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Smooth composite pulses for high-fidelity quantum information processing

Boyan T. Torosov and Nikolay V. Vitanov
Department of Physics, Sofia University, 5 James Bourchier blvd, 1164 Sofia, Bulgaria

We present a systematic SU(2) approach for construction of composite sequences of pulses with
smooth temporal shapes that produce high-fidelity two-state excitation profiles. This makes possible
the application of composite pulses to quantum control and quantum information processing with
short and ultrashort laser pulses. We present an exact analytic formula for the composite phases for
arbitrarily accurate broadband pulses, examples of narrowband, passband and fractional-m pulses,
as well as composite pulses with detuning compensation.

PACS numbers: 32.80.Qk, 42.65.Re, 82.56.Jn, 42.50.Dv

I. INTRODUCTION

The technique of composite pulses developed originally
in nuclear magnetic resonance (NMR) [1-9] is a power-
ful tool for quantum state manipulation. This technique
replaces the single pulse used traditionally for driving a
two-state transition in a quantum system by a sequence
of pulses with appropriately chosen phases, which are
used as a control tool for shaping the excitation profile
in a desired manner. In particular, a nearly perfect pop-
ulation inversion, which is insensitive to variations in the
interaction parameters — the amplitude and/or the fre-
quency of the pulses — can be achieved. This technique
therefore combines the accuracy of single m-pulse exci-
tation with a robustness similar to adiabatic techniques.
For this reason, composite pulses have enjoyed steadily
increasing attention in the field of quantum computation,
wherein ultrahigh fidelity of gate operations is required,
e.g., in implementation of quantum gates and quantum
algorithms with trapped ions [10-15].

The existing methods for design of composite pulses
are developed for pulses of rectangular temporal shape,
which is suited for NMR experiments [1-9], as well as for
atomic excitation with microsecond pulses [10-15]. How-
ever, rectangular pulse shapes are hard to implement on
shorter time scales, for instance, with femtosecond pulses,
because of the prohibitively large Fourier spectrum of a
rectangular pulse. Ultrashort pulses hold a great promise
for quantum computation because of the absence of deco-
herence and the emergence of techniques for selective and
efficient control of qubits [16, 17]. Such ultrashort pulses
can be shaped [18, 19] to have smoothly-varying bell-
shaped envelopes, e.g., gaussian or hyperbolic-secant.
The theory of composite sequences of pulses with such
smooth envelopes, unlike the extensive literature of exci-
tation by single pulses [20-28], is largely missing, which
has limited hitherto the use of this powerful control tech-
nique on short and ultrashort time scales.

In this paper, we present a simple systematic approach,
which allows the construction of composite sequences of
pulses with smooth shapes that can create broadband,
narrowband and passband excitation profiles correspond-
ing to effective 7 and fractional-7 pulses, with any desired
flatness. Our method is based upon the SU(2) represen-

tation of the propagator of the two-state system [29],
instead of the commonly used intuitive SO(3) rotations
in the Bloch vector picture [1-9]. The latter provide geo-
metric depiction of the action of the composite pulse, but
are more demanding numerically. The SU(2) approach
allows us to use the available exact analytic solutions for
special pulse shapes, which in turn allow us to obtain
the phases of the respective composite pulses. We will
find that up to a certain number of ingredient pulses the
composite phases are independent of the pulse shapes.

II. PROPAGATOR OF A COMPOSITE PULSE
SEQUENCE

A pure state of a coherently driven two-state quantum
system is described, in the interaction representation, by
the state vector

