
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Optimal control with accelerated convergence: Combining
the Krotov and quasi-Newton methods

Reuven Eitan, Michael Mundt, and David J. Tannor
Phys. Rev. A 83, 053426 — Published 24 May 2011

DOI: 10.1103/PhysRevA.83.053426

http://dx.doi.org/10.1103/PhysRevA.83.053426

AA10574

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Optimal control with accelerated convergence: Combining the

Krotov and quasi-Newton methods

Reuven Eitan, Michael Mundt and David J. Tannor∗

Department of Chemical Physics,

The Weizmann Institute of Science,

Rehovot 76100, Israel

Abstract

One of the most popular methods for solving numerical Optimal Control problems is the Krotov

method, adapted for quantum control by Tannor and coworkers. The Krotov method has the

following three appealing properties: 1) monotonic increase of the objective with iteration number;

2) no requirement for a line search, leading to a significant savings over gradient (first-order)

methods; 3) macro-steps at each iteration, resulting in significantly faster growth of the objective at

early iterations than in gradient methods where small steps are required. The principal drawback

of the Krotov method is slow convergence at later iterations, which is particularly problematic

when high fidelity is desired. We show here that near convergence the Krotov method degenerates

to a first-order gradient method. We then present a variation on the Krotov method that has

all the advantages of the original Krotov method but with significantly enhanced convergence

(second-order or quasi-Newton) as the optimal solution is approached. We illustrate the method

by controlling the three-dimensional dynamics of the valence electron in the Na atom.

∗Electronic address: reuven.eitan@weizmann.ac.il,michael.g.mundt@web.de,David.Tannor@

weizmann.ac.il

1

I. INTRODUCTION

The field of quantum control has developed rapidly since the 1980’s. The key aspects of

the theory were formulated by Tannor, Rice, Kosloff, Shapiro, Brumer and Rabitz [1–5], and

the first experimental demonstrations were performed a decade later [6–8]. Today, with the

advances in technology one can shape the amplitude, phase and polarization of femtosecond

laser pulses. Recently, the production of attosecond laser pulses has also been demonstrated

[9], which opens the door to the possibility of controlling fast electronic processes.

One of the main theoretical tools in quantum control is Optimal Control Theory (OCT).

OCT provides a variational framework for calculating the optimal shaped laser pulse to

maximize a desired physical objective. Its application to quantum mechanics was first

formulated in the late 1980’s [5, 10]. In rare instances, the equations for the optimal control

field that emerge from OCT can be solved analytically. However in the vast majority of

cases a numerical treatment is required. Invariably, these numerical treatments are iterative

— one starts from an initial guess for the control and improves on it by repeating some

procedure over and over.

The standard optimization approaches are either gradient methods [11], which use first

derivative information, or Newton and quasi-Newton methods, which use second derivative

information. A somewhat unconventional approach is the Krotov method [12], adapted

for quantum control by Tannor et al. [13, 14]. A decade later Sklarz and Tannor [15]

adapted the nonlinear Krotov method [16] for quantum control, where for example the

system equation of motion is nonlinear. The Krotov algorithm has been used with great

success in many works for applications ranging from cooling [17] to quantum communication

[18] and quantum computation [19, 20]. A related algorithm was introduced by Zhu and

Rabitz [21], and an illuminating comparison of the algorithms was carried out by Maday

and Turinici [22]. The Krotov method has several distinct adventages over gradient and

quasi-Newton methods: 1) monotonic increase of the objective with iteration number; 2)

no requirement for a line search, leading to a significant savings over gradient (first-order)

methods; 3) macro-steps at each iteration, resulting in significantly faster growth of the

objective at early iterations than in gradient methods where small steps are required. On

the other hand, at high iteration number the method tends to become inefficient and it

is hard to achieve high fidelities with this method. With the Newton and quasi-Newton

2

methods one can achieve high fidelities; however because of its line-search procedure it is

nonmonotonic and is restricted to micro-steps, i.e. a significant number of iterations are

usually needed to get a reasonable outcome. (The simple gradient search suffers from both

shortcomings: low fidelity together with nonmonotonicity and micro-steps. However it is a

relatively simple procedure that can be useful in certain cases.)

In this article we analyze the source of the inefficiency of the Krotov method at later

iterations, and show that it is due to the degeneration of the method to a first-order gradient

method as convergence is approached. We then present a variation on the Krotov algorithm

that combines the benefits of the original Krotov method with that of Newton’s method

— monotonicity and macro-steps, along with significantly improved convergence at high

iteration numbers.

The remainder of this article is organized as follows. Section II is devoted to methodology.

We first formulate OCT using continuous functions (Section IIA); from now on we will

call this the “function language”. We use this formalism to show the degeneration of the

Krotov algorithm to a gradient method as convergence is approached (Section IIB). We

then proceed to describe the Newton and quasi-Newton methods, focusing on a particular

algorithm known as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm after its

inventorsapplied [23–26]. To explain this algorithm we first reformulate OCT in a vector

space (the “vector language”, Section IIC). We then continue by explaining Newton’s

method in general and its approximation, the BFGS method in particular (Section IID).

Finally we present our algorithm, which we call Krotov–BFGS (or K–BFGS for short, Section

II E). For each method, after presenting the working equations of the method we provide

a step-by-step description of the algorithm. Section III is devoted to numerical examples.

Section 4 is a Summary and Conclusion.

II. METHODOLOGY

A. General Formalism for OCT – Necessary Condition for Optimal Control

Consider a system defined by the complex state function, ψ(r, t). The controllable pa-

rameters of the system are represented by the function ξ(t). The state function, ψ, evolves

3

under an equation of motion of the general form:

ψ̇(r, t) = f [ψ, ξ](r, t). (1)

In Dirac notation Eq. (1) is written as: |ψ̇(t)〉 = |f [ψ, ξ](t)〉. We will frequently use Dirac

notation in the rest of the article and we will generally omit writing the dependence on t

except in integrals over t.

