
solutions provide a simple physical picture for the origin of crystalline magnetic order in spinor
condensate ferromagnets with dipolar interactions. We also point out the connections to effective
theories for quantum Hall ferromagnets.

I. INTRODUCTION

For systems with broken symmetries, low-energy ef-
fective theories provide a simple and powerful tool for
describing the relevant physics. The focus is on the long-
wavelength Goldstone modes which emerge from the mi-
croscopic degrees of freedom. This often reveals the con-
nections between seemingly unrelated systems that share
the same pattern of symmetry breaking. The most well-
known example is that of the complex scalar field used
in the low-energy theories of bosonic superfluids [1, 2],
fermionic superconductors [3], and XY spin systems [4].

Effective theories also bring to light subtle topological
effects that may become important at low energies. Gold-
stone modes often carry a non-trivial topology which can
give rise to the appearance of topological defects. For ex-
ample, in two spatial dimensions Kosterlitz and Thouless
pointed out the crucial role of vortices for the complex
scalar field [4, 5]. Vortices are point-like topological de-
fects around which the phase of the complex scalar field
winds by an integer multiple of 2π.

Ultracold atomic systems provide an ideal testing
ground for low-energy effective theories. The microscopic
degrees of freedom are well-isolated from the environment
experimentally and well-understood theoretically. The
challenge is in describing how these microscopic degrees
of freedom organize at low energies in the presence of
non-trivial interactions. When only one internal hyper-
fine level is important, the phenomenon of scalar Bose-
Einstein condensation is given by the low-energy theory
of the complex scalar field [6–8]. A series of ground break-
ing experiments have observed vortex lattices in rotating
condensates [9, 10] as well as evidence for the role of vor-
tices in the equilibrium Kosterlitz-Thouless transition for
two-dimensional condensates [11].

For ultracold atoms with a complex internal level struc-
ture, there are various patterns of symmetry breaking.
This lead to rich possibilities and challenges for low-
energy effective descriptions. Spinor condensate ferro-
magnets are one such system which has seen a number of
important experimental advancements (see Ref. [12]).
This includes the development of optical dipole traps
used for preparation [13] and phase-contrast imaging

used for detection [14] in S = 1 87Rb. In addition to the
phase degree of freedom familiar from single-component
condensates, the magnetization naturally arises as a de-
scription of the low-energy spin degrees of freedom. A
vector quantity sensitive to both the population and co-
herences between the three hyperfine levels, the magne-
tization can be directly imaged in experiments [14].

One of the most striking observations in spinor con-
densate ferromagnets is the spontaneous formation of
crystalline magnetic order [15, 16]. From an initial
quasi-two-dimensional condensate prepared with a uni-
form magnetization, a crystalline lattice of spin domains
emerges spontaneously at sufficiently long times. The
presence of a condensate with magnetization sponta-
neously breaks global gauge invariance and spin rota-
tional invariance. Additionally, crystalline order for the
magnetization breaks real space translational and rota-
tional symmetry. Previous works have pointed out the
crucial role of dipolar interactions in driving dynami-
cal instabilities within the uniform condensate towards
states with crystalline order [17–19]. Numerical analysis
of the full multi-component Gross-Pitaevskii equations
suggest dipolar interactions can give rise to states with
crystalline order [18, 20].

In this and a companion paper [21], we take a com-
plementary approach and focus on the low-energy effec-
tive theory of two-dimensional spinor condensate ferro-
magnets. This effective theory describes the interaction
between the superfluid velocity and the magnetization
degrees of freedom. Previous work has derived the equa-
tions of motion for this effective theory [22, 23]. We
extend this result to demonstrate how the Lagrangian
for the effective theory can be written as a non-linear
sigma model in terms of the magnetization alone. The
effect of the superfluid velocity is to induce a long-ranged
interaction term between skyrmions, topological defects
familiar from the theory of ordinary ferromagnets [24].
In contrast to the point-like topological defects of vor-
tices, skyrmions describe extended magnetization tex-
tures which carry a quantized topological charge.

In the companion paper [21], we study how symmetry
groups containing combined real space translational, real
space rotational, and spin space rotational symmetry op-
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erations can be used to classify possible crystalline mag-
netic orders. Within each symmetry class, we find min-
imal energy configurations describing non-trivial crys-
talline configurations.

The main purpose of this paper is to give a simple
physical physical picture for the origin of crystalline or-
der in terms of neutral configurations of skyrmions and
anti-skyrmions. Long-ranged skyrmion interactions force
magnetization configurations to have net neutral collec-
tions of topological defects. We show this explicitly
by finding exact analytical solutions for the non-linear
equations of motion describing both localized collections
of skyrmions and anti-skyrmions as well as extended
skyrmion and anti-skyrmion stripes.

Skyrmions have non-trivial spin configurations that
spontaneously break translational and rotational invari-
ance in real space. Proposed originally in high energy
physics as a model for mesons and baryons [25, 26],
skyrmions have found applications in a number of diverse
fields including quantum Hall ferrogmagnets [27, 28], and
magnetically ordered crystals [29–32].

A neutral collection of such topological objects is
able to take advantage of the dipolar interaction en-
ergy without a large penalty in the skyrmion interac-
tion energy. Since a neutral skyrmion configuration has
the same topological number as the uniform magnet, its
stability is not ensured by topology alone. However,
the scale invariance of the skyrmion interaction energy
rules out the most straightforward instability of bring-
ing skyrmions and anti-skyrmions closer together. Essen-
tially, the skyrmion interaction energy forces the charge
densities of a skyrmion and anti-skyrmion pair to shrink
as the distance between them shrinks so that the overall
energy remains the same.

The analytical solutions we find without dipolar inter-
actions closely resemble the minimal energy configura-
tions found numerically in the presence of dipolar inter-
actions. The role of dipolar interactions can then be seen
as stabilizing these non-trivial solutions of the effective
theory. We point out that magnetic dipolar interactions
are small. Thus it is a good starting point to find states
which are static nontrivial solutions of the system with-
out dipolar interactions.

The effective theory of spinor condensate ferromag-
nets is essentially identical to that of the quantum Hall
ferromagnets [27, 33]. Although the microscopic de-
grees of freedom are fermionic electrons, the magneti-
zation order parameter is bosonic. The Coulomb inter-
action between electrons then gives a contribution to the
skyrmion interaction for the effective theory. The result-
ing skyrmion interaction is qualitatively the same as the
one for spinor condensate ferromagnets. This suggests
the study of spinor condensate ferromagnets may have in-
teresting connections to quantum Hall ferromagnets and
vice versa.

The plan of this paper is as follows. In Sec. II we
review the theory of ordinary ferromagnets and how
skyrmion solutions arise from the non-linear Landau-

Lifshitz equations of motion. We then proceed to re-
view how these skyrmion solutions are used in the low-
energy effective theory of quantum Hall ferromagnets in
Sec. III. Next we derive the low-energy effective the-
ory for spinor condensate ferromagnets in Sec. IV. In
particular, we demonstrate how a long-ranged skyrmion
interaction term (which also appears for quantum Hall
ferromagnets) arises from coupling of the magnetization
to the superfluid velocity.