[U(t)) =Y calt) e P n), (1)
n=1

where FE, are the eigenenergies of the unperturbed
Hamiltonian Hy, Holn) = E,|n), and c¢,(t) is the
complex-valued probability amplitude of state |n).
The amplitudes ¢;(¢t) and co(t) are solutions of the
Schrédinger equation,

ihd,c(t) = Ht)e(t), 2)

where H(t) is the Hamiltonian of the system. We will as-
sume that Fs = E7; then the Bohr transition frequency
will be wg = (E2 — E1)/h. In the presence of an exter-
nal coherent field and after performing the rotating-wave
approximation (RWA), the Hamiltonian reads
h 0 Q(t) e PO
HO =5 | gane g [+ ®

with D(t) = ftf A(t')dt', where A = wy — w is the detun-
ing between the laser carrier frequency w and the Bohr
transition frequency wg. For electric-dipole transitions
the Rabi frequency §2(t) parameterizes the coupling be-
tween the electric field E(t) and the transition dipole
moment d: Q(¢t) = —d - E(¢)/h; for two-photon Raman



transitions the Rabi frequency is proportional to E(t)2.
The evolution of the system is described by the propa-
gator U, which connects the values of the amplitudes at
the initial and final times, #; and t¢: c(t¢) = U(te, ti)c(t).
The propagator is conveniently parameterized with the
complex Cayley-Klein parameters a and b as

a b
o[ 2] .

For exact resonance (A = 0), the Schrédinger equation
is solved exactly for any Q(t). Then the Cayley-Klein pa-

rameters depend only on the pulse area A = f:f Q(t)de:

a = cos(A4/2), b= —isin(A/2), (5)
with Q(t) assumed real. The transition probability is
p = |b|> = sin? (4/2) and hence complete population in-
version occurs for A = 7 (m-pulses) or odd-integer mul-
tiples of w. This inversion is sensitive to variations in
the pulse area: a small deviation € from the value 7, i.e.
A = 7(1 + €), causes an error in the inversion of order
O(€?): p=1—m2e?/4+ O(e*). This sensitivity to errors
can be greatly reduced, to any desired order, by replacing
the single m-pulse by a composite pulse sequence.

A constant phase shift ¢ in the Rabi frequency, Q(¢t) —
Q(t) e'?, is imprinted into the propagator (4) as

a he i
U¢ - |:_b>s< eiqb a* :| . (6)
A sequence of N pulses, each with area Ay and phase ¢,
produces the propagator

uN) = U¢N(AN)U¢N,1(AN—1)"'U¢1 (A1) (7)

Equations (5)-(7) allow us to calculate the propagator
produced by a composite sequence of pulses; it depends
explicitly on the areas Ay and the phases ¢y of the in-
gredient pulses.

III. COMPOSITE n-PULSES
A. Conditions for the composite phases

Our objective is to produce an excitation profile that is
maximally robust to variations in the pulse area A at se-
lected value(s) of A. Contrary to most known composite
pulses, we assume for simplicity that all pulse areas are
equal, A, = A(1+¢) (k=1,2,...,N). This assumption
is natural for pulsed lasers because they produce a train
of possibly imperfect but identical pulses. It is relatively
easy to impose a different phase on each pulse by using
an electro-optical modulator or a pulse shaper [18, 19].
We consider an odd number of pulses, N = 2n + 1, al-
though this assumption is not crucial; the rationale be-
hind this is that for A = 7 and ¢ = 0 the composite
pulse sequence has the action of a (2n+ 1)7 pulse (apart

from a phase shift), that causes a perfect inversion. We
also require that the composite sequence is symmetric
with respect to reversal of pulses, i.e. the phases obey
Or = ¢N+1—k; this “anagram” condition leads to sym-
metric inversion profiles. Because the overall phase of
the composite sequence is irrelevant, but only the relative
phases of the pulses matter for the population changes,
we set ¢1 = ¢y = 0; hence we have n different phases,
which are treated as free parameters.

The next step is to calculate the overall propagator (7),
and set the first n non-vanishing derivatives of U 1({\/) with
respect to the pulse area A to zero at the desired value
of A. In such a manner we obtain a system of n cou-
pled nonlinear algebraic equations for the n phases. The
symmetry assumption about the phases, ¢ = dn+1-k,
ensures that either all even-order or all odd-order deriva-
tives vanish; hence the n phases allow us to nullify the
first 2n derivatives.