Given the equation of motion one would like to maximize the value of some target at

time T [27]. The target could be a specific state (“state-to-state transfer”), an observable

or something else. One can generally write the objective in the form:

J = 〈ψ(T)|P |ψ(T)〉, (2)

where P is some projection operator. For generality we will simply write J [ψ(T)].

Once the mathematical form of the objective functional is defined, maximizing the target

corresponds to maximizing the objective under the constraint of Eq. (1). This is done

by adding to the objective the equation of motion using a Lagrange multiplier function χ

(sometimes referred to as the “dual” or “adjoint” function), and defining a new functional

J̄ :

J̄ = J − 2Re

T∫

0

〈χ(t)|ψ̇(t) − f [ψ, ξ](t)〉dt (3)

It is sometimes useful to add other costs on the controls [28]:

Jc =

T∫

0

λ(t)g[ξ](t)dt. (4)

There are two purposes Jc can serve; these two purposes correspond to two different meanings

for λ. (a) If the purpose of Jc is to be an additional constraint, i.e., ξ fulfills some equation,

then λ should be treated as a Lagrange multiplier. In this case the maxima of J̄ still equal

the maxima of J since adding Jc is to add zero. (b) However, if the purpose of Jc is to be

a penalty function, which means the system has some freedom to deviate from an equation

for ξ but is penalized for doing so, then λ is a fixed predetermined function that determines

the penalty for deviation. For this option, Jc has to be non-positive for maximization (and

non-negative for minimization). However, in this case the maxima of J̄ will differ in general

4

from the maxima of J . Nevertheless one can still keep Jc small enough relative to J so the

maxima of J̄ will be approximately the maxima of J [29]. For the remainder of this article

we assume that:

g[ξ](t) =
(
ξ(t) − ζ(t)

)2
, (5)

and therefore:

Jc = −

T∫

0

λ(t)
(
ξ(t) − ζ(t)

)2
dt, (6)

where ζ is the “reference control”, and λ(t) > 0.

Combining everything together we obtain:

J̄ = J + J1 + J2 + J3, (7a)

where

J1 = −2Re

T∫

0

〈χ(t)|ψ̇(t)〉dt, (7b)

J2 = 2Re

T∫

0

〈χ(t)|f [ψ, ξ](t)〉dt, (7c)

J3 =

T∫

0

λ(t)g[ξ](t)dt = −

T∫

0

λ(t)
(
ξ(t) − ζ(t)

)2
dt. (7d)

The condition for an optimal control is that J̄ be maximized, i.e. that ∇J̄ = 0, or more

specifically δJ̄
δξ

= δJ̄
δξ∗

= δJ̄
δ|ψ〉

= δJ̄
δ〈ψ|

= 0. Using the maximization condition δJ̄
δ〈ψ|

= 0 [30], one

gets an equation of motion for the Lagrange multiplier, χ, and its value at the final time, T

(see Appendix A):

|χ̇〉 = −
δJ2

δ〈ψ|
(8a)

|χ(T)〉 =
δJ

δ〈ψ(T)|
. (8b)

By taking χ to fulfill Eqs. (8a, 8b) one can address the δJ̄
δξ

part of the gradient of J̄ alone

(since all the other parts are zero), and one obtains:

δJ̄

δξ
= 2Re

〈
χ

∣∣∣∣
δf [ψ, ξ]

δξ

〉
+ λ

δg[ξ]

δξ
= 2Re

〈
χ

∣∣∣∣
δf [ψ, ξ]

δξ

〉
− 2λ (ξ − ζ) , (9)

5

where we emphasize that both the LHS and the RHS are functions of time. J̄ is then

maximized by a ξ = ξ0 that gives δJ̄
δξ

= 0 [31].

There are a few methods for finding (or at least approaching) the ξ0 that fulfills δJ̄
δξ

= 0.

Except for a few specific cases where a full analytical solution is possible, all methods use

Eqs. (7a – 9) in an iterative self-consistent manner. In this article we present three such

methods. On one hand there are methods that do not use a line-search approach. The

premier example is the Krotov method, which as we will see immediately below has the

advantage of monotonic convergence of J̄ as a function of the iterations. On the other hand

there are line-search methods — Newton’s method and in particular the BFGS (and its

limited memory version, LBFGS). These methods use second order information to approach

ξ0 but due to their line-search lack monotonic convergence with iteration number. Finally,

we present our combined version of the two, the Krotov–BFGS (K–BFGS) method, which

preserves both advantages, second order information with monotonicity in the iterations.

B. The Krotov Method

The main feature of the Krotov method (in fact Krotov originally derived his method to

fulfill this feature) is the monotonicity of J̄ as a function of the iterations (i.e. J̄ (k) ≥ J̄ (k−1),

for the kth iteration). We consider systems that evolve under linear equations of motion,

(i.e. f in Eq. (1) depends linearly on ψ and ξ). The Krotov method achieves monotonicity

by updating the control in the kth iteration as (see Appendix B):

ξ(k) = ζ (k) +
1

λ
Re

〈
χ(k−1)

∣∣∣∣
δf [ψ(k), ξ]

δξ

〉
≡ y[ψ(k), χ(k−1)]. (10)

Notice that in the Krotov method the ψ of the kth iteration, ψ(k), is used to update the kth

guess of the control, ξ(k), while also depending on it by Eq. (1). This differs from gradient

search approaches that use only information from the previous iteration(s). The function,

ζ , is some reference control that in principle can be chosen differently from iteration to

iteration. Choosing ζ (k) as fixed for all iterations (i.e, ζ (k) = ζ (k−1) = ζ), requires that J3 be

chosen as in Eq. (6) if monotonicity is to be preserved. However, if one allows ζ to change

from one iteration to the next, and takes ζ (k) = ξ(k−1), then monotonicity is achieved even

if J3 = 0 (a proof is given in Appendix C). Nevertheless, even in this case, the function λ in

Eq. (10) is still needed as a calibration for the steps of the iterations (see in [15] Ref. [15]) .