In Sec. V, we discuss how to interpret the mathemati-
cal structure of skyrmion solutions for ordinary ferromag-
nets in terms of a separation of variables. This approach
allows us to use find new exact solutions for the ordinary
ferromagnet. More importantly, it also allows us to gen-
eralize the skyrmion solutions of the ordinary ferromag-
net to find analytical solutions for the spinor condensate
ferromagnet. These latter solutions describe both neutral
collections of localized skyrmions and anti-skyrmions as
well as extended stripe configurations. Finally, we dis-
cuss how the analytical solutions we find offer insight
into quantum Hall ferromagnets and spinor condensate
ferromagnets with dipolar interactions in Sec. VI

II. SKYRMIONS IN FERROMAGNETS

We begin by reviewing the theory of ordinary two-
dimensional ferromagnets described by the following La-
grangian, Hamiltonian, and Landau-Lifshitz equations of
motion [34]

L = −S
∫

dtd2xA(n̂) · ∂tn̂−
∫

dtH

H =
S

4

∫

d2x∇(n̂)2

∂tn̂ =
1

2
n̂×∇2n̂ (1)

where n̂ is a three component real unit vector and A(n̂)
is the unit monopole vector potential. The order param-
eter n̂ describes the magnetization and is a unit vector
living on the sphere. Calculating the variation of the La-
grangian to derive the Landau-Lifshitz equations [35, 36]
can be done by using δn̂ = δw × n̂ where δw is an arbi-
trary vector valued field that parameterizes the variation
δn̂. This is consistent with the constraint |n̂| = 1 since
δn̂ · n̂ = 0 by construction. The variation of the term
∫

dtA(n̂) · ∂tn̂ is clearest when using its geometric inter-
pretation as the area on the sphere swept by n̂. While
we include time dependent terms for completeness, in
this paper we will only consider static solutions

In addition to the trivial uniform solution, there are
non-trivial soliton solutions to the Landau-Lifshitz equa-
tions called skyrmions. By parameterizing

n̂ =
[

sin(α) cos(β) sin(α) sin(β) cos(α)
]T

(2)

we see α controls n̂z, the ẑ component of the magnetiza-
tion while β controls the canonically conjugate variable
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FIG. 1: (Color online) A single localized skyrmion (left fig-
ure) carrying 4π net skyrmion charge in the ordinary ferro-
magnet. Neutral configuration (right figure) consisting of a
localized skyrmion carrying +4π skyrmion charge in a nega-
tive background carrying −4π skyrmion charge in the spinor
condensate ferromagnet. Notice the +ẑ (−ẑ) meron carry-
ing +2π (+2π) net skyrmion charge at the origin (at infin-
ity) for the ordinary ferromagnet are mapped to a skyrmion
(anti-skyrmion) carrying +4π (-4π) net skyrmion charge in
the spinor condensate ferromagnet. Red background (left fig-
ure, origin of right figure) indicates positive skyrmion density
q while blue background (away from origin of right figure) in-
dicates negative q. Black 2D arrows indicates the superfluid
velocity v for the spinor condensate ferromagnet and shaded
3D arrows the magnetization n̂.

giving the orientation of n̂x, n̂y, the x̂, ŷ components of
the magnetization.

The minimal energy solutions within each topological
sector are called skyrmions and can be written in the
form [24]

tan(α/2)eiβ = exp[f(x+ iy)] = exp[u(x, y) + iv(x, y)]
(3)

where f(z) is a holomorphic function of z with real part
u(x, y) and imaginary part v(x, y). The function f(z) ∼
n log(z−z0) can have logarithmic singularities [52]. Since
β has to be 2π periodic, the residues of these singularities
must be integers. This implies exp[f(x + iy)] can only
have zeros or poles. The resulting spin configuration has
n̂z = +1 (n̂z = −1) at zeros (poles) of exp[f(z)] while n̂x,
n̂y wind anti-clockwise (clockwise) along a path circling
the zeros (poles) in a anti-clockwise direction.

These solutions describe topological defects of ordinary
ferromagnets. For fixed boundary conditions, smooth,
finite energy configurations are separated into distinct
classes characterized by a quantized topological invariant
∫

d2xq(x) = 4πN where N is the number of times n̂
covers the sphere. Here

q = ǫµν n̂ · ∇µn̂×∇ν n̂ (4)

is the skyrmion density which is positive for f(z) holo-
morphic. From here on, lower Greek indices (upper Ro-
man indices) refer to real space (order parameter) com-
ponents.

Consider the single skyrmion solution shown in the left
of Fig. 1. It corresponds to f(z) = log(z), carries net

FIG. 2: (Color online) Unit cell for a lattice of localized
skyrmions (left figure) carrying 8π net skyrmion charge per
unit cell in the ordinary ferromagnet. Unit cell for a neutral
configuration (right figure) carrying zero net skyrmion charge
per unit cell in the spinor condensate ferromagnet. Notice
+ẑ (−ẑ) merons are mapped to skyrmions (anti-skyrmions).
Red background (left figure, top left and bottom right of right
figure) indicates positive (negative) skyrmion density q while
blue background (top right and bottom left of right figure)
indicates negative q. Black 2D arrows indicate the superfluid
velocity v and shaded 3D arrows the magnetization n̂.

skyrmion charge 4π, and can be decomposed into a +ẑ
meron at the origin and a −ẑ meron at infinity. Essen-
tially, a meron can be thought of as half of a skyrmion
and characterized by two signed quantities: the direction
of the magnetization at the core and the orientation of
the winding away from the core. The sign of the skyrmion
density is the product of the sign of these two quantities.
For example, the +ẑ meron at the origin to the left of
Fig. 1 carries net skyrmion charge 2π.

For spinor condensate ferromagnets, scale invariance
of the skyrmion interaction term guarantees stability
against trivial rescaling. However, this may change if
we introudce a short distance cutoff or quantum fluctua-
tions.

Notice the Lagrangian in Eq. 1 has translational, ro-
tational, and scale invariance in real space as well as ro-
tational invariance in spin space. The single skyrmion
solution spontaneously breaks all of these symmetries.
However, the action is invariant for f(z) = log[f0(z−z0)]
with complex constants z0 and f0. Taking solutions with
z0 6= 0 corresponds to spatially translating the solution
with z0 = 0, solutions with Re[f0] 6= 1 corresponds to
spatially rescaling the solution with f0 = 1, and solutions
with Im[f0] 6= 0 corresponds to rotation of the f0 = 1 so-
lution. In addition, the action is the same for On̂ where
O is a rotation matrix describing solutions related by spin
space transformations.

Collections of multiple skyrmions are described by
f(z) having multiple singularities. A square lattice of
skyrmions with net skyrmion charge 8π per unit cell is
shown in the left of Fig. 2. It can also be decomposed
into a collection of two +ẑ merons and two −ẑ merons
arranged antiferromagnetically. In addition, there are
solutions tan(α/2)eiβ = exp[f(x − iy)] with f(z̄) anti-
holomorphic characterized by x̂, ŷ components winding
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in the opposite direction compared to holomorphic solu-
tions and q negative.