We use this approach to derive the phases for three
major types of composite pulses: broadband (BB), nar-
rowband (NB) and passband (PB) pulses [6-8]. For the
BB pulses, we require a flat top of the excitation profile
at pulse area A = 7; for the NB pulses, we require a flat
bottom at area A = 0 (or A = 27); for the PB pulses, we
require a flat bottom at A = 0 and a flat top at A = 7.
In brief, the composite phases for all BB, NB and PB se-
quences presented below are derived from the following
conditions:

BB: [05UMNM)acr =0 (k=1,3,....N—2); (8a)

NB: [04U1 Nazo=0 (k=24,... . N—1); (8b)

PB: [05UM)ar =0 (k=1,3,....M),
P50 azo =0 (k=2,4,...,N — M —2),

with 0% = 9%/0A*. For each N, there are multiple solu-
tions to these conditions.

B. Broadband composite sequences

We have derived an analytic formula for the phases of
a BB pulse composed of an arbitrary number of pulses,

;N>:(N+1—2{¥D EJ% 9)

where k = 1,2,..., N and the symbol |z] denotes the
floor function (the integer part of ). Such a pulse nul-
lifies the first 2N — 1 derivatives of the transition prob-
ability versus the pulse area at the point A = 7; hence
the error € is suppressed to order O(e2V),

p=1—(me/2)*N + O(2NT2). (10)

In this manner, an arbitrarily flat inversion profile versus
the pulse area can be produced. In Table I we show



N Phases (in units 7/N)

3 0 20

5 04 2 40

7 06 48 46 0

9 0 8 6 12 8 12 6 8 0

11 0 10 8 16 1218 1216 8 10 0O

13] 0 12 10 20 16 24 18 24 16 20 10 12 0
15(0 14 12 24 20 30 24 32 24 30 20 24 12 14 0

TABLE I. Phases of BB composite sequences for different
number N of ingredient resonant 7 pulses.
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FIG. 1: (Color online) Top frame: Transition probabilities
p for N-component BB composite sequences By versus the
area of the ingredient pulses. The composite phases are given
by Eq. (9). The dashed curve shows the single m-pulse profile
for easy reference. Our composite sequences are compared
with other popular composite pulses: W5 is the BB1 pulse of
Wimperis [8], T25 is Tycko’s 25-pulse sequence [6], and B6 is
Brown’s 892-pulse sequence [30]. Bottom frame: Fidelity of
the profiles from the upper frame.

the explicit phases (bECN) for a few N. For N = 3,
we find the well-known composite pulse (7)o(7)z (7)o
[2-5]. For N = 5, we obtain the composite pulse
(m)o(m) 27(7) 2.7 (7) 4. (7)o, which appears to be new, like
all solutions for larger N.

Figure 1 shows the excitation profiles for a few BB
pulses with phases from Eq. (9). The profiles can be made
arbitrarily flat by increasing the number of pulses, cf. the
exotic example with 125 pulses. The logarithmic scale in
the bottom frame allows us to examine the fidelity of
the profiles against the 10™* benchmark level in quan-
tum information [31]. The range of pulse areas wherein
the inversion error remains below 10~ increases dra-
matically with N: from deviation of 0.0067 for a single

Phases (in units )

0; 1.161; 0.580; 1.161; 0

0; 1.129; 0.822; 0.108; 1.386; 0.108; 0.822; 1.129; 0

0; 0.897; 1.124; 1.846; 0.292; 0.981; 1.771; 0.981; 0.292;
1.846; 1.124; 0.897; 0

17|05 1.604; 0.553; 1.091; 0.888; 0.620; 1.535; 0.149; 1.569;
0.149; 1.535; 0.620; 0.888: 1.091; 0.553; 1.604; 0

@ o |2

TABLE II: Approximate phases of NB composite sequences
for different number N of ingredient resonant 7w pulses.

o o o =
IS o ™ =]
. . .