6

Experience shows that the Krotov method is inefficient as convergence is approached, i.e.,

one cannot reach high fidelities with the Krotov method in a reasonable number of iterations,

while with second order methods like Newton’s method one can reach high fidelities. In

this section we give a theoretical analysis of the Krotov method that sheds light on this

phenomenon.

Taylor expanding the ψ(k) equation of motion (RHS of Eq. (1)) around ψ(k−1), we obtain:

|f [ψ(k), ξ]〉 = |f [ψ(k−1), ξ]〉 +

∣∣∣∣
δf [ψ, ξ]

δψ
∆ψ

〉
, (11)

where ∆ψ = ψ(k) − ψ(k−1). (Since we assume linear dependence of f on ψ, higher order

elements vanish.) Varying Eq. (11) with respect to the control gives:

∣∣∣∣
δf [ψ(k), ξ]

δξ

〉
=

∣∣∣∣
δf [ψ(k−1), ξ]

δξ

〉
+

∣∣∣∣
δ2f [ψ, ξ]

δξδψ
∆ψ

〉
. (12)

Inserting Eq. (12) into Eq. (10) gives:

ξ(k) = ζ (k) +
1

λ

(
ξ

(k)
1 + ξ

(k)
2

)
, (13a)

where:

ξ
(k)
1 = Re

〈
χ(k−1)

∣∣∣∣
δf [ψ(k−1), ξ]

δξ

〉
(13b)

ξ
(k)
2 = Re

〈
χ(k−1)

∣∣∣∣
δ2f [ψ, ξ]

δξδψ
∆ψ

〉
. (13c)

According to Eqs. (9) and (5) δJ̄(k−1)

δξ
is given by:

δJ̄ (k−1)

δξ
= 2Re

〈
χ(k−1)

∣∣∣∣
δf [ψ(k−1), ξ]

δξ

〉
− 2λ

(
ξ(k−1) − ζ (k−1)

)

= 2
{
ξ

(k)
1 − λ

(
ξ(k−1) − ζ (k−1)

)}
. (14)

Combining Eq. (14) and Eq. (13a) gives:

ξ(k) = ζ (k) +
1

2λ

δJ̄ (k−1)

δξ
+ ξ(k−1) − ζ (k−1) +

1

λ
ξ

(k)
2

= ζ̃ (k) + α
δJ̄ (k−1)

δξ
+ 2αξ

(k)
2 , (15)

where ζ̃ (k) = ζ (k) + ξ(k−1) − ζ (k−1), and α = 1
2λ

. We find that the update rule is composed

of two elements: the ‘simple’ first order gradient element (the first two terms on the RHS

7

of Eq. (15)) and a correction term that depends on the change in ψ between iterations

(the third term on the RHS of Eq. (15)). We show in Appendix D that near convergence

this third term goes to zero and therefore the Krotov method degenerates to a first-order

gradient method. The main disadvantage of first-order gradient methods is that in many

cases the first order information is not enough to reach high fidelities in a reasonable number

of iterations, since the neighborhood of a maximum is almost flat. (A consequence of this is

that one gets a strong dependence on the value of λ, which can cause numerical instabilities.)

We conclude this section by giving the algorithmic steps of the Krotov method. At

iteration k:

(i) Using χ(k−1) from the previous iteration and ψ(k) of the present iteration, an improved

control ξ(k) is calculated by Eq. (10). This improved control is used to propagate

ψ(k) according to Eq. (1). (Since ξ(k) depends on ψ(k) we solve the equations self-

consistently using what is known as an implicit scheme. One can also use an explicit

scheme, however it is known to be less stable.)

(ii) At time T use Eqs. (7a – 7d) to calculate J̄ (k).

(iii) By Eq. (8b), one gets the final condition of the Lagrange multiplier, χ(k)(T).

(iv) Using Eq. (8a), χ(k) is propagated and calculated for all times.

The procedure described above is repeated until convergence. At iteration 0 in step (i)

one guesses a control ξ(0) and uses it to propagate ψ(0) up to time T with Eq. (1). A

schematic diagram of the algorithm is given in Fig. 1.

C. Translation of the Optimal Control Formalism to Vector Language

The formalism of Newton’s method (and its approximation, BFGS) is most easily pre-

sented using discrete vectors rather then continuous functions. Therefore, we start by re-

formulating OCT in this “vector language”. For generality we write the formalism for a

general vector space. However, at the end we “translate” the results to Dirac notation.

Following section 2.1, we consider a complex state vector, ~v:

~v = (v1, v2, · · · , vn) , (16)

8

Figure 1: Schematic diagram of the Krotov algorithm.

where each of the components here are functions of the Hilbert space. The jth vector

component obeys the following update rule:

vj = fj [~v, ~ξ], (17)

where ~ξ is the control vector:

~ξ = (ξ1, ξ2, · · · , ξn) . (18)

Although this formalism is general, for our purposes the components of the vectors play the

role of a discrete version of the continuous time dependence of the functions in section 2.1

(one could look at them as a numeric time grid).

For any two vectors in the space, ~w and ~̃w, we define a notation for the inner product of

9

their kth and lth components, wk and w̃l, respectively:

wkw̃l =

−∞∫

−∞

wk(r)w̃l(r)dr. (19)

We now can reformulate Eqs. (7) with the help of a Lagrange multiplier vector, ~u =

(u1, u2, · · · , un):

J̄ = J + J1 + J2 + J3, (20)

where

J = J [vn], (21a)

i.e. the objective functional J depends only on vn, and

J1 = −2Re

(
u∗nvn +

n−1∑

j=1

u∗jvj

)
, (21b)

J2 = 2Re

n−1∑

j=1

u∗jfj [~v,
~ξ], (21c)

J3 =
n−1∑

j=1

λjgj[~ξ] = −
n−1∑

j=1

λj (ξj − ζj)
2
, (21d)

where ~ζ is a reference control vector, and the discussion of J3 in section 2.1 is also relevant

here. Using the maximization condition δJ̄
δv∗j

= 0 one gets the analog of Eqs. (8):

uj = −
δJ2

δv∗j
; j 6= n (22a)

un =
δJ

δv∗n
. (22b)

Equations (22a, 22b) lead to an equation for the gradient of J̄ (the analog of Eq. (9)):

δJ̄

δξs
= 2Re

n−1∑

j=1

u∗j
δfj [~v, ~ξ]

δξs
+

n−1∑

j=1

λj
δgj[~ξ]

δξs

= 2Re

n−1∑

j=1

u∗j
δfj [~v, ~ξ]

δξs
− 2λs (ξs − ζs) . (23)

With this “vector formalism of OCT” in hand we can now explain Newton’s method and its

BFGS approximation.