III. QUANTUM HALL FERROMAGNETS

After describing the structure of skyrmion solutions
for ordinary ferromagnets, we now briefly review how
they are used in the study of quantum Hall ferromagnets
[27, 33]. For the low-energy effective theory of quantum
Hall ferromagnets, spin 1/2 electrons in a magnetic field
are described by a two component Chern-Simons com-
posite boson theory. The bosons couple to the phys-
ical gauge field due to the magnetic field and a ficti-
tious Chern-Simons gauge field which attaches appro-
priate flux quanta to change from bosonic to fermionic
statistics. At appropriate filling fractions, the physical
and Chern-Simons fluxes cancel and the resulting quan-
tum Hall plateau is described as a condensate of compos-
ite bosons.

The Lagrangian and Hamiltonian for the resulting ef-
fective theory is given by

L = − 1

2

∫

dtd2xA(n̂) · ∂tn̂−
∫

dtH

H =

∫

d2x

[

1

8
(∇n̂)2 +

1

2
~B · n̂

]

+
1

8

∫

d2xd2y[q(x) − q̄]G(x− y)[q(y) − q̄] (5)

where ~B is the magnetic field giving rise to a linear Zee-
man shift, q(x) is the skyrmion density and q̄ =

∫

d2xq(x)
is the net skyrmion charge.

The coupling of the bosons to the Chern-Simons field
gives rise to the skyrmion interaction term. At long dis-
tances, the Chern-Simons field ties the skyrmion density
to the deviation of the physical electron density from
its background value at quantum Hall plateaus. In fact
skyrmions are lowest energy quasiparticles at a filling fac-
tor of one [27, 37]. Thus, the skyrmion density inherits
the Coulomb interaction which has singular |x−y|−1 be-
havior for G(x− y).

Thus the focus is on static configurations carrying net
skyrmion charge. The skyrmion solutions of the ordinary
ferromagnet have non-zero q̄ and provide a good qualita-
tive description of quantum Hall ferromagnets away from
quantum Hall plateaus. For example, a square lattice of
skyrmions as shown in Fig. 2 carries a net charge of
8π per unit cell and can be used as a starting point for
studying configurations carrying finite q̄. Although such
solutions take into account the spin stiffness and the long-
ranged divergence of the skyrmion interaction, quantita-
tive results require additional analysis arising from the
detailed form of skyrmion interaction and the linear Zee-
man shift. This usually involves numerical minimization
[37–40] of the Hamiltonian in Eq. 5.

IV. SPINOR CONDENSATE FERROMAGNETS

Having reviewed known results on ordinary and quan-
tum Hall ferromagnets, we now consider spin S spinor
condensate ferromagnets described by the microscopic
condensate wavefunction Ψ, a 2S + 1 complex vector
[41, 42]. The microscopic Gross-Pitaevskii Lagrangian
is given by

L =

∫

dtiΨ†∂tΨ −
∫

dtH−
∫

dtHS

H =

∫

d2x

[

1

2m
|∇Ψ|2 + g0(Ψ

†
Ψ)2 + gs(Ψ

† ~FΨ)2
]

(6)

where ~F are spin matrices and g0 > 0 gives the spin-
independent contact interaction strength while gs < 0
gives the spin-dependent contact interaction strength
which favors finite magnetization. Here, HS denotes
additional spin dependent interactions such as the
quadratic Zeeman shift and dipolar interactions.

As was the case for quantum Hall ferromagnets, we
expect a simpler description to emerge at low energies.
The resulting low-energy effective theory should only in-
volve the condensate phase φ and local magnetization n̂
which describe the order parameters of the system. Pre-
vious work has shown this can be done at the level of
the equations of motion [22]. In this section, we extend
this result to derive the Lagrangian and Hamiltonian for
the effective theory solely in terms of the magnetiza-
tion. However, the skyrmion density acts as a source
of vorticity for the superfluid velocity. Thus, the ef-
fect of the superfluid phase is to induce a logarithmic
vortex-vortex interaction between skyrmions. The re-
sulting non-linear sigma model is essentially identical to
that of the quantum Hall ferromagnet but with skyrmion
interaction G(x− y) ∼ log(x− y) having logarithmic be-
havior instead of |x− y|−1 behavior.

We begin by considering energies below the scale of
spin-independent g0 and ferromagnetic spin-dependent gs

contact interactions. The condensate has fixed density

Ψ
†
Ψ = ρ and fully polarized magnetization Ψ

† ~FΨ =

Sρn̂ where ~F are spin matrices. The states that satisfy
these constraints are parameterized solely in terms of the
low-energy degrees of freedom

Ψ =
√
ρeiφψn̂, n̂ · ~Fψn̂ = Sρψn̂ (7)

where φ descrribes the phase of the condensate and ψn̂ is
a fully polarized unit spinor with n̂ describing the orien-
tation of the magnetization. Although φ is not directly
observable, the superfluid velocity is a physical quantity

vµ = ∇µφ− iψ†
n̂∇µψn̂ (8)

which has contributions from both φ and ψn̂.
In this paper, we are primarily interested in the com-

petition between the spin stiffness and superfluid kinetic
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energy. In the companion paper [21], we address the ef-
fect of magnetic dipolar interactions. From here on, we
consider the case HS = 0. From the Gross-Pitaevskii
Lagrangian in Eq. 6, the Berry’s phase term becomes
iΨ†∂tΨ = −ρ∂tφ−SρA(n̂) ·∂tn̂ while the kinetic energy
term is given by |∇Ψ|2 = Sρ/2(∇n̂)2+ρv2 and the inter-
action terms give constants. This gives the Lagrangian
and Hamiltonian as

L = −S
∫

dtd2xA(n̂) · ∂tn̂−
∫

dtH

H =

∫

d2x

[

S

4
(∇n̂)2 +

1

2
v

2

]

(9)

where we take ρ = m = 1 for simplicity. Notice for fixed
ρ, the ∂tφ term is a total derivative which we exclude.
Compared to the Lagrangian describing ordinary ferro-
magnets in Eq. 1, there is an additional superfluid kinetic
energy term vµvµ.

The global phase φ enters the Lagrangian quadrati-
cally and only through v. The equation of motion for
φ gives ∇µvµ = 0 implying the superfluid velocity is di-
vergenceless. This follows from v describing transport of
the density ρ, a conserved quantity which is locally fixed
at low energies due to the spin-independent contact in-
teraction. This implies that vµvµ only depends on the
divergenceless part of v. In momentum space, this is
vµ(+k)[δµν − kµkν/k

2]vν(−k) which can also be written
as Fµν(+k)Fµν(−k)/2k2.

Here we have introduce the analog of the field strength
tensor Fµν = ∇µvν − ∇νvµ, a local quantity that de-
pends only on the divergenceless part of v. In two
dimensions, there is only one non-zero component to
Fµν . From Eq. 8, this is given by the skyrmion density
Fxy = −Fyx = Sq. Here we assume that the condensate
phase φ does not contribute to Fxy through vortex-like
singularities. Such vortex-like singularities have non su-
perfluid cores with a corresponding vortex core energy
determined by the spin independent contact interaction
g0. This energy scale is much larger than the scale of the
spin dependent interactions which determine the forma-
tion of spin textures we focus on in this paper.