Transition Probability p
o
N

o

=}

=
(@]
\

\

\

5

/A

FIG. 2: (Color online) Top frame: Transition probabilities
p for N-component NB composite sequences Ny versus the
area of the ingredient pulses. The composite phases are listed
in Table II. The dashed curve shows the single 7w-pulse profile
for easy reference. Bottom frame: The transition probabilities
from the upper frame on logarithmic scale, which reveals the
expansion of the no-transition zones around areas A = 0 and
27 as the number of ingredient pulses increases. The dashed
curve depicts the transition probability when a random error
of 1% is included in the phases of the Ng pulse.

|
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pulse, to 0.267,0.627,0.827 for N = 5,25, 125, respec-
tively. Our pulses clearly outperform some well-known
composite pulses shown in the figure for comparison.

C. Narrowband and passband composite sequences

Figure 2 shows the excitation profiles for a few NB
composite sequences and Fig. 3 for a few PB sequences.
Unlike BB sequences, we have not been able to find gen-
eral analytic expressions for the composite phases of NB
and PB sequences; the numerical values are given in Ta-
bles IT and III. For NB sequences the excitation in the
wings of the profile is suppressed. PB sequences sup-



M |Phases (in units 7)

0; 0.704; 1.186; 1.834; 1.186; 0.704; 0

3105 0.607; 1.088; 1.472; 0.226; 1.472; 1.088; 0.607; 0
1/0; 0.778; 0.609; 1.305; 1.572; 0.137; 1.572; 1.305;
0.609; 0.778; 0

11} 5|0; 0.801; 1.144; 1.649; 0.229; 0.944; 0.229; 1.649;
1.144; 0.801; O

13| 3]0; 0.618; 0.210; 1.495; 0.740; 1.288; 1.428; 1.288:
0.740; 1.495; 0.210; 0.618; 0

13| 7]0; 0.823; 0.615; 1.243; 1.317; 0.058; 1.925; 0.058;
1.317; 1.243; 0.615; 0.823; 0

15| 1]0; 1.146; 0.882; 0.294; 1.822; 1.341; 0.720; 1.950;
0.720; 1.341; 1.822; 0.294; 0.882; 1.146; 0

15| 5(0; 0.473; 0.421; 1.624; 1.050; 1.081; 1.469; 0.259;
1.469; 1.081; 1.050; 1.624; 0.421; 0.473; 0

15| 9]0; 0.792; 0.681; 1.139; 1.582; 1.778; 0.254; 1.088;
0.254; 1.778; 1.582; 1.139; 0.681; 0.792; 0

:QD\]Z
—

TABLE III: Approximate phases of PB composite sequences
for different number N of ingredient resonant 7 pulses. The
integer number M indicates the highest derivative annulled
at area A = 7, see Eq. (8¢c), i.e., the larger M the flatter the
top of the excitation profile.

press both p in the wings and 1 — p in the center, i.e.,
they stabilize the excitation profile at both areas 0 (and
27) and 7. All these features are achieved even for low-N
sequences.

In order to examine the sensitivity of the excitation
against imperfections in the composite phases, we have
included a random noise of 1% in the phases for the Ng
pulse in Fig. 2 (dashed curve in bottom frame). Such
an accuracy in the phases is readily achieved with most
phase shifting devices. Clearly, a phase noise of this order
does not affect the profile dramatically. We have reached
similar conclusions for the other excitation profiles as well
(not shown for the sake of brevity).

IV. FRACTIONAL-m PULSES

The proposed method for design of composite se-
quences can be used to construct fractional-m composite
sequences, which produce robust coherent superpositions
of states. We take a sequence of N = 2n + 1 pulses with
the same area and we determine their phases by fixing
the transition probability p to the desired value, sin® 4,
and annulling the first n — 1 nonzero derivatives at the
desired fractional-w value, A = 1. For illustration, we
consider a half-m composite pulse (¢ = 7/2), which pro-
duces a coherent superposition with equal probabilities
of the two states. The composite phases are determined

Transition Probability p

p, 1-p

Pulse Area (in units m)

FIG. 3: (Color online) Top frame: Transition probabilities p
for N-component PB composite sequences Py versus the area
of the ingredient pulses. The composite phases are listed in
Table III. The dashed curve shows the single w-pulse profile
for easy reference. Bottom frame: Fidelity of the P7 profile
from the upper frame.