10

D. Newton’s method and the BFGS Method

Newton’s method uses a line-search approach to minimize a function F (i.e., a search

along the gradient of the function to find a minimum). The method minimizes a function,

F : Cn → R (for maximization one can minimize −F), if its gradient, ~∇F , and its Hessian

matrix A (or its inverse A−1) are known (where Aij = δ2F
δxiδxj

, ~x = (x1, x1, · · · , xn) ∈ C
n). The

actual implementation of the method is iterative, moving along a path until minimization

has been achieved. The kth iteration step for ~x (~x(k)) is given by:

~x(k+1) = ~x(k) −A−1(~x(k))~∇F(~x(k)). (24)

Unfortunately, in many cases the Hessian A is unknown or unfeasible to calculate on a

computer. The BFGS method [23–26] approximates the Hessian matrix of the kth iteration,

A ≈ B(k), using the known quantities ~x(k−1), ~x(k), ~∇F(~x(k−1)), ~∇F(~x(k)), and B(k−1) (usually

B(0) is taken as the unit matrix). These kinds of methods are referred to as “quasi-Newton”

methods. For the kth iteration we can therefore rewrite Eq. (24) as:

B(k)
(
~x(k+1) − ~x(k)

)
= −~∇F(~x(k)), (25)

where ~x(k+1) is yet unknown. Solving the equation:

B(k)~p(k) = −~∇F(~x(k)), (26)

gives a vector, ~p(k). If F were truly quadratic then ~x(k+1) would be completely determined by

Eq. (26); however because in general the function is not quadratic one performs a line-search

~x(k+1) = ~x(k) + α(k)~p(k) (27)

to minimize F (sometimes another condition, e.g. on the gradient, is added). α(k) is a

scalar that one should change until the minimum is found. After finding the minimum, one

updates the Hessian approximation for the next iteration according to the formula [23–26]:

B(k+1) = B(k) +
~y(k)(~y(k))T

(~y(k))T~s(k)
−

B(k)~s(k)(B(k)~s(k))T

(~s(k))TB(k)~s(k)
, (28)

where ~y(k) = ~∇F(~x(k+1)) − ~∇F(~x(k)), and ~s(k) = α(k)~p(k). The process is continued until

convergence.

The disadvantage of the method is apparent from Eq. (27) — the need to perform a

line-search — causing the method to lack monotonicity with respect to iteration number.

11

Although the dimension of the vector space is n, since B is symmetric only 1
2
n(n+ 1) data

points need to be stored. Nevertheless, is some systems even this is too large. The Limited-

memory BFGS method [32, 33] (known as the LBFGS method) uses a smaller amount of

space to store the BFGS approximation to the Hessian.

Translation of this notation to Dirac notation is straightforward: ~x corresponds to ~v

which corresponds to |ψ〉 = (|ψ1〉, |ψ2〉, · · · , |ψn〉), and similarly ~u corresponds to |χ〉 =

(|χ1〉, |χ2〉, · · · , |χn〉). Therefore, in iteration k:

(i) Propagate |ψ(k)〉 using the ~ξ(k) calculated (by Eq. (17)) at the previous iteration.

(ii) At time T use Eqs. (20 – 21d) to calculate J̄ (k).

(iii) Use Eq. (22b) to get the final condition on the Lagrange multiplier, |χ
(k)
n 〉.

(iv) Use Eq. (22a) to calculate |χ
(k)
j 〉 for all j’s, and use Eq. (23) to calculate ∇J̄ (k).

(v) Calculate ~p(k) by Eq. (26).

(vii) Guess (smartly) a value for α(k).

(viii) Update ~ξ(k) by Eq. (27) to ~̃ξ(k+1).

(iix) Propagate |ψ̃(k+1)〉 with ~̃ξ(k+1) by Eq. (17).

(ix) At time T use Eqs. (20 – 21d) to calculate J̃ (k+1).

(x) Check: if J̃ (k+1) is not at the minima, guess (smartly) a new α(k) and go back to step

(viii); else continue to step (xi).

(xi) Accept ~ξ(k+1) = ~̃ξ(k+1), and update the Hessian approximation, B(k+1), by Eq. (28).

As in the Krotov algorithm, at iteration 0 in step (i) one guesses a control, ~ξ(0), and uses

it to propagate |ψ(0)〉 up to time T via Eq. (17). When performing the algorithm in

practice, note that every time one reaches step (xi) one can skip steps (i) and (ii) by setting

|ψ(k+1)〉 = |ψ̃(k+1)〉 and J̄ (k+1) = J̃ (k+1). The procedure described above is repeated until

convergence. Figure 2 presents a schematic diagram of the algorithm.

12

Figure 2: A schematic diagram of the kth iteration in the BFGS algorithm.

E. Combining the Krotov and the BFGS Methods (K–BFGS)

1. The Form of Krotov in Vector Language

Before combining the Krotov and BFGS methods, we need to reformulate the Krotov

update rule (Eq. (10)) in vector language:

ξ(k)
s = ζ (k)

s −
1

λs
Re

n−1∑

j=1

u
∗(k−1)
j

δfj[~v
(k), ~ξ]

δξs
(29)

= ζ (k)
s −

1

λs
Re

(
u∗(k−1)
s

δfs[~v
(k), ~ξ]

δξs

)
, (30)

where Eq. (30) follows from the fact that
δfj

δξs
= δfs

δξs
δjs.