The above results give v solely in terms of n̂ as

∇µvµ = 0, ǫµν∇µvν = Sq (10)

with q the skyrmion density. Gradients in the order pa-
rameter n̂ arise in part from phase gradients in the con-
densate wavefunction Ψ. Topologically non-trivial mag-
netization configurations can thus give rise to vorticity
described by a non-zero curl ǫµν∇µvν 6= 0.

By introducing the two-dimensional logarithmic
Green’s function −∇2G(x) = δ(x) we can write the
superfluid kinetic energy Fµν(+k)Fµν(−k)/2k2 in real

space and obtain

L = −S
∫

dtd2xA(n̂) · ∂tn̂−
∫

dtH

H =
S

4

∫

d2x(∇n̂)2 +
S2

2

∫

d2xd2yq(x)G(x − y)q(y)

(11)

with the corresponding equations of motion given by

(∂t + vµ∇µ) n̂ =
1

2
n̂×∇2n̂ (12)

along with Eq. 10 for the superfluid velocity solved by

vµ = Sǫµν∇νΦ, −∇2Φ = q (13)

where Φ(x) =
∫

d2xG(x−y)q(y) has the interpretation of
the two-dimensional Coulomb potential associated with
q.

Compared to the Landau-Lifshitz equations describing
ordinary ferromagnets in Eq. 1, the replacement ∂t →
∂t + vµ∇µ describes the advection of the magnetization
by the superfluid velocity [22]. This advective term arise
from variation of the superfluid kinetic energy term in Eq.
9 or equivalently from the skyrmion interaction term in
Eq. 11. Recall that we include the time dependence for
completeness and focus only on static solutions.

The skyrmion density q gives the vorticity for the
superfluid velocity v. Thus, the second term in the
Hamiltonian above gives the pairwise logarithmic inter-
action energy between vortices. In the thermodynamic
limit, the logarithmic divergence of G(x−y) at large dis-
tances forces finite energy configurations to have zero net
skyrmion density

∫

d2xq(x) = 0.
Notice Eq. 11 for spinor condensate and Eq. 5 for

quantum Hall ferromagnets have the same form. Al-
though G(x − y) behaves as log |x − y| for the former
and |x − y|−1 for the latter, both give singular contri-
butions at long wavelengths. However, the important
absence of a finite background value q̄ in the skyrmion
interaction implies configurations for spinor condensate
ferromagnets must have zero net skyrmion charge.

V. EXACT SOLUTIONS WITH NEUTRAL

SKYRMION CHARGE

In quantum Hall systems density deviations from the
incompressible state cause skyrmions. Density fluctua-
tions with zero net average (such as impurities) cause
spin textures with zero net skyrmion number. States
with non-zero skyrmion number occur away from quan-
tum Hall plateaus. Thus the analytical skyrmion solu-
tions carrying net charge for the ordinary ferromagnet
offered insight into more complicated case of quantum
Hall ferromagnets away from the quantum Hall plateau.
For spinor condensate ferromagnets, we will show how
net neutral solutions with skyrmions and anti-skyrmions
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without dipolar interactions offer insight into the more
complicated case with dipolar interactions.

In this section, we find exact analytical solutions
for spinor condensate ferromagnets with logarithmic
skyrmion interactions in the absence of dipolar inter-
actions. We study the effect of including dipolar in-
teractions numerically after a symmetry analysis in the
companion paper [21]. The exact solutions we find here
greatly resemble the numerical solutions in the compan-
ion paper. As we discuss in Sec. VI, the interpretation
of the exact solutions in terms of neutral collections of
skyrmions and anti-skyrmions offers physical insight into
the more complicated numerical solutions of the compan-
ion paper.

To find exact solutions with zero net skyrmion charge,
it is vital to include the effect of the skyrmion interac-
tion term. Recall it is the long wavelength divergence
of this term that forces configurations to have zero net
skyrmion charge. Although this cannot be done exactly
for |x − y|−1 interactions as in quantum Hall ferromag-
nets, it is possible for logarithmic interactions as in spinor
condensate ferromagnets. Physically, this is because the
logarithmic interaction arises solely from the superfluid
kinetic energy which is scale invariant just like the spin
stiffness term.

We begin with the parameterization of n̂ in Eqs. 2, 3,
used in the skyrmion solutions of the ordinary ferromag-
net. Notice α, β provide a set of orthogonal coordinates
for the sphere describing the order parameter space of
n̂. For f(x+ iy) = u(x, y)+ iv(x, y) holomorphic, u(x, y)
and v(x, y) provide a set of orthogonal coordinates for the
plane describing real space. So for ordinary ferromag-
nets, skyrmion solutions are given by α = 2 tan−1(eu)
and β = v (see also Eq. 3), which can be understood as
a separation of variables.

Notice α(u) is a function of u only while β(v) is a
function of v only. Each orthogonal coordinate of the
order parameter space α, β is a function of only one or-
thogonal coordinate of real space u, v, respectively. The
reason why using u and v as coordinates is tractable
is because they satisfy the Cauchy-Riemann equations
∂xu = +∂yv, ∂yu = −∂xv. In particular, this implies
∇u · ∇v = 0 meaning countour lines of constant u are
perpendicular to countour lines of constant v as required
for orthogonal coordinates. In addition, both ∇2u = 0
and ∇2v = 0 satisfy Laplace’s equation. The above two
identities simplify expressions involving ∇2 which arise
in the equations of motion. In particular, when changing
variables from (x, y) to (u, v), the Laplacian retains its
form ∂2

x + ∂2
x ∝ ∂2

u + ∂2
v .

An alternative interpretation of the above separation
of variables is as follows. Given an arbitrary configura-
tion for n̂, consider the contour lines of constant n̂z, the ẑ
component of the magnetization. For contour lines with
n̂z 6= ±1 that form closed curves, consider the winding
number of n̂x + in̂y = sin(α)eiβ . For smooth configura-
tions, this is a quantized integer that cannot change be-
tween neighboring contours which do not cross n̂z 6= ±1.

FIG. 3: (Color online) For an arbitrary smooth magnetization
configuration, contour lines of n̂z and the phase of n̂x + in̂y

provide a natural coordinate system. For skyrmion solutions
of the ordinary ferromagnet, this gives an orthogonal coor-
dinate system with contour lines intersecting at right angles.
Using the same ansatz for spinor condensate ferromagnets
where contour lines intersect at right angles allows us to solve
the non-linear and non-local equations of motion. The mag-
netization and contour lines are shown for the single skyrmion
(left figure) for the ordinary ferromagnet and neutral config-
uration (right figure) for the spinor condensate ferromagnet.
Hue indicates orientation of n̂x, n̂y components of the mag-
netization and brightness gives the n̂z component with white
(black) indicating n̂z = +1 (n̂z = −1).