N |Phases (in units )
5(0; 0.765; 0.891; 0.765; 0
7
9

0; 1.509; 1.029; 0.182; 1.029; 1.509; 0
0; 1.319; 1.830; 0.430; 0.794; 0.430; 1.830; 1.319; 0
11]0; 0.509; 0.028; 1.286; 1.258; 0.205; 1.258; 1.286; 0.028;
0.509; 0

13]0; 1.843; 0.452; 1.234; 0.758; 0.528; 1.101; 0.528; 0.758;
1.234; 0.452; 1.843; 0

TABLE IV: Approximate phases of half-r composite se-
quences for different number N of ingredient resonant /2
pulses.

from the following conditions,

[Ul(iV)]A:ﬂ'/Q = 1/\/57
(D50 M g g =0 (k=1,2,...,n—1).

(11a)
(11b)

Table IV lists a few sets of phases for difference compos-
ite sequences. Figure 4 shows the excitation profiles for
several half-7 composite sequences, which produce transi-
tion probability p = % at and around the value A = 7/2.
The stabilization of the transition probability around the
value p = % is similar to the one around the value p =1
for BB composite 7 pulses in Fig. 1 and to the stabiliza-
tion around the value p = 0 for NB composite sequences

in Fig. 2.
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FIG. 4: (Color online) Transition probabilities p for N-

component half-7 composite sequences versus the area of the
ingredient pulses. The area of each ingredient pulse is /2
and the composite phases are listed in Table I'V.

V. DETUNING-COMPENSATED COMPOSITE
SEQUENCES

Up to now, we showed that our resonant composite
sequences can produce arbitrarily flat excitation profiles
versus the pulse area at various probabilities. We now
show that the same SU(2) method can be used to stabi-
lize the excitation profiles with respect to the frequency
detuning around exact resonance. Because for nonzero
detuning the Cayley-Klein SU(2) parameters depend on
the pulse shape of the driving field, one might expect
that the composite phases will depend on the pulse shape
too. Moreover, one expects that the explicit form of the
Cayley-Klein parameters is needed for the derivation of
the composite phases, as for resonant pulses. Therefore
we begin with an analytically exactly soluble model, with
a hyperbolic-secant pulse shape, and then we show that
under some symmetry conditions, the composite phases
do not depend on the pulse shape up to a certain order.

A. Hyperbolic-secant pulse shape

In the famous Rosen-Zener model [20], the pulse has a
hyperbolic-secant shape and a constant detuning,
Q(t) = Qosech (¢/T), A(t) = const. (12)

For this model the Cayley-Klein parameters are [20]

1 Lo\ 2
a= T F(2+152 : 3 (13a)
IF(24i6—a)T (3 +i0+ )
. sinmao
b= ~coshd’ (13b)

with o = QyT/2 and § = AT /2. The transition proba-
bility is p = |b|> = sin® ma sech 278, which means that
complete population inversion takes place for Q¢T =
(2k + 1) (with k integer) and A = 0. We take again

o o o =
IS o [e¥) o
.

Transition Probability p
o
N

o

=
<
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10*

Inversion Error 1-p

10°

-2

Detuning A (in units 1/T)

FIG. 5: (Color online) Transition probability p (top) and the
error 1 —p (bottom) versus the detuning for a single sech pulse
and for a sequence of five 3w /5 pulses with phases (approxi-
mately) (0,0.747,0.424,0.747,0)7, and nine 47/9 pulses with
phases (0,1.308, 1.153,1.251, 0.562, 1.251, 1.153, 1.308, 0).