13

2. Combining Krotov and BFGS

As mentioned above (Section IIA) the only restriction for J3 (if taken as a penalty) is

that it has to be non-positive (for maximization) [34]. The Hessian matrix, A, of a function

near its maxima is non-negative, and if one uses the BFGS approximation of the Hessian,

B, it will be non-negative everywhere. Hence we do not have to restrict ourselves to the

usual form of the penalty function — we can also write Eq. (21d) as:

J3 = −λ
n∑

k,j=1

Bkj(ξk − ζk)(ξj − ζj), (31)

where λ > 0. In the function language of section 2.1 this is similar to claiming that J3 (Eq.

(7d)) can take the form of a quadratic integral, i.e., J3 =
∫ T
0

∫ T
0
λ(t, t′)g[ξ](t, t′)dtdt′. This

generalized form for J3 allows us to incorporate second order information such as δ2J̄
δξkδξj

into

the Krotov algorithm.

Using Eqs. (21a - 21c) for J , J1 and J2 and Eq. (31) for J3, Eq. (20) becomes:

J̄ = J [vn] − 2Re

{
n−1∑

j=1

(
u∗jvj − u∗jfj [~v,

~ξ]
)
− u∗nvn

}

−λ
n∑

k,j=1

Bkj(ξk − ζk)(ξj − ζj). (32)

The gradient of J̄ (Eq. (23)) is given by:

δJ̄

δξs
= 2Re

(
u∗s
fs[~v, ~ξ]

δξs

)
− 2λ

n∑

j=1

Bsj(ξj − ζj). (33)

From the maximization condition δJ̄
δξs

= 0 we get:

n∑

j=1

Bsj(ξj − ζj) =
1

λ
Re

(
u∗s
fs[~v, ~ξ]

δξs

)
. (34)

Our goal now is to get an expression for ξ
(k)
s , s = 1, · · · , n, i.e. the value of the control of

each time point s at the kth iteration. To do this we rewrite Eq. (34) as:

ξs = ζs +
1

Bss

{
1

λ
Re

(
u∗s
fs[~v, ~ξ]

δξs

)
−

n∑

j=1,j 6=s

Bsj(ξj − ζj)

}
, (35)

where we have isolated the sth term from the sum. By analogy with the usual Krotov

procedure we replace ~v → ~v(k), ~u → ~u(k−1) and ~ξ → ~ξ(k) (see Eq. (30)). But in addition we

14

replace B → B(k−1), exactly as in the usual BFGS method, since B is an estimation of the

Hessian based on the previous iteration. This leads to the following update rule for the kth

iteration:

ξ(k)
s = ζ (k)

s +
1

B
(k−1)
ss

{
1

λ
Re

(
u∗(k−1)
s

fs[~v
(k), ~ξ]

δξs

)
−

n∑

j=1,j 6=s

B
(k−1)
sj (ξ

(k)
j − ζ

(k)
j)

}
. (36)

However this update rule raises a problem: the sth component of the updated control

depends on later time elements that are as yet unknown (i.e. ξ
(k)
s depends on ξ

(k)
j ’s for j > s

which are unknown) through the second term in the parentheses of the RHS of Eq. (36).

The solution is based on the idea that, to paraphrase George Orwell’s words, “he who

knows the past controls the future” [35]. We set ξj = 0 for all j > s, which reduces Eq. (36)

to:

ξ(k)
s = ζ (k)

s +
1

B
(k−1)
ss

{
1

λ
Re

(
u∗(k−1)
s

fs[~v
(k), ~ξ]

δξs

)
−

s−1∑

j=1

B
(k−1)
sj (ξ

(k)
j − ζ

(k)
j)

}
. (37)

Now all of the elements on the RHS of the equation are known. As s increases we use the

past information (all ξ
(k)
j where j < s, according to Eq. (37)) to determine the present (ξ

(k)
s)

in such a way that the maximization condition of Eq. (34) is obtained. Equation (37) is

the central result of this paper. It gives an update rule for the control that combines the

monotonicity of the Krotov method with the second order information of the BFGS method.

We call the combined method Krotov–BFGS or K–BFGS. In Dirac notation the K–BFGS

update rule takes the form:

ξ(k)
s = ζ (k)

s +
1

B
(k−1)
ss

(
1

λ
Re

〈
χ(k−1)
s

∣∣∣∣
fs[ψ

(k), ~ξ]

δξs

〉
−

s−1∑

j=1

B
(k−1)
sj (ξ

(k)
j − ζ

(k)
j)

)
. (38)

Finally, we want to avoid the line-search of Eq. (27) while preserving monotonicity.

Therefore, we fix ~s(k) = ~p(k), skipping the line-search of Eq. (27). However, the BFGS

update equation for the approximate Hessian (Eq. (28)) is retained.

As before we conclude by giving the algorithm steps. At iteration k:

(i) Using |χ(k−1)〉 and the Hessian B(k−1) from the previous iteration and |ψ(k)〉 of the

present iteration, the improved control ξ(k) is calculated using Eq. (36). The new

control is then used to propagate |ψ(k)〉 according to Eq. (17).

(ii) At time T use Eqs. (20 – 21d) to calculate J̄ (k).

15

(iii) By Eq. (22b) one gets the final condition of the Lagrange multiplier, |χ
(k)
n 〉.

(iv) Use Eq. (22a) to calculate |χ
(k)
j 〉 for all j’s, and use Eq. (23) to calculate ∇J̄ (k).

(v) Calculate ~p(k) by Eq. (26) and set ~s(k) = ~p(k).

(vi) Update the Hessian approximation, B(k+1), by Eq. (28).

The procedure described above is repeated until convergence. (As in the Krotov and BFGS

algorithms above, at iteration 0 in step (i) one guesses a control ξ(0) and uses it to propagate

ψ(0) up to time T with Eq. (17).) The algorithm is given in a schematic diagram in Fig. 3.

Note that the K–BFGS algorithm, like the original Krotov algorithm avoids the need for a

line search. As such it has a significantly simpler structure than the BFGS algorithm shown

is Section IID.