This implies the winding number is constant in regions
between contours with n̂z 6= ±1. Label different contours
of n̂z by u and the label coordinate along each contour
by v.

In order to have a non-zero winding number, β must
have some dependence on v and the minimal one is β ∝ v.
In principal, β can also depend on u and have some non-
monotonic dependence on v, but linear dependence is the
smoothest one compatible with non-zero winding num-
ber. We see that skyrmion solutions can be interpreted
in the above manner along with the additional condi-
tion that u and v are mutually othogonal and satisfy
Laplace’s equation. Physically, these additional condi-
tions on u and v can be understood as a consequence of
minimizing the spin stiffness. The relationship between
contour lines, winding number, and the exact solutions
we discussed in this section is shown in Fig. 3.

With this viewpoint, we can now generalize the
skyrmion solutions for ordinary ferromagnets and also
find new solutions for spinor condensate ferromagnets.
For f(x+ iy) = u(x, y) + iv(x, y) holomorphic, we take

α = α(u), β = kv (14)

for the parameterization of Eq. 2. Compared to the
skyrmion solutions of Eq. 3 with tan(α/2) = exp[u] for
ordinary ferromagnets, we allow for general dependence
α(u) for spinor ferromagnets. Whereas for ordinary fer-
romagnets we only need to solve ∇2n̂ = 0, for spinor
condensate ferromagnets we need to solve Eqs. 12, 13
with ∂t = 0.

In addition, we include a constant of proportionality
β = kv instead of β = v. Recall for ordinary ferromag-
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nets, β = +v and f(x + iy) holomorphic give skyrmion
solutions with positive skyrmion density q while β = +v
and f(x − iy) antiholomorphic give anti-skyrmion solu-
tions with q. We can treat both types of solutions with
just f(x + iy) holomorphic by allowing β = kv with k
positive or negative.

There are two cases to consider for f(z). The first is
when f(z) is a polynomial in z with no singularities. This
will turn out to describe skyrmion and anti-skyrmion
stripe and domain wall configurations for both ordinary
and spinor condensate ferromagnets. The second case is
when f(z) has singularities. Since n̂ should be single-
valued, β and thus kv can only have constant 2πN dis-
continuities with N integer. This implies f(z) can only
have logarithmic singularities. These solutions will turn
out to simply be the localized skyrmion configurations for
ordinary ferromagnets and neutral collections of localized
skyrmions and anti-skyrmions for spinor condensate fer-
romagnets.

Next we consider Eq. 13 for the superfluid velocity v.
For the parameterization in Eqs. 2, 14, we see from Eq. 4
that the skyrmion density q only depends on u. We thus
take Φ(u) to only depend on u which reduces the equation
−∇2Φ = q to −Φ′′(u) = q(u). From here on primes
denote derivatives with respect to u. By solving for Φ(u)
we can then obtain v by differentiating. Explicitly, we
obtain

q = −k cos(α)′|∂zf |2, vz = iSk[C + cos(α)]∂zf (15)

where vz = vx − ivy, ∂zf = ∂xf − i∂yf and C is a con-
stant of integration physically describing a u independent
constant contribution to the superfluid velocity.

We now proceed to analyze Eq. 12 for spinor conden-
sate ferromagnets. By substituting the results of Eq. 15
above and the parameterization in Eqs. 2, 14, we find the
ẑ component of Eq. 12 is automatically satisfied. In ad-
dition, the x̂ and ŷ components are proportional to each
other and reduce to a second ordinary differential equa-
tion for α(u). For completeness, we can use the same
approach to analyze Eq. 1 for ordinary ferromagnets us-
ing the same parameterization in Eqs. 2, 3.

For ordinary and spinor condensate ferromagnets, the
equations of motion in Eq. 1 and Eq. 12 reduce to

2α′′ = +k2 sin(2α)

2α′′ = −4SCk2 sin(α) − (2S − 1)k2 sin(2α) (16)

respectively. Notice the equations of motion for ordinary
ferromagnets are formally given by the S = 0 limit for
spinor condensate ferromagnets. Recall the spin stiffness
term scales linearly with S whereas the superfluid kinetic
energy scales quadratically with S. For spinor condensate
ferromagnets in the limit S → 0, the superfluid kinetic
energy is negligible compared to the spin stiffness and
the ordinary ferromagnet is recovered. From here on, we
consider the more general equation of motion for spinor
condensate ferromagnets.

Interpreting u as time, this equation is that of a clas-
sical particle with coordinate α and momentum α′. The
total energy E = K + U is a constant of motion where
K = (α′)2/2 is the kinetic energy while the periodic po-
tential U and equation of motion are

U(α) = −2SCk2 cos(α) − 2S − 1

4
k2 cos(2α)

α′ =
√

E − U(α) (17)

with S = 0 for ordinary ferromagnets. For this type of
solution, the total energy calculated from the Hamilto-
nian in Eq. 11 is given by

H = N

∫

dudv
S

2

[

2S + 1 + 4C2S

4
k2 − E + α′2

]

(18)

and similarly, S = 0 for the term in brackets for ordinary
ferromagnets.

The integer N comes from changing variables (x, y)
to (u, v) and taking into account each (u, v) may occur
for multiple (x, y). Mathematically, it is given by the
degree of f viewed as a map from the complex plane to
itself C → C. For localized skyrmion solutions for the
ordinary ferromagnet, it physically corresponds to the
skyrmion number. As an example, f(z) = log z for the
solutions shown in Fig. 1 (see Eq. 21 for a generalization)
and each value of (u, v) occurs exactly once for (x, y)
ranging over the plane and thus N = 1. For f(z) =
log[(ϑ(z −λ, i)ϑ(z− λ∗, i))/(ϑ(z+λ, i)ϑ(z +λ∗, i))] with
ϑ(z, τ) the elliptic theta function and λ = (1+i)/2 for the
solutions shown in Fig. 2 (see Eq. 22 for a generalization)
and each value of (u, v) occurs exactly twice for (x, y)
ranging over the unit cell and thus N = 2.

Here we comment on the significance of the parame-
ters C and E. Different values of C and E correspond to
solutions with different boundary conditions. Physically,
C controls a constant background contribution to the su-
perfluid velocity. The parameter E controls the relative
scaling of the two components of the coordinate system.
For example, for doubly periodic stripe solutions which
we will discuss later, E controls the aspect ratio of the
unit cell.

Formally, E and C are constants of integration for the
equations of motion. Since Eq. 16 is a second order
differential equation, we have to specify both α(u) and
α′(u), with the latter given indirectly by the constant of
motion E. In addition, C enters through integration of
Eq. 15 relating the skyrmion density to the superfluid
velocity.

These considerations mean that the total energy in Eq.
18 cannot be directly compared for different C and E. In
particular, one should not consider minimizing the total
energy H with respect to E and C. Specific values of E,
and C will be selected by terms beyond the non-linear
sigma model considered in this paper.
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A. Localized skyrmions and anti-skyrmions

We begin by considering the case of localized
skyrmions for ordinary ferromagnets and neutral collec-
tions of localized skyrmions and anti-skyrmions for spinor
condensate ferromagnets. Referring to the ansatz in Eqs.
2 and 14, this corresponds to f(z) having logarithmic
singularities. The singularities should be of integer mag-
nitude and k in Eq. 14 should also be an integer.