N = 2n + 1 pulses with the same area and symmetric
phases, ¢nt1-k = ¢k (kK = 1,2,...,n), so that the ex-
citation profile is symmetric versus A. We multiply the
SU(2) propagators for each ingredient pulse and then we

set the first n — 1 derivatives of Ul({v)(A) with respect to
A to zero at A =0,

XU M Ao =0 (k=0,1,....n—1). (14)

We determine the composite phases from the resulting
set of algebraic equations. In general, there are multi-
ple solutions for each N. For N = 3, a A-compensated
pulse is mo7/3m0. For larger N, the phases are derived
numerically. Figure 5 shows the excitation profiles for a
few A-compensated composite sequences. As the lower
frame shows, even moderately large composite sequences
greatly enhance the 10~% error tolerance range: from de-
tunings +0.006/7T for a single pulse to £0.13/T for the
five-pulse sequence and +0.26/T for the nine-pulse se-
quence.

B. General case

The described method, although well suited for analyt-
ically soluble models, can be applied to arbitrary pulse
shapes too, e.g. gaussian, Q(t) = Qq e=/T* We have
found that the phases of composite sequences of up to
five pulses do not depend on the pulse shape provided
the latter is symmetric,

Q(—t) = Q(t). (15)



Detuning A (in units 1/T)

Pulse Area (in units m)

FIG. 6: (Color online) Transition probability versus detuning
and pulse area for a single pulse (upper frame) and for a five-
pulse composite sequence with phases (0,57 /6,7 /3,57/6,0)
(lower frame).

In order to prove this we use the fact that for such pulse
shapes the Cayley-Klein parameters can be written as

a=fo(A)+ifo(A), b=—iV/1-f2(A) - f2(A),

(16)
where the labels ‘€’ and ‘0’ stand for even and odd func-
tions, respectively. We also note that after differentia-
tion, an odd function becomes even and vice versa. Next,
we obtain the Taylor expansion of @ at A = 0 and set
the first few terms to zero (the more phases we have, the
more terms we can nullify). Then we notice that, due
to Eq. (16), the equations for the phases do not depend
on the particular forms of f. and f,. This property is
conserved for sequences of up to five pulses, which means
that the respective composite phases are universal.

C. Simultaneous stabilization versus pulse area and
detuning

Another application of this method is for obtaining
profiles that are flat versus both A and A. The phases
are derived in the same way as before, but now we nullify
derivatives versus both A and A,

okrtke
B

AklaAk2 = 05 (17)

:| (A=m,A=0)

where the values of k1 and ko determine the flatness ver-
sus the respective parameter A and A. An example for
a five-pulse composite sequence is shown in Fig. 6. It
demonstrates how the small high-fidelity central spot in

the upper frame is greatly expanded by the composite
sequence in the lower frame.

VI. DISCUSSION
A. Pulse sequences

The composite pulse sequences presented in this pa-
per can be produced in various manners. Pulsed laser
systems operating at repetition rates 100 MHz, in com-
bination with standard programmable phase shifters, can
produce composite sequences of pulses with time dura-
tion on the scale of 100 ns. One can, however, use a
femtosecond pulse shaper in order to produce composite
sequences on femtosecond time scale. For example, con-
sider a sequence of 2n + 1 cos?*-pulses (with s a positive
integer), with the following Rabi frequency in the time
domain

) = { cos?*(1/T). ~(n+ HT £t < (n+ §)aT.
0, otherwise.

(18)
Let us impose on each pulse a phase as given by Eq. (9)
and explicitly shown in Table I. In order to produce
this model by femtosecond pulse shaping technology, one
needs to know the Fourier spectrum of the pulse se-
quence, which is readily computed; however, it is too
long to be shown here. What is very important is that
the Fourier spectra of our composite sequences, with the
pulse shapes of Eq. (18) and the phases of Eq. (9), have
the following asymptotic behavior at large frequencies,
regardless of the number of ingredient pulses:

Qw) ~ O(w=271). (19)

This rapid decrease makes femtosecond pulse shaping,
and coherent control by composite sequences on fem-
tosecond time scale, possible.