Figure 3: A schematic diagram of the kth iteration in the K–BFGS algorithm.

III. RESULTS

We consider the Na atom, treating its single valence electron fully quantum mechanically,

and its core electrons as an external pseudo-potential. This results in a linear Schrödinger

equation of motion. We take the control to be an x-polarized electric field εx(t) (we are

16

using the dipole approximation, i.e. ε(x, t) = −µ̂xεx(t) , where µ̂x is the x element of the

dipole operator). The initial state, |ψ(0)〉, is taken as the ground-state of sodium.

We choose as the target a state |φ〉 that is the sum of two Gaussians, i.e.:

φ(x, y, z) = A(e−αx(x−xα)2−αy(y−yα)2−αz(z−zα)2 + e−βx(x−xβ)2−βy(y−yβ)2−βz(z−zβ)2), (39)

where {αj}, {βj}, xα, xβ , etc. are constants and A is a normalization factor. We would

like to achieve this target up to a global phase. Then, the objective functional J can be

rewritten with the help of a projection operator, Pφ:

J = 〈ψ(T)|Pφ|ψ(T)〉 = 〈ψ(T)|φ〉〈φ|ψ(T)〉. (40)

J3 was chosen to be zero. Figure 4 shows that J is a monotonic function of the iteration

number for the Krotov and K–BFGS algorithms (remember that J and not just J̄ is mono-

tonic, see Appendix C). On the other hand, high fidelities are achieved only with the LBFGS

and K–BFGS algorithms. Only the K–BFGS algorithm is monotonic and has high fidelity.

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration number

J

KBFGS

LBFGS

Krotov

10 20 30 40 50 60
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Figure 4: The objective J vs. iteration number for the double-Gaussian target in the sodium atom.

αx = αy = αz = 1

18
, xα = −xβ = 5, yα = yβ = zα = zβ = 0 and T = 10fs.

17

IV. CONCLUSIONS

We started by showing that the low fidelity in the Krotov algorithm arises from its

degeneration to a simple gradient search as the algorithm reaches convergence. By rewriting

the Krotov update equation for the control such that it includes the Hessian information

Eq. (32) (actually the BFGS approximation to the Hessian) we established a variation on

the Krotov algorithm that is both monotonic in the iteration number and achieves high

fidelities. Although the inclusion of the Hessian raises a difficulty (the dependence of a

control component on the future unknown control components, see Eq. (36)), we established

a procedure that fulfills the necessary condition for monotonic convergence, Eq. (37). We

also provided a detailed description of the K–BFGS algorithm steps.

Regarding the numerical costs, the CPU time for K–BFGS is essentially identical to that

of the usual Krotov method, and a factor of m more efficient then the usual BFGS method,

where m is the average number of line searches per iteration. The K–BFGS method, as

in the usual BFGS method, requires storing the matrix B, the approximate Hessian. The

dimension of B is ∼ N2, where N is the number of steps. In the usual BFGS approach, this

memory requirement can be avoided using the Limited-memory BFGS (LBFGS) method.

A natural extension of the present work would be to constract a Limited-memory K–BFGS

(LK–BFGS) method, but this is somewhat specialized task.

For processes such as quantum computing where extremely high fidelities are necessary,

as well as for other processes where one seeks high fidelities, the K–BFGS method appears

to be a promising alternative to the existing algorithms.

Acknowledgment

This work was supported by the Minerva Foundation and by the EU Marie–Curie–

Network EMALI. The authors would like to thank KITP for the generous hospitality during

the 2009 program on Quantum Control of Light and Matter during which a collective effort

was initiated to compare the efficiency of quantum control algorithms. Particular thanks

are due to Dr. Ilya Kuprov who drew our attention to the BFGS method. This research

was supported in part by the National Science Foundation under Grant No. PHY05-51164,

KITP preprint number: NSF-KITP-10-157. This research is made possible in part by the

18

historic generosity of the Harold Perlman family.

Appendix A: Deriving the Euler–Lagrange Equations for Quantum Optimal Control

We give here the derivation of Eqs. (8a) and (8b). The variation of J̄ (Eq. (7)) with

respect to ψ∗ is given by:

δJ̄

δ〈ψ|
=

δJ

δ〈ψ|
+

δJ1

δ〈ψ|
+

δJ2

δ〈ψ|
+

δJ3

δ〈ψ|
. (A1)

Note that δJ3

δ〈ψ|
= 0 since J3 is independent of 〈ψ|. Furthermore J depends only on 〈ψ(T)|

so:

δJ

δ〈ψ|
=

δJ

δ〈ψ(T)|
. (A2)

Integrating J1 of Eq. (7b) by parts gives:

J1 = −2Re

〈χ(T)|ψ(T)〉 − 〈χ(0)|ψ(0)〉 −

T∫

0

〈χ̇(t)|ψ(t)〉dt

 . (A3)

Therefore (since the initial condition ψ(0) is fixed):

δJ1

δ〈ψ|
= |χ̇〉 − |χ(T)〉. (A4)

Inserting Eqs. (A2) and (A4) into Eq. (A5) gives:

δJ̄

δ〈ψ|
=

δJ

δ〈ψ(T)|
− |χ(T)〉 + |χ̇〉 +

δJ2

δ〈ψ|
. (A5)

Using the necessary condition δJ̄
〈ψ|

= 0 we get Eqs. (8a) and (8b):

|χ̇〉 = −
δJ2

δ〈ψ|

|χ(T)〉 =
δJ

δ〈ψ(T)|
.

In a similar way one can derive Eqs. (22a) and (22b).

Appendix B: Deriving the Krotov Update Rule for The Control Field

We give here a short derivation for the Krotov update rule for linear equation of motion

(Eq. (10)). For a more complete treatment, including nonlinear equation of motion, one

should look in Ref. [15].