Requiring a well-behaved, finite energy solution gives
rise to several constraints. Consider Eq. 15 for the
skyrmion density q and supefluid velocity v. Since
∂zf diverges at the logarithmic singularities, we require
cos(α)′ and C + cos(α) to vanish. In addition, a finite
region in (x, y) near logarithmic singularities is mapped
to an infinite region in (u, v). The constant term in Eq.
18 for the total energy is then integrated over an infinite
interval. Thus, we also require it to vanish.

These constraints uniquely specify E, C and the
asymptotic value α−∞. For spinor condensate ferromag-
nets, E = k2(1 + 6S)/4, C = ±1, cos(α−∞) = ∓1 with
S = 0 for ordinary ferromagnets. For C = ±1, we find
for spinor condensate ferromagnets the solution of Eq.
16 and the total energy of Eq. 18 given by

α(u) = cos−1(∓1) − 2 cot−1(
√

2S sinh(ku))

H = 4πNSk2

(

1 +
2S tan−1(

√
2S − 1)√

2S − 1

)

(19)

which describes either a 0 → 2π or −π → +π kink solu-
tion. For C = ±1 we find for ordinary ferromagnets

α(u) = cos−1(∓1) + 2 tan−1(eku)

H = 2πNSk2 (20)

which describes in contrast either a 0 → π or −π → 0
kink solution.

Consider the classical mechanics problem describing
the evolution of α(u) in Eq. 17. For these solutions,
E lies at the maximum giving rise to kink solutions.
For ordinary ferromagnets, the kinks connect 0 → π or
−π → 0 and carry net positive or negative skyrmion
charge, respectively. For spinor condensate ferromagnets,
the kinks connect −π → +π or 0 → 2π and carry net
neutral skyrmion charge. The neutral configurations con-
sist of regions of oppositely charged skyrmion and anti-
skyrmions. These regions are separated by lines where
the skyrmion density q vanishes, the magnetization n̂ is
along ẑ, and the superfluid velocity v is large.

For f(z) having a finite number of logarithmic singu-
larities, we can write

f(z) = log

[

f0

∏Na

n=1(z − an)
∏Nb

m=1(z − bm)

]

(21)

with the degree N of the function f(z) given by N =
max(Na, Nb). Here, an (bn) give the locations of +ẑ
(−ẑ) merons each carrying net skyrmion charge 2π for

the ordinary ferromagnet. In contrast, an (bn) give the
locations of skyrmions (anti-skyrmions) each carrying net
skyrmion charge +4π (−4π) for the spinor condensate
ferromagnet. We show the corresponding plots of n̂, q,
and v in Fig. 1 for f(z) = log(z). The single skyrmion
solution for the ordinary ferromagnet with S = 0 is shown
on the left and a neutral configuration of one skyrmion
and one anti-skyrmion for the spinor condensate ferro-
magnet with S = 1 is shown on the right.

For a periodic lattice of logarithmic singularities,

f(z) = log

[

f0

∏Na

n=1 ϑ(z − an, τ)
∏Nb

m=1 ϑ(z − bm, τ)

]

(22)

where f0 is a constant, and 1, τ give the basis vectors
generating the lattice in complex form, and ϑ(z, τ) is the
elliptic theta function. The elliptic theta function ϑ(z, τ)
is essentially uniquely specified by the quasiperiodic con-
dition

ϑ(z + n+mτ, τ) = exp(−πim2τ − 2πimz)ϑ(z, τ) (23)

and holomorphicity. Just as Eq. 21 is built up from the
linear polynomials (z − z0) which are holomorphic and
vanish at one point in the complex plane, Eq. 22 is built
up from ϑ(z, τ) which are holomorphic and vanish at one
point in the unit cell. For a discussion of theta functions
in the quantum Hall effect, see Ref. [43].

In the lattice case, Na = Nb and
∑

an =
∑

bn in
order to have f(z) periodic. This restriction comes from
requiring f(z + n +mτ) = f(z) and using Eq. 23. The
degree N of the function f(z) per unit cell is given by
N = Na = Nb. Again, an, bn give the locations of merons
(skyrmions or anti-skyrmions) for the ordinary (spinor
condensate) ferromagnet. Fig. 2 shows plots for f(z)
having a lattice of logarithmic singularities with N =
Na = Nb = 2, f0 = 1, τ = i, a1 = −a2 = (1 + i)/2, b1 =
−b2 = (1− i)/2. Again the ordinary (spinor condensate)
ferromagnet is on the left (right).

B. Stripe configurations

Now we turn to case of stripe configurations described
by f(z) polynomial in z. The behavior of α(u) solutions
controlled by the potential in Eq. 17 changes as E crosses
critical points dU/dα = 0 of the potential.

For completeness, we first briefly consider f(z) given
by higher order polynomials. The corresponding stripe
solutions are not doubly periodic, but satisfy non-trivial
boundary conditions. For example, we show the mag-
netization n̂, skyrmion density q, and superfluid veloc-
ity v for f(z) = iz2 in Fig. 4. This solution satis-
fies corner boundary conditions with zero normal compo-
nent to both the superfluid velocity v and spin current
J

i
µ = n̂i

vµ − ǫijkn̂j∇µn̂
k/2.

From here on, we focus on f(z) = iz with the corre-
sponding solutions doubly periodic and describing stripe
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FIG. 4: (Color online) Neutral stripe configuration satisfying
non-trivial corner boundary conditions. Red background (top
left corner, bottom right corner) indicates positive (negative)
skyrmion density q while blue background (stripe between
top left and bottom right corner) indicates negative q. Black
2D arrows indicate the superfluid velocity v and shaded 3D
arrows the magnetization n̂.

configurations. The different types of behavior for α(u)
are illustrated schematically along with the resulting con-
figurations for n̂ in Fig. 5. E above the global maximum
corresponds to α(u) monotonic in u which from here on
we denote as M . This solution describes a periodic stripe
solution with n̂z varying over the entire range ±1. E at
a local maximum corresponds to a kink solution for α(u)
connecting α1 to α2 denoted as Kα2

α1
. This solution de-

scribes a single domain wall configuration in n̂z and is
the analog of the localized solution described earlier. E
below a local maximum corresponds to α(u) oscillating
near a fixed value α0 denoted as Oα0

. Finally, E below
the global minimum is forbidden, denoted as F .

Notice that for S = 0, S = 1/2, S > 1/2, the cos(2α)
term in the potential U(α) of Eq. 17 is negative, zero,
and positive. For the montonic solutionsM , this does not
affect the qualitative behavior of the resulting periodic
stripe configurations. For kink solutions K connecting
0 → 2π or −π → +π (0 → π or −π → 0), the result-
ing single domain wall carrys zero net skyrmion charge
(positive or negative skyrmion charge) for spinor con-
densate (ordinary) ferromagnets. Oscillatory solutions
O also have different behavior with oscillations centered
about n̂z ≈ ±1 (n̂z ≈ 0) for spinor condensate (ordinary)
ferromagnets.