We note here that the composite sequences derived by
us require pulse areas of 7 (or less) for the ingredient
pulses. Excitation with such pulse areas has already been
achieved in femtosecond physics; it has been shown that
pulses with well controlled areas of several = [32-34], and
even adiabatic evolution which requires larger pulse areas
[35-37], can be achieved.

B. Decoherence

The composite sequences derived in this paper did not
take decoherence into account. This assumption is rea-
sonable in various implementations. As explained above,
our technique is applicable to the femtosecond time scale
when the pulse sequence is produced by a pulse shaper;
then decoherence is largely irrelevant. On the longer time
scales, decoherence should be taken into account if one of
the qubit states is an excited electronic state. However,



in quantum information processing, the qubit is usually
composed of two ground states, or a ground state and a
metastable state, connected with a two-photon Raman
transition. Then a coherence time larger than 1 second
can be achieved [10-15], and decoherence can be ignored.
We note here that decoherence can be suppressed with
approaches similar to composite pulse sequences, known
as “dynamical suppression of decoherence” [38].

C. Phase jitter

Because the technique of composite sequences demands
relatively accurately specified relative phases of the in-
gredient pulses, the control over these phases is the most
important part of the technique. It is therefore essential
to know and control the possible sources of phase jitter.
In Fig. 2 (lower frame) we have included a (dashed-curve)
excitation profile, in which a random phase jitter of 1%
was introduced. Phase shifts with an uncertainty well be-
low this value are readily obtained with standard pulse
shapers (for femtosecond pulses) and phase shifters (for
nanosecond and microsecond pulses).

A more important issue to address is the free evo-
lution phase shift between the two states of the qubit,
which interferes with the composite phases; such a phase
should be incorporated in the composite phases. We note
that because we work in the interaction representation,
Eq. (1), and in RWA, it is the frequency detuning that
determines the free-evolution phase, rather than the tran-
sition frequency. On resonance such a phase shift is nat-
urally absent. For off-resonant pulses, this phase should
be accounted for in the calculation of the phases.

VII. CONCLUSION

We presented a general method for design of a huge
variety of composite sequences of pulses with smooth
temporal shapes. This allows the application of compos-
ite sequences to coherent atomic excitation with short

and ultrashort laser pulses. Because our method uses
SU(2) propagators in the Schrodinger picture instead of
the commonly used SO(3) rotations in the Bloch pic-
ture, it is simpler both algebraically and numerically and
easily generates many new solutions, which appear su-
perior to the known ones, cf. Fig. 1. An important ad-
vantage of our method is that the resulting composite
pulses produce excitation profiles in which the robust-
ness against variations in the parameters is accompanied
with ultrahigh fidelity, well beyond the fault tolerance
limit of quantum computation [31]; this is a topic, which
is rarely, if ever, investigated in the literature on com-
posite pulses. We have found that composite pulse se-
quences are ideally suited for this objective. On reso-
nance (A = 0), the composite sequences do not depend
on the pulse shape; our method has allowed us to de-
rive a variety of broadband, narrowband and passband
sequences of arbitrary flatness with regard to the pulse
area. In particular, we have found a simple analytic for-
mula for the phases of arbitrary accurate broadband se-
quences. It is particularly important that this indepen-
dence on the pulse shape is extended also off resonance,
for composite sequences composed of up to five identical
single pulses. This universality is of potential significance
in cases when the desired pulse shape is hard to pro-
duce. We also point out that, because smooth temporal
shapes induce exponential dependence of the excitation
probability on A [20, 39], such pulse shapes facilitate
the elimination of sidebands in the excitation profiles
of A-compensated composite pulses, which are always
present with rectangular pulse shapes. This suppression
of excitation sidebands is of potential significance for se-
lective manipulation of collective states of many-particle
systems in quantum information processing.
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