19

In the Krotov method one needs to defines an auxiliary function:

L[ψ, ξ;φ] = G[ψ(T)] −

T∫

0

R[ψ, ξ](t)dt− φ[ψ(0), 0] (B1a)

where

G[ψ(T)] = J [ψ(T)] + φ[ψ(T), T] (B1b)

R[ψ, ξ] = Re

{
∂φ

∂ψ
f [ψ, ξ] − λg[ξ] +

∂φ

∂t

}
, (B1c)

and φ is a scalar function that depends on ψ that one is free to choose as desired. In reference

[15] it is shown that L = J , which means that one should maximize G and minimize R. The

Krotov algorithm achieves this by an iterative method. At the kth iteration one maximizes

R with respect to the control ξ while at the same time maximizing G and minimizing R

with respect to ψ, i.e.:

ξ(k) = arg max
ξ
R[ψ(k), ξ] (B2a)

R[ψ(k), ξ(k)] = arg min
ψ
R[ψ, ξ(k)] (B2b)

G[ψ(k)] = arg max
ψ

G[ψ]. (B2c)

For linear equations of motion φ = 〈χ|ψ〉 and Eq. (B1c) becomes:

R[ψ, ξ] = Re {〈χ|f [ψ, ξ]〉 − λg[ξ] + 〈χ̇|ψ〉} (B3)

Using the necessary conditions δR
δψ

= 0 and δG
δψ

= 0 one obtains Eqs. (8a) and (8b) for χ(k),

to be used in the next iteration. Using the minimization condition δR
δξ

= 0 for R with g

given by Eq. (5) one gets Eq. (10):

ξ(k) = ζ (k) −
1

λ

{
Re

〈
χ(k−1)

∣∣∣∣
δf [ψ(k), ξ]

δξ

〉}
. (B4)

Appendix C: Sufficient Conditions for J as well as J̄ to Increase Monotonically

We prove here the claim: for the Krotov method (as presented in Section IIB), if in

the update rule for the control (Eq. (10)) one takes ζ (k) = ξ(k−1) then J (not only J̄) is

monotonic with iteration number.

20

Proof: We can take J3 to be as in Eq. (6), and rewrite Eq. (7a) as:

J̄ = J + J1 + J2 + J3 ≡ J ′ −

T∫

0

λ(t)
(
ξ(t) − ζ(t)

)2
dt, (C1)

where λ(t) > 0. However, according to Eq. (1) J1+J2 = 0; therefore we can rewrite Eq.(C1)

as:

J̄ = J −

T∫

0

λ(t)
(
ξ(t) − ζ(t)

)2
dt. (C2)

If ξ is updated according to the Krotov update rule (Eq. (10)), then for the kth iteration

we know that:

J̄ (k) ≥ J̄ (k−1) (C3)

By inserting Eq.(C2) into Eq. (C3) we get:

J (k) −

T∫

0

λ(t)
(
ξ(k)(t) − ζ(t)

)2
dt ≥ J (k−1) −

T∫

0

λ(t)
(
ξ(k−1)(t) − ζ(t)

)2
dt. (C4)

However ζ can be chosen arbitrarily, so we can choose ζ = ξ(k−1), and we get:

J (k) − J (k−1) ≥

T∫

0

λ(t)
(
ξ(k)(t) − ξ(k−1)(t)

)2
dt ≥ 0. (C5)

Therefore we get:

J (k) ≥ J (k−1), (C6)

which concludes the proof.

Following the same steps one can prove the above claim also for the K–BFGS update rule

(Eq. (37)), where J3 is written as in Eq. (31).

Appendix D: The Degeneration of the Krotov Method to a First-Order Gradient

Method Near Convergence

We prove here that the Krotov method degenerates to a first-order gradient method near

convergence. Our starting point is Eq. (15). If we assume that the reference field is the

same at all iterations, ζ (k) = ζ (k−1) = ζ , we obtain:

ξ(k) = ξ(k−1) + α
δJ̄ (k−1)

δξ
+ 2αRe

〈
χ(k−1)|µ|ψ(k) − ψ(k−1)

〉
. (D1)

21

Moreover, µ = δ2f

δξδψ
is independent of ξ and ψ since f is linear in both.

The strategy of our proof will be to start from t = 0 and show that as δJ̄
δξ

→ 0 the Krotov

and first-order gradient methods give the same field at all future values of t. According to

Eq. (D1) the updated control, ξ(k), at time t = 0 is given by:

ξ(k)(0) = ξ(k−1)(0) + α
δJ̄ (k−1)

δξ(0)
+ 2αRe

〈
χ(k−1)(0)|µ|ψ(0) − ψ(0)

〉

= ξ(k−1)(0) + α
δJ̄ (k−1)

δξ(0)
, (D2)

where ψ(k)(0) = ψ(k−1)(0) = ψ(0) is the initial condition of ψ. For small enough ∆t Eq. (1)

can rewritten as:

|ψ(t+ ∆t)〉 ≈ |ψ(t)〉 + |f [ψ(t), ξ(t)]〉∆t. (D3)

Therefore near convergence ψ(k) at ∆t is given by:

|ψ(k)(∆t)〉 = |ψ(0)〉 + |f [ψ(0), ξ(k)(0)]〉∆t

Eq. (D2)
= |ψ(0)〉 + |f [ψ(0), ξ(k−1)(0) + α

δJ̄ (k−1)

δξ(0)
]〉∆t

δJ̄(k−1)

δξ(0)
→0

−−−−−−→ |ψ(k−1)(∆t)〉. (D4)

Hence the updated control, ξ(k), at ∆t is given by (Eq. (D1)):

ξ(k)(∆t) = ξ(k−1)(∆t) + α
δJ̄ (k−1)

δξ(∆t)
+ 2αRe

〈
χ(k−1)(∆t)|µ|ψ(k)(∆t) − ψ(k−1)(∆t)

〉

Eq. (D4)
= ξ(k−1)(∆t) + α

δJ̄ (k−1)

δξ(∆t)
+ 2αRe

〈
χ(k−1)(∆t)|µ|ψ(k−1)(∆t) − ψ(k−1)(∆t)