For ordinary ferromagnet with S = 0, we parameterize
E = k2(1+2δ)/4 and find the solution of Eq. 16 and the
total energy of Eq. 18 given by

α(u) = π/2 ± am
(

ku
√

1 + δ, (1 + δ)−1
)

H̄ =
Sk2

2

[

− δ
2

+ θ(1 + δ)

]

(24)

where H̄ is the total energy density given by the aver-
aging H over the unit cell. Also, am(x,m) is the Jacobi
amplitude function and we define

θ(m) = m
Re[E(m−1)]

Re[K(m−1)]
(25)

with K (E) the complete elliptic integral of the first (sec-
ond) kind. For δ < −1 the solution is forbidden F . For
−1 ≤ δ < 0 there are two oscillatory solutions at the
±π/2 minima O±π/2. For δ = 0 there are two kink solu-

tions K+π
0 and K0

−π. For δ > 0 the solution is monotonic
M . We show the classification of solutions along with the
total energy density for ordinary ferromagnets in the bot-
tom left of Fig. 6. Notice the solutions and total energy
density do not depend on C. This is because C enters
through the superfluid velocity which is absent from the
Lagrangian for ordinary ferromagnets.

For spinor condensate ferromagnets with S = 1/2, we
parameterize the constant of motion E = |C|k2(1 + 2δ)
and find the solution of Eq. 16 and the total energy
density from Eq. 18 given by

α(u) = cos−1(C/|C|) + 2am
(

ku
√

|C|(1 + δ), (1 + δ)−1
)

H̄ = k2

[

(|C| − 1)2

8
− δ|C|

2
+ |C|θ(1 + δ)

]

(26)

depends only on |C|. For δ < −1 the solution is forbidden
F . For −1 ≤ δ < 0 there is one oscillatory solution Oπ

(O0) for C < 0 (C > 0). For δ = 0 there is one kink
solution K2π

0 (K+π
−π ) for C < 0 (C > 0). For δ > 0 the

solution is monotonic M . We show the classification of
solutions along with the total energy density for S = 1/2
spinor condensate ferromagnets in the bottom right of
Fig. 6.

For spinor condensate ferromagnets with S > 1/2 we
parameterize the constant of motion E = (2S− 1)k2(1 +
2δ)/4 and the constant C = (2S − 1)γ/2S. With γ = τ
and δ = −1+2στ where σ = ±1 we find one solution for
Eq. 16 while the total energy density from Eq. 18 given
by

α(u) = Arg

[

−τ − σ + 2
√

τ(τ − σ)s(u) + τs(u)2

1 + στ − στs(u)2

]

H̄ =
Sk2

2
[h0 + (2S − 1)j0] (27)

where we define the auxiliary function

s(u) = sin(ku
√

(1 − στ)(2S − 1)) (28)

in the solution for α(u) and the functions

h0 =
((2S − 1)τ − σS)2

4S

j0 =

{

στ
√
τ − σ 0 ≤ στ ≤ 1

0 otherwise
(29)

for the total energy density. With γ = r sinh(τ) and
δ = −1+ 2r sinh(τ) we find two solutions for Eq. 16 and
the total energy density from Eq. 18 given by

α±(u) =Arg

[

−cosh(τ/4)e±iw(u) ∓ sinh(τ/4)

sinh(τ/4)e±iw(u) ∓ cosh(τ/4)

]

H̄ =
Sk2

2
[h+ (2S − 1)j ∓ (2S − 1)k] (30)
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FIG. 5: (Color online) Stripe configurations for different boundary conditions in S ≥ 1/2 spinor condensate (bottom row)
and S = 0 ordinary ferromagnets (top row). Red background (dark gray) indicates positive skyrmion density q while blue
background (light gray) indicates negative q. Black 2D arrows indicate the superfluid velocity v and shaded 3D arrows the
magnetization n̂. Notice n̂x, n̂y (n̂z) wind horizontally (oscillate vertically). The first column shows schematic plots of the
classical periodic potential U(α) controlling the evolution of the angular variable α for n̂z = cos(α). Labels for the corresponding
type of solution are below the dashed lines indicating the corresponding constant of motion E.
For E above the maximum of U , α(u) is monotonic in the coordinate u giving rise to periodic stripe configurations labeled M
with n̂z covering the entire range ±1. For E at a potential maximum, kink solutions connecting the maxima α1, α2 give rise
to single domain wall configurations in n̂z labeled Kα2

α1
. For a given value of C, kink solutions occur at one specific value of

E. For E below the maximum, α oscillates about a minimum located at α0 giving rise to periodic stripe configuration with n̂z

oscillating about cos(α0).
Notice that monotonic solutions M are qualitatively similar for both S ≥ 1/2 spinor condensate and S = 0 ordinary ferromag-
nets. In contrast, spinor condensate (ordinary) ferromagnets have a single (two distinct) 2π (π) kink solutions K centered about
α = 0 (α = ±π/2). In addition, there is a single (two distinct) oscillatory solutions O also centered about α = 0 (α = ±π/2)
for spinor condensate (ordinary) ferromagnets.

where we define the auxiliary function

w(u) =am

[

ku
√

2r(2S − 1),
1 + r − r cosh(t)

2r

]

(31)

in the solutions for α(u) and the functions

h =
1 − (2S − 1)δ

2
+

(2S − 1)2β2

4S

j =
Re[2

√
rE(ω)]

Re[K(ω)/
√
r]

+

Re[2
√
r[cosh(t/2)2Π(− sinh(t/2)2, ω) −K(ω)]]

Re[K(ω)/
√
r]

k =

{

Re[πr sinh(t)]

Re[K(ω)
√

2/r]
, Oπ , O0 phase

0 otherwise

ω =
1 + r − r cosh(τ)

2r
(32)

for the total energy density where Π(m,n) is the complete
elliptic integral of the third kind. We show the classifica-

tion of solutions along with the total energy density for
S > 1/2 spinor condensate ferromagnets in the top row
of Fig. 6. The boundaries between solutions of different
types are given by δ = −1 + 2β, δ = −1 − 2β, δ = β2.
For increasing γ, notice kink solutions evolve from just
one K2π

0 through a region with two K2π−α
α and K+α

−α ,

to just one K+π
−π for γ < −1, −1 < γ < +1, +1 < γ,

respectively. The kink solutions separate the monotonic
solutions M from the oscillatory solutions. For increas-
ing γ, the oscillatory solutions also evolve from just one
Oπ to a region with two Oπ and O0, to just one O0 for
δ < −1 − 2γ, −1 + 2γ ≥ δ ≥ −1 − 2γ, δ < −1 + 2γ,
respectively.

VI. DISCUSSION

Having presented a unified description of both local-
ized and extended stripe solutions in ordinary and spinor
condensate ferromagnets, we now turn to how these solu-
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FIG. 6: (Color online) Classification of solutions (2D plots) and total energy density (3D plots) for stripe configurations given
different boundary conditions in S > 1/2 (top row) and S = 1/2 (bottom left) spinor condensate as well as S = 0 (bottom
right) ordinary ferromagnets. Fig. 5 illustrates the corresponding configurations. γ controls a constant contribution to the
superfluid velocity. δ controls the energy of an associated classical mechanics problem giving the evolution of n̂z = cos(α), the
ẑ component of the magnetization. Monotonic solutions M have n̂z covering the entire range ±1. Kink solutions Kα2

α1
describe

single domain wall configurations with n̂z connecting cos(α1) to cos(α2). Oscillatory solutions Oα0
have n̂z oscillating about

cos(α0). Notice kink solutions K always separate monotonic M from oscillatory O solutions. For S > 1/2 spinor condensate
ferromagnets, notice the two distinct oscillatory and kink solutions for each γ, δ in the region near the origin which are absent
for S = 1/2. For S = 0 ordinary ferromagnets, there is no dependence on C.

tions offer insight into different physical phenomena. We
first consider quantum Hall systems. As discussed in Sec.
III, configurations for quantum Hall ferromagnets away
from quantum Hall plateaus carry net skymrion charge
[27, 33, 37, 39, 40]. Thus, solutions for the ordinary ferro-
magnet describing collections of localized skyrmions car-
rying net charge as shown in the left of Figs. 1 and 2
have been used extensively in this regime.

However, we showed in Sec. V that these solutions of
localized topological objects can be derived in a unified
framework along with extended stripe solutions. There
have been a number of studies on the possibility of quan-
tum Hall states with stripe order. At high Landau levels
and with frozen spin degrees of freedom, Coulomb inter-
action may directly favor charge density waves as pre-
dicted theoretically [44, 45] and verified experimentally
[46, 47]. Such states are not directly comparable to the
stripe solutions we describe which have fixed total den-

sity and stripe order in the relative density. However,
stripe order has also been proposed [48–50] and experi-
mental evidence observed [51] in the context of quantum
Hall bilayers. Here, even though the total density be-
tween layers is fixed, both interlayer coherence and rela-
tive density imbalance can develop. The isospin degree of

freedom that arises can be used to define an appropriate
magnetization vector n̂. Here, the phase of the interlayer
coherence gives the orientation of n̂x, n̂y, while the rel-
ative density imbalance gives n̂z. States with skyrmion
stripe order and winding n̂x, n̂y have been proposed that
are direct analogs of the configurations shown in the top
row of Fig. 5.

For spinor condensate ferromagnets, experiments at
Berkeley suggest the possibility of a condensate with
crystalline magnetic order [15, 16]. This crystalline or-
der arises from an effective dipolar interactions modified
by rapid Larmor precession and reduced dimensional-
ity. It can drive dynamical instabilities of the uniform
state which occur in a characteristic pattern [17, 18].
Modes controlling the component n̂ parallel (perpendic-
ular) to the magnetic field in spin space are unstable
along wavevectors perpendicular (parallel) to the mag-
netic field in real space. Instabilities of this type can give
rise to the spin textures shown in the stripe solutions of
the bottom row in Fig. 5. Here, n̂z is modulated along
the y direction while n̂x, n̂y wind along the x direction.

In the companion paper [21], we have performed a
systematic numerical study of minimal energy configu-
rations for spinor condensate ferromagnets with dipolar
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FIG. 7: (Color online) Numerically optimized configuration
for two-dimensional spinor condensate ferromagnets with an
effective dipolar interaction modified by rapid Larmor preces-
sion. The magnetic field B̂ = x̂ inducing Larmor precession
lies along the horizontal axis in the plane. Lattice constants
are a‖ = 90 µm and a⊥ = 42 µm. Red background (light
gray) indicates positive (negative) skyrmion density q while
blue background (dark gray) indicates negative q. Black 2D
arrows indicate the superfluid velocity v and shaded 3D ar-
rows the magnetization n̂.

interactions. This is made possible by the use of sym-
metry operations combining real space and spin space
operations to distinguish different symmetry classes of
solutions. For applied magnetic field in the plane B̂ = x̂
corresponding to current experiments, we show the low-
est energy configuration in Fig. 7.

Notice n̂z is modulated between ±1 just as in the
monotonic M solutions shown in Fig. 5. In addition,
the n̂x, n̂y components wind along the horizontal axis.
However, notice the winding in the n̂x, n̂y components is
not uniform as in the solutions we find in this paper. In
addition, the winding changes from clockwise to counter-
clockwise halfway along the horizontal axis. For the so-
lutions we find in this paper, the skyrmion density forms
stripes of opposite charge parallel to the horizontal axis.
For the lowest energy configuration in Fig. 7, the non-
uniform winding leads to concentration of the skyrmion
density in smaller regions and modulation in the sign of
the skyrmion density along the x axis. We find minimal
energy configurations in other symmetry classes are gen-

erally of this type with n̂z oscillating between ±1 along y
and n̂x, n̂y winding along x. However, the detailed form
of the winding along x varies for different classes.

Thus we see that the exact solutions for spinor conden-
sate ferromagnets without dipolar interactions provides
a more transparent physical picture for the numerical so-
lutions with dipolar interactions. This can be seen as fol-
lows. The solutions we find in this paper describe overall
neutral collections of skyrmion and anti-skyrmion topo-
logical objects. The neutrality constraint comes from the
long-ranged divergence of the skyrmion interaction and
remains even when considering additional spin interac-
tions such as the dipolar interaction. Morever, skyrmions
and anti-skyrmions themselves have a non-trivial spin
texture which is evident in Fig. 5 showing the solutions of
this paper. When dipolar interactions are included, such
spin textures can take advantage of the gain in dipolar in-
teraction energy without chaning their qualitative struc-
ture. However, quantitative details for minimal energy
configurations such as the one shown in Fig. 7 require
detailed analysis of the competition between dipolar in-
teractions, skyrmion interactions, and spin stiffness.

In conclusion, we have presented the low-energy effec-
tive theory of spinor condensate ferromagnets. This ef-
fective theory describes the superfluid velocity and mag-
netization degrees of freedom and can be written as a
non-linear sigma model with long-ranged interactions be-
tween skyrmions, the topological objects of the theory.
Quantum Hall ferromagnets share a similar effective the-
ory with long-ranged skyrmion interactions. For the case
of spinor condensate ferromagnets, we find exact solu-
tions for the non-linear equations of motion describing
neutral configurations of skyrmions and anti- skyrmions
carrying zero net skyrmion charge. These solutions de-
scribe within a unified framework both collections of lo-
calized topological objects as well as extended stripe con-
figurations. In particular, they can be used to understand
aspects of non-trivial spin textures in both quantum Hall
ferromagnets as well as spinor condensate ferromagnets
with dipolar interactions.
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Phys. Rev. Lett. 75, 2562 (1995).
[29] A. N. Bogdanov and D. A. Yablonskii, Sov. Phys. JETP

68, 101 (1989).
[30] S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer,

A. Rosch, A. Neubauer, R. Georgii, and P. Boni, Science
323, 915 (2009).

[31] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz,
P. G. Niklowitz, and P. Böni, Phys. Rev. Lett. 102,
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