〉

= ξ(k−1)(∆t) + α
δJ̄ (k−1)

δξ(∆t)
. (D5)

Using the above, near convergence ψ(k) at 2∆t is given by:

|ψ(k)(2∆t)〉 = |ψ(k)(∆t)〉 + |f [ψ(k)(∆t), ξ(k)(∆t)]〉∆t

Eqs. (D4) & (D5)
= |ψ(k−1)(∆t)〉 + |f [ψ(k−1)(∆t), ξ(k−1)(∆t) + α

δJ̄ (k−1)

δξ(∆t)
]〉∆t

δJ̄(k−1)

δξ(∆t)
→0

−−−−−−→ |ψ(k−1)(2∆t)〉, (D6)

and therefore ξ(k) at 2∆t is given by:

ξ(k)(2∆t) = ξ(k−1)(2∆t) + α
δJ̄ (k−1)

δξ(2∆t)
+ 2αRe

〈
χ(k−1)(2∆t)|µ|ψ(k)(2∆t) − ψ(k−1)(2∆t)

〉

Eq. (D6)
= ξ(k−1)(2∆t) + α

δJ̄ (k−1)

δξ(2∆t)
+ 2αRe

〈
χ(k−1)(2∆t)|µ|ψ(k−1)(2∆t) − ψ(k−1)(2∆t)

〉

= ξ(k−1)(2∆t) + α
δJ̄ (k−1)

δξ(2∆t)
, (D7)

22

and so on until final time T .

From Eqs. (D2), (D5) and (D7) we see that near convergence, as δJ̄
δξ

→ 0, the Krotov

methods degenerates to a first-order gradient method.

23

[1] D. J. Tannor and S. A. Rice, J. Chem. Phys. 83, 5013 (1985).

[2] D. J. Tannor, R. Kosloff, and S. A. Rice, J. Chem. Phys. 85, 5805 (1986).

[3] M. Shapiro and P. Brumer, J. Chem. Phys. 84, 4103 (1986).

[4] P. Brumer and M. Shapiro, Chem. Phys. Lett. 126, 541 (1986).

[5] A. P. Peirce, M. A. Dahleh, and H. Rabitz, Phys. Rev. A 37, 4950 (1988).

[6] A. Assion et al., Science 282, 919 (1998).

[7] T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, Nature 397, 233 (1999).

[8] R. Bartels et al., Nature 406, 164 (2000).

[9] P. Corkum, Nature 403, 845 (2000).

[10] R. Kosloff, S. A. Rice, P. Gaspard, S. Tersigni, and D. J. Tannor, Chem. Phys. 139, 201

(1989).

[11] D. J. Tannor and Y. Jin, Design of femtosecond pulse sequences to control photochemical

products, in Mode Selective Chemistry, edited by B.Pullman, J. Jortner, and R. D. Levine,

pages 333–345, Kluwer, Dordrecht, 1991.

[12] V. F. Krotov and I. N. Fel’dman, Engrg. Cybren 17, 123 (1983).

[13] D. J. Tannor, V. Kazakov, and V. Orlov, Control of photochemical branching : Novel pro-

cedures for finding optimal pulses and global upper bounds, in Time-Dependent Quantum

Molecular Dynamics, edited by J. Broeckhove and L. Lathouwers, pages 347–360, Plenum

Press, New York, 1992.

[14] J. Somlói, V. A. Kazakov, and D. J. Tannor, Chem. Phys. 172, 85 (1993).

[15] S. E. Sklarz and D. J. Tannor, Phys. Rev. A 66, 053619 (2002).

[16] A. I. Konnov and V. F. Krotov, Automation Remote Control 60, 1427 (1999).

[17] C. P. Koch, J. P. P. R. Kosloff, and F. Masnou-Seeuws, Phys. Rev. A 70, 013402 (2004).

[18] M. Murphy, S. Montanegro, V. Giovannetti, and T. Calarco, Phys. Rev. A 82, 022318 (2010).

[19] J. P. Palao and R. Kosloff, Phys. Rev. Lett. 89, 188301 (2002).

[20] J. P. Palao and R. Kosloff, Phys. Rev. A 68, 062308 (2003).

[21] W. Zhu and H. Rabitz, J. Chem. Phys. 109, 385 (1998).

[22] Y. Maday and G. Turinici, J. Chem. Phys. 118, 8191 (2003).

[23] C. G. Broyden, J. Inst. Math. App. 6, 76 (1970).

24

[24] R. A. Fletcher, Comput. Journal 13, 317 (1970).

[25] D. A. Goldfarb, Math. Comput. 24, 23 (1970).

[26] D. F. Shanno, Math. Comput. 24, 647 (1970).

[27] Targets that depend on a time interval are also possible in general but we will not include

them in the formalism.

[28] In general, one can add more terms to the cost function and each of them can also depend on

ψ, but for simplicity we will not include those cases in our discussion.

[29] In certain cases, the penalty function may be part of one’s goal, in which case J̄ is the real

objective and maximization of J̄ and not of J is desired. However, most times one aims to

maximize J and uses the penalty function only as a mathematical tool to make the objective

a convex function.

[30] In principle, a second condition δJ
δ|ψ〉 = 0 should also be taken into account but due to the

symmetry of J this simply gives the c.c. of Eqs. (8a – 8b).

[31] If ξ is taken to be complex the maximization condition δJ̄
δξ∗

= 0 should also be fulfilled. However

this condition is often redundant since J̄ is symmetric with respect to ξ and ξ∗.

[32] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, SIAM J. Sci. Comput. 16, 1190 (1995).

[33] C. Zhu, R. Byrd, and J. N. P. Lu, L-BFGS-B: a limited memory FORTRAN code for solving

bound constrained optimization problems, Tech. Report, NAM-11, EECS Department North-

western University, 1994.

[34] I. Degani, A. Zanna, L. Sælen, and R. Nepstad, SIAM J. Sci. Comput. 31, 3566 (2009).

[35] G. Orwell, Nineteen Eighty-Four, Secker and Warburg, London, 1949.

25

